Способ винтового зондирования грунтов в массиве в процессе шнекового бурения и устройство для его реализации

Изобретение относится к области промышленного и гражданского строительства и может быть использовано в технике и технологии исследования физико-механических свойств грунтов в естественных условиях. Техническим результатом является упрощение технологического процесса испытаний и обеспечение непрерывного получения информации на всю глубину залегания исследуемых грунтов. Предложен способ испытания грунтов в массиве, включающий определение сопротивления срезу за счет непрерывного перемещения спирального зонда, скорость которого ограничивают до величины шага спирали лидера за один оборот шнековой колонны. При этом значение сопротивления срезу определяют по величине осевого усилия, создаваемого первой промежуточной секцией с шагом лопасти больше шага лидерной лопасти. Кроме того, способ может содержать этап, на котором трение срезанного грунта о грунт измеряются при перемещении срезанного грунта в прежнее положение второй промежуточной секцией с шагом лопасти, равным шагу лидерной лопасти. Предложено также устройство для испытания грунтов в массиве, включающее спиральный зонд, жестко соединенный со шнековой колонной. При этом спиральный зонд выполнен по длине составным из двух частей и снабжен двумя дополнительными промежуточными секциями, смонтированными на полой втулке, с возможностью относительного осевого перемещения и жестко связанными с датчиками силы. Сигналы с указанных датчиков поступают по грузонесущему кабелю к блоку сбора информации. При этом спиральная лопасть первой промежуточной секции выполнена с углом наклона, превышающим угол наклона спиральной лопасти лидера, а спиральная лопасть второй промежуточной секции выполнена с углом наклона, равным углу наклона спиральной лопасти лидера. 2 н. и 2 з.п. ф-лы, 3 ил.

 

Предлагаемое изобретение относиться к области строительства, в частности к технике и технологии исследования физико-механических свойств грунтов в естественных условиях их залегания.

Известен способ испытания грунтов в природных условиях, включающий вращение внедренного в грунт спирального зонда без его осевого перемещения с измерением срезающего момента (Авторское свидетельство СССР 243931, кл. 42к, 28 84с, 1/00, 1968).

Недостатками известного способа являются низкая точность получаемых результатов из-за косвенного определения сопротивления грунта срезу через вращающий момент, технологическая сложность процесса испытаний, необходимость бурения опытной скважины, дискретность полученной информации.

Целью предлагаемого изобретения является повышение точности исследований, упрощение технологического процесса испытания и получение непрерывности получаемой информации в пределах всей исследуемой толщи при шнековом бурении.

Поставленная задача достигается тем, что в процессе шнекового бурения измеряются прямые показатели: срезающие усилия, а также усилия трения в грунте, фиксируемые в осевом направлении при изменении шага реборды в переделах одного витка в сторону увеличения, а затем в сторону уменьшения в пределах следующего витка в шнековой колонне. Для упрощения расчетов шаг срезающего сегмента шнека может приниматься в два раза больше шага лидерной лопасти, а шаг сегмента шнека для замеров трения в грунте принимается равным шагу лидерной лопасти. Транспортировка и вынос срезанного грунта без возможного уплотнения в пределах измерительных сегментов обеспечивается шнековой колонной с шагом больше шага лидерной лопасти. Для отбора малодеформированного грунта и послойного описания шнековая колонна изготавливается с шагом, равным шагу сегмента лидера.

Процесс забуривания шнековой колонны происходит в следующих режимах: величина подачи каретки вращателя буровой установки будет равна шагу забуривающего наконечника за один оборот вращателя. Данные режимы позволят измерять срезающие усилия и усилия трения грунта в осевом направлении непрерывно, со снятием отсчетов по заданной программе. Удобнее всего снимать отсчеты за один оборот шнека.

В процессе бурения на сегментах будут возникать также касательные усилия, основная составляющая которых будет трение грунта о плоскость реборды. Для измерения касательного усилия имеется возможность установить датчик измерения крутящего момента. В предлагаемом устройстве эти усилия лучше не принимать в расчет ввиду сложных теоретических расчетов. В перспективе трение грунта о реборду можно снизить, используя специальные смазывающие составы или антифрикционные накладки.

