Уплотнительный узел переходного патрубка (варианты ) и турбомашина

Уплотнительный узел переходного патрубка содержит первое уплотнение и второе уплотнение, присоединенное к первому уплотнению. Второе уплотнение расположено на расстоянии от первого уплотнения для формирования прохода для охлаждающей текучей среды. 3 н. и 17 з.п. ф-лы, 10 ил.

 

УРОВЕНЬ ТЕХНИКИ

[0001] Описанное в настоящем документе изобретение относится к турбомашинам и, в частности, к узлу уплотнения переходного патрубка для турбомашины.

[0002] Многие турбомашины содержат компрессор, связанный с турбиной через общий вал компрессора / турбины или ротор, и узел камер сгорания. Компрессор направляет поток сжатого воздуха через ряд последовательных ступеней по направлению к узлу камер сгорания. В узле камер сгорания поток сжатого воздуха смешивается с топливом с образованием горючей смеси. Горючая смесь сгорает в узле камер сгорания с образованием горячих газов. Горячие газы направляются в турбину через переходной патрубок. Горячие газы расширяются при проходе через турбину, производя работу, которая вырабатывается, например, для питания генератора, насоса или для подачи энергии транспортному средству, такому как самолету, или другому средству. В дополнение к обеспечению сжатого воздуха для горения, часть сжатого воздуха пропускается через турбину в целях охлаждения.

[0003] Между переходным патрубком и первой ступенью турбины имеется уплотнение, которое уменьшает протечки низкотемпературных газов из компрессора в высокотемпературные газы, проходящие к турбине. При этом уплотнение подвергается воздействию горячих газов, протекающих через переходной патрубок. Уплотнение также выполнено с возможностью выдерживать относительные расширения переходного патрубка и турбины. В частности, переходной патрубок и турбина нередко выполнены из разнородных материалов. Соответственно, переходной патрубок и турбина будут иметь различные степени расширения при контакте с горячими газами. Уплотнение выполнено с возможностью выдерживать различные степени расширения и при этом ограничивать протечку горячих газов.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0004] В, соответствии с одним. аспектом иллюстративного варианта выполнения, уплотнение переходного патрубка содержит первое уплотнение и второе уплотнение, присоединенное к первому уплотнению. Второе уплотнение расположено на расстоянии от первого уплотнения для ограничения охлаждающего прохода.

[0005] В соответствии с другим аспектом иллюстративного варианта выполнения, уплотнительный узел переходного патрубка содержит первый уплотнительный компонент, содержащий первый уплотнительный элемент, присоединенный ко второму уплотнительному элементу. Первый уплотнительный элемент имеет первый конец, который проходит ко второму концу через по существу прямолинейную промежуточную часть, имеющую первый край, проходящий до второго края. Второй уплотнительный элемент содержит первую торцевую часть, которая проходит до второй торцевой части через по существу прямолинейную промежуточную часть, имеющую первую краевую часть, которая проходит до второй краевой части. Первая краевая часть соединена с первым краем первого уплотнительного элемента. Второй уплотнительный элемент расположен на расстоянии от первого уплотнительного элемента для ограничения прохода для охлаждающей текучей среды. Уплотнительный узел также содержит второй уплотнительный компонент, содержащий первый уплотнительный элемент, присоединенный ко второму уплотнительному элементу. Первый уплотнительный элемент имеет первый конец, который проходит до второго конца через по существу прямолинейную промежуточную часть, имеющую первый край, проходящий до второго края. Второй уплотнительный элемент содержит первую торцевую часть, которая проходит до второй торцевой части через по существу криволинейную промежуточную часть, которая присоединена к промежуточной части первого уплотнительного элемента.