Одно из устройств, предложенное для получения непрерывности прочностных характеристик и повышения эффективности испытаний, включает шнековую колонну (1), соединенную жестко с забуривающим спиральным зондом, который выполнен по оси составным из двух частей, лидерной лопасти (2) и направляющей полой втулки (5) и снабжен выше двумя дополнительными промежуточными секциями (3) и (4). Секции, в свою очередь, смонтированы на втулке (5) с возможностью осевого перемещения и жестко связаны через стержни с цифровыми датчиками силы: (6) регистрирующим осевое усилие среза и (7) регистрирующим усилие трения, расположенными в пределах промежуточных секций, при этом первая от лидера (2) спиральная лопасть промежуточной секции на срез (3) выполнена с углом наклона, превышающим угол наклона забуривающего спирального зонда, а спиральная лопасть 2-й промежуточной секции для замера трения грунта (4) выполнена с углом наклона, равным углу наклона лидерной лопасти (2). Для обеспечения возможности отбора образцов грунта и избегания уплотнения грунта в процессе испытаний верхняя секция спирального зонда выполнена с ребордой, имеющей шаг, превышающий шаг лидерной лопасти. Сигналы, поступающие от цифровых датчиков силы: (6) регистрирующего осевое усилие среза и (7) регистрирующего усилие трения, передаются по грузонесущему кабелю (8), пропущенному внутри шнековой колонны, к блоку сбора информации (9) через интерфейс (13) на удаленный компьютер (14). Крутящий момент на спиральный зонд передается от вращателя привода (12) буровой через переходник (11).

Поскольку авторам не известны технические решения, содержащие приведенные выше признаки, правомочно считать, что данное предложение обладает «существенными отличиями».

На фигуре 1 изображен общий вид устройства для испытания грунтов на срез, реализующего предложенный способ испытания грунтов при винтовом зондировании.

На фигуре 2 показан процесс срезания грунта при испытании.

Процесс испытания происходит следующим образом (фиг. 2). При одном обороте вращателя (12) зонд перемещается в грунт (I) на шаг лопасти лидера (2), на следующем обороте вращателя с той же подачей каретки грунт (II) попадает на секцию (3) с шагом лопасти больше шага лопасти лидера (Позиция 1). За счет увеличения шага лопасти первого промежуточного происходит срезание грунта и перемещение его в осевом направлении на разницу шагов. При следующем обороте вращателя срезанный грунт (II) попадает в промежуточную секцию (4) с шагом лопасти, равным шагу лопасти лидера, в результате чего срезанный грунт (III) возвращается на прежнее место (Позиция 2). Усилия, возникающие при этом, фиксируются датчиками силы: (6) регистрирующим осевое усилие среза и (7) регистрирующим усилие трения.

На фигуре 3 показан один из вариантов устройства для испытания грунтов в процессе зондирования.

Устройство содержит спиральный зонд, состоящий из краевых секций - шнековой колонны (1) и лидерной лопасти (2), а также двух промежуточных секций (3) и (4), сидящих на направляющей втулке (5), с возможностью перемещения в осевом направлении и связанных жестко с датчиками силы: (6) регистрирующим осевое усилие среза и (7) регистрирующим усилие трения, которые в свою очередь связаны через грузонесущий кабель (8) с блоком сбора информации, а шнековая колонна через опорную скобу (10) и переходник (11) связана с вращателем (12) буровой установки (фиг. 1).

Угол наклона промежуточной секции (3) для замера срезающего усилия превышает угол наклона лидерной лопасти (2) в предлагаемом устройстве в 2 раза, а угол наклона лопасти промежуточной секции (4) для замера трения срезанного грунта по грунту. В свою очередь угол наклона лопастей шнековой колонны (1), обеспечивающих вынос грунта на поверхность, больше угла наклона забуривающей секции.

Испытание в массиве в соответствии с предложенным способом с помощью описанного устройства осуществляется следующим образом. При внедрении устройства в грунтовый массив лидерная лопасть через шнековую колонну ввинчивается в грунтовый массив без его нарушения. По мере дальнейшего внедрения устройства происходит срез грунта спиральной лопастью промежуточной секции по цилиндрической поверхности, ограниченной окружностью спиральной лопасти и длиной срезающей секции. Срез грунта происходит вследствие разницы угла наклона спиральной лопасти лидера и первой промежуточной (срезающей) секции (в данном устройстве в 2 раза). В процессе дальнейшего внедрения зонда срезанный грунт поступает во вторую промежуточную секцию (для замера трения грунта о грунт). В пределах этой секции за счет уменьшения угла наклона лопасти до угла наклона лопасти лидерной секции срезанный грунт возвращается в исходное положение. Усилия, возникающие в промежуточных секциях, передаются на датчики силы, которые передают информацию через грузонесущий кабель на блок сбора информации. Дальнейшее внедрение зонда обеспечивает непрерывное получение информации и вынос грунта на поверхность для изучения и отбора проб при увеличенном шаге и вынос грунта на поверхность для изучения и отбора проб при увеличенном шаге по сравнению с лидером шнековой колонны. Для получения грунта с меньшими нарушениями шнековая колонна изготавливается с шагом лопасти лидера, в этом случае грунт, заключенный между витками спиральной лопасти и шнековой колонны, описывается визуально и отбирается после извлечения устройства.

Подобная система измерения осевого усилия при срезе грунта и перемещение срезанного фунта в прежнее положение обеспечивает возможность прямого определения срезающего усилия и усилия трения в противоположность косвенному расчетному методу определения при измерении вращающего момента. Это позволяет значительно повысить точность исследования грунтов.

Помимо вертикального расчленения массива по изменению значения срезающего усилия, на основании полученных данных в любой точке грунтового массива могут быть определены сдвиговые характеристики грунта с использованием известных формул.

Где Тср и Ттр - сопротивление грунта срезу и трению,

Рср - общее срезающее усилие,

Ртр - общее усилие трения,

D - диаметр спиральной лопасти срезающей секции зонда,

hcp и hтр - высота поверхности среза и поверхности трения, равные длине срезаемой секции спирального зонда.

Применение предложенного способа испытания грунтов в массиве исключает необходимость поинтервального испытания с периодическими остановками спирального зонда. Это упрощает технологический процесс, позволяет исключить вспомогательные операции (особенно наиболее трудоемкие по бурению опытной скважины), а также обеспечивает непрерывное получение информации на всю глубину залегания исследуемых грунтов. Помимо снижения трудоемкости и повышения производительности предложенный способ позволяет существенно повысить точность исследований за счет прямого измерения срезающего усилия.

Предложенная технология испытаний может найти эффективное применение при инженерных изысканиях в строительстве и оперативном геотехническом контроле оснований, сооружаемых на намывных и насыпных грунтах.

1. Способ испытания грунтов в массиве, включающий определение сопротивления срезу, отличающийся тем, что определение сопротивления срезу осуществляют за счет непрерывного перемещения спирального зонда, скорость которого ограничивают до величины шага спирали лидера за один оборот шнековой колонны, значение сопротивления срезу определяют по величине осевого усилия, создаваемого первой промежуточной секцией с шагом лопасти больше шага лидерной лопасти.

2. Способ испытания в массиве по п. 1, отличающийся тем, что, с целью повышения информативности, трение срезанного грунта о грунт измеряется при перемещении срезанного грунта в прежнее положение второй промежуточной секцией с шагом лопасти, равным шагу лидерной лопасти.

3. Устройство для испытания грунтов в массиве, включающее спиральный зонд, жестко соединенный со шнековой колонной, отличающееся тем, что, с целью обеспечения непрерывности, повышения точности и эффективности испытаний, спиральный зонд выполнен по длине составным из двух частей и снабжен двумя дополнительными промежуточными секциями, смонтированными на полой втулке, с возможностью относительного осевого перемещения и жестко связанными с датчиками силы, сигналы от которых поступают по грузонесущему кабелю к блоку сбора информации, при этом спиральная лопасть первой промежуточной секции выполнена с углом наклона, превышающим угол наклона спиральной лопасти лидера, а спиральная лопасть второй промежуточной секции выполнена с углом наклона, равным углу наклона спиральной лопасти лидера.

4. Устройство для зондирования грунтов в массиве по п. 3, отличающееся тем, что, с целью обеспечения выноса грунта на поверхность и отбора образцов грунта в процессе испытаний, верхняя часть спирального зонда может быть выполнена в виде шнековой колонны с шагом, большим шага лопасти лидера.



 

Похожие патенты:

Изобретение относится к СВЧ-способу определения содержания физической глины и гумуса в почвах, Способ включает измерение показателя преломления почвы с влажностью, превышающей максимальное содержание связанной воды, образцы которой выдерживают в герметическом контейнере в течение 1-2 суток при комнатной температуре, измеряют показатель преломления на частотах f1=0,35 ГГц и f2=1,75 ГГц, находят разность показателей преломления Δn=n(f1)-n(f2), на частотах f1 и f2 одновременно измеряют и показатель поглощения, находят разность показателей поглощения Δκ=κ(f1)-κ(f2) и определяют массовую долю физической глины С в почве из соотношения: и массовую долю гумуса в почве из соотношения: где С - содержание физической глины в почве (в массовых долях); Δn - разность показателей преломления; Δκ - разность показателей поглощения; Н - содержание гумуса в почве (в массовых долях).

Изобретение относится к области сельского хозяйства, в частности к экологическому и технологическому мониторингу сельхозугодий. Способ включает определение места, частоты, длительности отбора проб почвы на исследуемой территории.

Группа изобретений относится к области анализа почв и может быть использована при оценке плодородия земель сельскохозяйственного использования. Способ автоматизированного прямого определения доступного растениям фосфора в углеаммонийной почвенной вытяжке, окрашенной гуминовыми соединениями, заключается в том, что производится одновременное двухканальное спектрофотометрирование и измерение оптической плотности гидравлических потоков в спектральном диапазоне 898-900 нм одной пробы полученного образца вытяжки на автоанализаторе проточного типа, причем в одном канале с добавлением реактивов для окрашивания фосфора, а в другом канале с добавлением реактивов без окрашивания фосфора.
Изобретение относится к способам измерения эрозионной опасности дождя. По слоям почвенного образца размещают группы меченых почвенных частиц.