[0006] В соответствии с еще одним аспектом иллюстративного варианта выполнения, турбомашина содержит турбину, первый переходной патрубок, проточно соединенный с турбиной. Первый переходной патрубок содержит заднюю раму, имеющую наружный направляющий элемент, внутренний направляющий элемент и первый и второй боковые направляющие элементы, соединенные с наружным и внутренним направляющими элементами. Второй переходной патрубок проточно соединен с турбиной вблизи первого переходного патрубка. Второй переходной патрубок содержит заднюю раму, имеющую наружный направляющий элемент, внутренний направляющий элемент и первый и второй боковые направляющие элементы, соединенные с наружным и внутренним направляющими элементами. Первый боковой направляющий элемент присоединен ко второму боковому направляющему элементу с образованием полости под уплотнение. Первый уплотнительный компонент функционально присоединен между турбиной и наружным направляющим элементом. Первый уплотнительный компонент содержит первый уплотнительный элемент, соединенный со вторым уплотнительным элементом. Первый уплотнительный элемент имеет первый конец, который проходит ко второму концу через по существу прямолинейную промежуточную часть, имеющую первый край, проходящий до второго края. Второй уплотнительный элемент содержит первую торцевую часть, которая проходит до второй торцевой части через по существу прямолинейную промежуточную часть, имеющую первую краевую часть, проходящую до второй краевой части. Первая краевая часть соединена с первым краем первого уплотнительного элемента. Второй уплотнительный элемент расположен на расстоянии от первого уплотнительного элемента для ограничения прохода для охлаждающей текучей среды. Второй уплотнительный компонент расположен внутри полости под уплотнение. Второй уплотнительный компонент содержит первый уплотнительный элемент, соединенный со вторым уплотнительным элементом. Первый уплотнительный элемент имеет первый конец, который проходит до второго конца через по существу прямолинейную промежуточную часть, имеющую первый край, проходящий до второго края. Второй уплотнительный элемент содержит первую торцевую часть, которая проходит до второй торцевой части через по существу криволинейную промежуточную часть, которая соединена с промежуточной частью первого уплотнительного элемента.

[0007] Эти и другие преимущества и признаки станут более очевидными из последующего описания в сочетании с чертежами.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0008] Объект, который рассматривается в качестве изобретения, особенно отмечается и ясно заявляется в формуле изобретения в конце настоящего описания. Эти и другие признаки и преимущества изобретения очевидны из последующего подробного описания в сочетании с прилагаемыми чертежами, на которых:

[0009] Фиг.1 представляет собой частичный вид в аксонометрии части турбомашины, содержащей уплотнительный узел переходного патрубка, выполненный в соответствии с иллюстративным вариантом выполнения;

[0010] Фиг.2 представляет собой вид в аксонометрии задней рамы первого и второго переходных патрубков турбомашины, изображенной на Фиг.1;

[0011] Фиг.3 представляет собой вид сверху наружного направляющего элемента задней рамы первого переходного патрубка, изображенного на Фиг.2;

[0012] Фиг.4 представляет собой вид сверху бокового направляющего элемента и бокового направляющего элемента первой и второй задних рам, изображенных на Фиг.2;

[0013] Фиг.5 представляет собой вид в аксонометрии первого уплотнительного компонента уплотнительного узла переходного патрубка, изображенного на Фиг.1;

[0014] Фиг.6 представляет собой вид в аксонометрии второго уплотнительного компонента уплотнительного узла переходного патрубка, изображенного на Фиг.1;

[0015] Фиг.7 представляет собой разрез второго уплотнительного компонента, изображенного на Фиг.6;

[0016] Фиг.8 представляет собой вид в аксонометрии крышки, выполненной в соответствии с аспектом иллюстративного варианта выполнения;

[0017] Фиг.9 представляет собой вид сверху наружного направляющего элемента задней рамы первого переходного патрубка, изображенного на Фиг.2, в соответствии с другим аспектом иллюстративного варианта выполнения; и

[0018] Фиг.10 представляет собой вид сверху бокового направляющего элемента и бокового направляющего элемента первой и второй задней рамы, изображенных на Фиг.2, в соответствии с другим аспектом иллюстративного варианта выполнения.

[0019] Подробное описание объясняет варианты выполнения изобретения, вместе с преимуществами и признаками, показанными посредством примера со ссылкой на чертежи.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0020] Газотурбинный двигатель, в соответствии с иллюстративным вариантом выполнения, обозначен в целом номером позиции 2. Газотурбинный двигатель 2 содержит турбину 4, имеющую первую ступень 6. Первая ступень 6 турбины содержит первый, или наружный элемент 8 кожуха и второй, или внутренний, элемент 9 кожуха. Несколько лопаток, или сопловых лопаток, одна из которых показана номером позиции 12, расположено между наружным и внутренним элементами 8 и 9 кожуха. Сопловые лопатки 12 направляют горячие газы к турбинным лопаткам первой ступени (не показаны). Горячие газы расширяются, проходя через турбину 4, через последовательные ступени (также не показаны) для производства работы. Горячие газы производятся в нескольких камерах сгорания (не показаны), соединенных с первой ступенью 6 турбины посредством соответствующих переходных патрубков, два из которых обозначены номерами позиций 20 и 24. Переходной патрубок 20 содержит корпус 30, имеющий передний, или входной, конец 32 и задний, или выходной, конец 34. Выходной конец 34 содержит первую заднюю раму 36. Кроме того, корпус 40 переходного патрубка 24 имеет передний, или входной, конец 42 и задний, или выходной, конец 44. Конец 44 содержит вторую заднюю раму 46.