Изобретение относится к техническим средствам измерений физико-механических свойств почвы, преимущественно для непрерывной регистрации твердости слоя почвы при основной обработке неоднородных почв, культивации и внесении удобрений и/или мелиорантов почвообрабатывающими агрегатами, моторно-транспортное средство которых содержит двигатель внутреннего сгорания.
Изобретение относится к сельскому хозяйству, а именно агрохимическому картографированию почв. Для этого проводят выделение контуров по результатам дистанционного зондирования полей с последующим перенесением на карты землепользования.

Изобретение относится к области горного дела и может быть использовано для исследования сыпучих свойств геоматериалов. Устройство представляет собой сварную конструкцию башенного типа, устанавливаемую на верхней предварительно спланированной площадке отработанного карьера с обеспечением вертикальной устойчивости.
Изобретение относится к области профилактической медицины и может быть использовано для экспресс-обнаружения яиц геогельминтов в пробах почвы. Для этого 25 г пробы исследуемой почвы смешивают с 25 мл 1,4-1,6% раствора перекиси водорода.
Изобретение относится к области сельского хозяйства и может быть использовано при оценке опасности водной эрозии почвы. Для осуществления предлагаемого способа оценки ударного действия капель дождя на горизонтальной поверхности в центре подложки мишени с размеченными концентрическими окружностями устанавливают почвенный образец, поливают каплями дождя почвенный образец, измеряют величину радиуса разлета почвенных частиц.
Изобретение относится к способам контроля эрозионной опасности дождя. Осуществляют заполнение пор почвенного образца окрашенной водой.

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное содержание влаги по непрерывному изменению информативного показателя в ходе оттаивания.

Изобретение относится к способам определения деформаций земной поверхности при отсутствии взаимной видимости между наблюдаемыми пунктами. Сущность: на изучаемой площади закладывают грунтовые реперы по наблюдательной линии, предварительно рассчитав ее длину.

Изобретение относится к строительству, а именно к испытанию грунтов методом статического зондирования в труднодоступных участках. Установка статического зондирования содержит винтовой механизм зондировочный и включает два или более винтовых валов с возможностью синхронного вращения, расположенных параллельно колонне зондировочных штанг, связанных общей подвижной траверсой для упора колонны зондировочных штанг.

Изобретение относится к области инженерной геологии, а именно к способам для определения влияния различных веществ на газообразующую способность грунтов в лабораторных и полевых условиях, и позволяет подобрать ингибиторы газообразования в грунтах.

Изобретение относится к области «Физики материального контактного взаимодействия» весомой среды в ее массиве и на краях откосов в естественном и нарушенном состоянии.

Изобретение относится к области «Физики контактного взаимодействия материальной среды», конкретно к способу определения несущей способности и устойчивости дисперсной среды под нагрузкой от плоского жесткого штампа.

Изобретение относится к области инженерных изысканий и предназначено, в частности, для определения характеристик деформируемости грунтового основания. Способ испытания грунтового основания штампом включает нагружение грунта в массиве давлением на подошве штампа до конечного давления и выдерживание при постоянном конечном давлении до стабилизации осадки штампа, регистрацию осадки штампа при нагружении и конечном давлении и определение характеристик деформируемости грунтового основания.

Изобретение относится к области экологии и может быть использовано для отбора проб воздуха из грунта в местах подземных переходов магистральных газопроводов под водными и иными преградами, в местах расположения подземных газовых хранилищ, емкостей и т.д.

Изобретение относится к «Физике материального взаимодействия» при контакте твердого жесткого плоского тела штампа с полупространством деформируемой материальной среды в начале фазы ее предельно критического (провального разрушающего) по прочности и устойчивости состояния.

Изобретение относится к строительству, в частности к технике испытания преимущественно крупнообломочных грунтов на трехосное сжатие, и может быть использовано при инженерно-строительных исследованиях.

Изобретение относится к области гидротехнического строительства и предназначено для измерения деформаций морозного пучения, сжимаемости при оттаивании и коэффициента фильтрации при нескольких циклах промерзания-оттаивания в лабораторных условиях. Прибор содержит обойму для образца, штамп со штоком, поддон с водой, нагревательный элемент и теплоизоляционный кожух. Прибор дополнительно снабжен теплоизоляционной диафрагмой, плавающей на поверхности воды, и пористыми трубчатыми зондами, пропущенными через отверстия в штампе, а стенки обоймы выполнены перфорированными. Технический результат: возможность получения значения коэффициента фильтрации при циклическом промерзании-оттаивании, а также моделировать морозное пучение при подпитке водой по боковой поверхности образца. 1 ил.
Наверх