[0021] Как показано на Фиг.2-4, первая задняя рама 36 содержит наружный направляющий элемент 54 и внутренний направляющий элемент 55. Наружный направляющий элемент 54 содержит первый конец 59, который проходит ко второму концу 60 через промежуточную часть 61. Наружный направляющий элемент 54 содержит наружную поверхность 63 и внутреннюю поверхность 64, или поверхность газового прохода, которая подвергается воздействию горячих газов, вытекающих из узла камер сгорания (не показана). Наружный направляющий элемент 54 также показан имеющим заднюю поверхность 65. Задняя поверхность 65 расположена рядом с первой ступенью 6 турбины. Наружная поверхность 63 содержит первый и второй установочные элементы 67 и 68, которые поддерживают заднюю раму 36 относительно турбины 2. Наружная поверхность 63 также содержит наружный уплотнительный паз 70. Задняя поверхность 65 содержит несколько отверстий 72, которые проточно соединены с наружным уплотнительным пазом 70 соответствующими несколькими каналами, один из которых показан номером позиции 73. Задняя поверхность 65 также показана содержащей расходуемую износную полосу 74, которая смягчает контакты с первой ступенью 6 турбины для защиты наружного направляющего элемента 54 от повреждений. Наконец, поверхность 64 прохода для газов содержит термобарьерное керамическое покрытие (ТВС) 76. Часть задней поверхности 65 также имеет покрытие ТВС 77. Покрытие ТВС обеспечивает тепловой защитный слой на поверхности переходного патрубка, подверженной воздействию горячих газообразных продуктов сгорания.

[0022] Внутренний направляющий элемент 55 имеет первый конец 84, проходящий до второго конца 85 через промежуточную часть 86. Внутренний направляющий элемент 55 имеет наружную поверхность 88, внутреннюю поверхность 89, или поверхность газового прохода, и заднюю поверхность 90. Наружная поверхность 88 содержит элемент 92 для установки уплотнения, а также внутренний уплотнительный паз (не показан). Задняя поверхность 90 содержит несколько отверстий 97, которые проточно соединены с внутренним уплотнительным пазом через несколько каналов (также не показаны). Задняя поверхность 90 также имеет износную полосу 99. Поверхность 89 газового прохода и часть задней поверхности 90 имеют покрытие ТВС (отдельно не обозначены номерами позиций). Наружный направляющий элемент 54 соединен с внутренним направляющим элементом 55 посредством первого и второго боковых направляющих элементов 106 и 107.

[0023] Первый боковой направляющий элемент 106 имеет первый конец 109, присоединенный к первому концу 59 наружного направляющего элемента 54, и второй конец 110, присоединенный к первому концу 84 внутреннего направляющего элемента 55. Промежуточная часть 111 проходит между первым и вторым концами 109 и 110 первого бокового направляющего элемента 106. Первый боковой направляющий элемент 106 также содержит наружную поверхность 113, внутреннюю поверхность 114, или поверхность газового прохода, и заднюю поверхность 115. Аналогичным образом, вторую боковой направляющий элемент 107 имеет первый конец 118, присоединенный ко второму концу 60 наружного направляющего элемента 54, и второй конец 119, присоединенный ко второму концу 85 внутреннего направляющего элемента 55. Промежуточная часть 120 проходит между первым и вторым концами 118 и 119 второго бокового направляющего элемента 107. Второй боковой направляющий элемент 107 также содержит наружную поверхность 122, внутреннюю поверхность 123, или поверхность газового прохода, и заднюю поверхность 124. Поверхность 123 газового прохода и задняя поверхность 124 показаны имеющими соответствующие покрытия ТВС 126 и 127. В соответствии с иллюстративным вариантом выполнения, наружная поверхность 122 имеет канал 130. Как видно, наружный направляющий элемент 54, внутренний направляющий элемент 55 и первый и второй боковые направляющие элементы 106 и 107 объединены для формирования отверстия 132. Отверстие 132 обеспечивает проход для газообразных продуктов сгорания, проходящих от переходного патрубка 20 к первой ступени 6 турбины.

[0024] Далее, в соответствии с изображенным вариантом выполнения, вторая задняя рама 46 содержит наружный направляющий элемент 134 и внутренний направляющий элемент 135. Наружный направляющий элемент 134 имеет первый конец 138, проходящий до второго конца 139 через промежуточную часть 140. Наружный направляющий элемент 134 содержит наружную поверхность 142 и внутреннюю поверхность 143, или поверхность газового прохода, которая подвержена воздействию горячих газов, выходящих из узла камер сгорания (не показан). Наружный направляющий элемент 134 также изображен имеющим заднюю поверхность 144. Задняя поверхность 144 расположена рядом с первой ступенью 6 турбины. Наружная поверхность 142 содержит первый и второй установочные элементы 146 и 147, которые поддерживают заднюю раму 46 относительно турбины 2 и наружного уплотнительного паза 148. Задняя поверхность 144 содержит несколько отверстий 149, которые проточно соединены с наружным уплотнительным пазом 148 посредством соответствующих нескольких каналов (не показаны). Задняя поверхность 144 также показана содержащей расходуемую износную полосу 150, которая смягчает контакты с первой ступенью 6 турбины во время работы для защиты наружного направляющего элемента 134 от повреждений. Наконец, поверхность 143 газового прохода содержит термобарьерное керамическое (ТВС) покрытие (отдельно не показано). Часть задней поверхности 144 также имеет покрытие ТВС.

[0025] Внутренний направляющий элемент 135 имеет первый конец 157, который проходит до второго конца 158 через промежуточную часть 159. Внутренний направляющий элемент 135 содержит наружную поверхность 161, внутреннюю поверхность 162, или поверхность газового прохода, и заднюю поверхность 163. Наружная поверхность 161 содержит установочный элемент 165, а также внутренний уплотнительный паз (не показан). Задняя поверхность 163 содержит несколько отверстий 169, которые проточно соединены с внутренним уплотнительным пазом через несколько каналов (также не показаны). Задняя поверхность 163 также имеет расходуемую износную полосу 170. Поверхность 162 газового прохода и часть задней поверхности 163 снабжены покрытием ТВС (отдельно не показано номером позиции). Наружный направляющий элемент 134 присоединен к внутреннему направляющему элементу 135 посредством первого и второго боковых направляющих элементов 178 и 179.

[0026] Первый боковой направляющий элемент 178 имеет первый конец 181, присоединенный к первому концу 138 наружного направляющего элемента 134, и второй конец 182, присоединенный к первому концу 157 внутреннего направляющего элемента 135. Промежуточная часть 183 проходит между первым и вторым концами 181 и 182 первого бокового направляющего элемента 178. Первый боковой направляющий элемент 178 также содержит наружную поверхность 185, внутреннюю поверхность 186, или поверхность газового прохода, и заднюю поверхность 187. Поверхность 186 газового прохода и задняя поверхность 187 имеют покрытие ТВС, соответственно, 189 и 190. Кроме того, наружная поверхность 185 имеет канал 192. Канал 192 совмещается с каналом 130 на втором направляющем элементе 107 с формированием полости 194 под уплотнение. В соответствии с одним аспектом иллюстративного варианта выполнения, первый боковой направляющий элемент 178 отстоит от второго бокового направляющего элемента 107 с формированием прохода 197 для охлаждающей текучей среды.

[0027] Второй боковой направляющий элемент 179 имеет первый конец 204, соединенный со вторым концом 139 наружного направляющего элемента 134, и второй конец 205, соединенный со вторым концом 158 внутреннего направляющего элемента 135. Промежуточная часть 206 проходит между первым и вторым концами 204 и 205 второго бокового направляющего элемента 179. Второй боковой направляющий элемент 179 также содержит наружную поверхность 208, внутреннюю поверхность 209, или поверхность газового прохода, и заднюю поверхность 210. Поверхность 209 газового прохода и задняя поверхность 210 имеют покрытие ТВС (отдельно не показано номером позиции). Как видно, наружный направляющий элемент 134, внутренний направляющий элемент 135 и первый и второй боковые направляющие элементы 178 и 179 объединены с формированием отверстия 213. Отверстие 213 обеспечивает проход для газообразных продуктов сгорания, проходящих от переходного патрубка 24 к первой ступени 6 турбины.

[0028] В соответствии с иллюстративным вариантом выполнения, турбомашина 2 содержит уплотнение 218 (Фиг.1), которое по существу ограничивает поступление газов из компрессора, входящих в проход для газов через контактную поверхность (отдельно не показано номером позиции) между задними рамами 36, 46 и первой ступенью 6 турбины. Уплотнительный узел 218 содержит первый уплотнительный компонент 223 (Фиг.3), второй уплотнительный компонент 225 (Фиг.4) и третий уплотнительный компонент (не показан). Первый уплотнительный компонент 223 расположен в наружном уплотнительном пазу 70 для создания уплотнения между наружным направляющим элементом 54 и первой ступенью 6 турбины. Второй уплотнительный компонент 225 расположен в полости 194 под уплотнение для создания уплотнения между вторым боковым направляющим элементом 107 и первым боковым направляющим элементом 178. И, наконец, третий уплотнительный компонент расположен во внутреннем уплотнительном пазу (не показан) для создания уплотнения между внутренним направляющим элементом 55 и первой ступенью 6 турбины. Здесь следует понимать, что количество уплотнительных компонентов может варьироваться, в зависимости от количества камер сгорания и переходных патрубков, связанных с турбомашиной 2. Кроме того, следует понимать, что третий уплотнительный компонент (не показан) в целом похож на первый уплотнительный компонент 223.

[0029] Как лучше всего показано на Фиг.3 и 5, первый уплотнительный компонент 223 содержит первый уплотнительный элемент 230, функционально соединенный со вторым уплотнительным элементом 231. Первый уплотнительный элемент 230 также установлен на кронштейне 234. Кронштейн 234 поддерживает первый уплотнительный компонент 223 на первой ступени 6 турбины. Первый уплотнительный элемент 230 содержит первый конец 236, который проходит до второго конца 237 через по существу прямолинейную промежуточную часть 238. Промежуточная часть 238 содержит первый край 241 и противоположный второй край 242. Второй уплотнительный элемент 231 содержит первую торцевую часть 244, которая проходит до второй торцевой части 245 через промежуточную часть 246. Промежуточная часть 246 содержит первую краевую часть 248, которая соединена с первым краем 241 первого уплотнительного элемента 230, и второй краевой частью 249. Первый конец 236 первого уплотнительного элемента 230 и первая торцевая часть 244 второго уплотнительного элемента 231 ограничивают область 151 разделения. Кроме того, второй конец 237 первого уплотнительного элемента 230 и вторая торцевая часть 245 второго уплотнительного элемента 231 ограничивают область 152 разделения. Области 151 и 152 разделения обеспечивают возможность вставления второго уплотнительного компонента 225 в полость 194 под уплотнение после установки первого уплотнительного компонента 223. Третий уплотнительный компонент (не показан) может и не содержать аналогичные области разделения. Кроме того, второй уплотнительный элемент 231 отстоит от первого уплотнительного элемента 230, чтобы ограничивать проход 254 для охлаждающей текучей среды в наружном уплотнительном пазу 70. Проход 254 для охлаждающей текучей среды направляют охлаждающую текучую среду между первым и вторым элементами 230 и 231.

[0030] Как показано на Фиг.4, 6, и 7, второй уплотнительный компонент 225 содержит первый уплотнительный элемент 260, присоединенный ко второму уплотнительному элементу 261. Первый уплотнительный элемент 260 имеет первый конец 265, который проходит до второго конца 266 через по существу прямолинейную промежуточную часть 267. Промежуточная часть 267 содержит первый край 269 и противоположный второй край 270. Второй уплотнительный элемент 261 содержит первую торцевую часть 274, которая проходит до второй торцевой части 275 через в целом криволинейную промежуточную часть 276. Промежуточная часть 276 содержит первую краевую часть 282 и противоположную вторую краевую часть 283. Промежуточная часть 276 присоединена к промежуточной части 267 так, что первая краевая часть 282 отстоит от первого края 269 для ограничения первой области 286 для охлаждающей текучей среды, а вторая краевая часть 283 отстоит от второго края 270 для формирования второй области 287 для охлаждающей текучей среды. Первая область 286 для охлаждающей текучей среды проточно соединена с проходом 254 для охлаждающей текучей среды (Фиг.3) и с проходом для охлаждающей текучей среды (не показан) третьего уплотнительного компонента (также не показан). Вторая область 287 для охлаждающей текучей среды проточно соединена с полостями для охлаждающей текучей среды, связанными с уплотнительным компонентом на задней раме 46.

[0031] Также в соответствии с иллюстративным вариантом выполнения, второй уплотнительный элемент 261 имеет первую группу отверстий 291, проходящих вдоль первой краевой части 282, и вторую группу отверстий 292, проходящих вдоль второй краевой части 283. Отверстия 291 и 292 обеспечивают возможность прохождения охлаждающей текучей среды из прохода 197 для охлаждающей текучей среды в первую и вторую области 286 и 287 для охлаждающей текучей среды. Более конкретно, охлаждающая текучая среда проходит через проход 197 для охлаждающей текучей среды в полость 194 под уплотнение. Охлаждающая текучая среда проходит через отверстия 291 и 292 в первой и второй областях 286 и 287 для охлаждающей текучей среды. Охлаждающая текучая среда протекает из области 286 для охлаждающей текучей среды в верхний проход 254 для охлаждающей текучей среды и в нижний проход для охлаждающей текучей среды (не показан). Охлаждающая текучая среда проходит через канал 73 и выпускается через отверстия 72 в наружный кожух 8. Охлаждающая текучая среда также проходит из нижнего прохода для охлаждающей текучей среды через отверстия 97 к внутреннему кожуху 10. Таким образом, охлаждающая текучая среда не выпускается и не теряется в горячих газах, а используется для обработки различных компонентов турбины 4. Более того, иллюстративные варианты выполнения обеспечивают возможность протекания охлаждающей текучей среды через боковые направляющие элементы, а также верхние и нижние направляющие элементы, перед прохождением в кожух (отдельно не показан номером позиции) первой ступени 6 турбины. Таким образом, охлаждающая текучая среда фактически используется несколько раз, прежде чем выпускается из турбомашины 2. Сокращение потерь охлаждающей текучей среды в проход для горячих газов и использование охлаждающей текучей среды для обработки нескольких компонентов приводит к повышению коэффициента полезного действия турбомашины.

[0032] В другом соответствии с иллюстративным вариантом выполнения, уплотнительный узел 218 собирается путем установки первого уплотнительного компонента 223 в наружный уплотнительный паз 70, а третьего уплотнительного компонента (не показан) - во внутренний уплотнительный паз (также не показан). В этот момент второй уплотнительный компонент пропускают через область 152 разделения, при этом область разделения (не показана) образуется рядом с первым уплотнительным компонентом (также не показан) и в полости 194 под уплотнение. При установке в этом положении крышка, такая как показана номером позиции 299 на Фиг.8, расположена поверх область 152 разделения и прилегающей области разделения. Крышка 299 содержит первый и второй участки 304 и 305 захвата, расположенные рядом с областью 152 разделения и прилегающей области разделения (не показана), для ограничения протечки из уплотнительного узла 218.

[0033] На Фиг.9 показан наружный направляющий элемент 400, выполненный в соответствии с другим аспектом иллюстративного варианта выполнения. Наружный направляющий элемент 400 содержит промежуточную часть 406, наружную поверхность 408 и внутреннюю поверхность 409, или поверхность газового прохода, которая подвергается воздействию горячих газов, вытекающих из узла камер сгорания (не показана). Наружный направляющий элемент 400 также показан содержащим заднюю поверхность 412. Задняя поверхность 412 расположена рядом с первой ступенью 6 турбины. Наружная поверхность 408 содержит наружный уплотнительный паз 415. Задняя поверхность 412 содержит расходуемую износную полосу 420, которая смягчает контакты с первой ступенью 6 турбины для защиты наружного направляющего элемента 400 от повреждений. Наконец, поверхность 409 газового прохода содержит термобарьерное керамическое покрытие (ТВС) 425. Часть задней поверхности 412 также имеет покрытие ТВС 430. Покрытие ТВС обеспечивает тепловой защитный слой на поверхности переходного патрубка, подверженной воздействию горячих газообразных продуктов сгорания. И, наконец, наружный направляющий элемент 400 показан содержащим отверстие для охлаждения рамы, или проход 440, имеющий определенный размер и проходящий от наружного уплотнительного паза 415.

[0034] Кроме того, наружный направляющий элемент 400 показан содержащим уплотнительный компонент 450, имеющий первый уплотнительный элемент 452, функционально соединенный со вторым уплотнительным элементом 453. Первый уплотнительный элемент 452 также установлен на кронштейне 456. Кронштейн 456 поддерживает уплотнительный компонент 450 на первой ступени 6 турбины. Аналогично описанному выше, второй уплотнительный элемент 453 отстоит от первого уплотнительного элемента 452, чтобы ограничивать проход 460 для охлаждающей текучей среды в наружном уплотнительном пазе 415. Проход 460 для охлаждающей текучей среды принимает выходной воздушный поток через проход 440. Как показано в иллюстративном варианте выполнения, второй уплотнительный элемент 453 содержит охлаждающий проход 470, имеющий определенный размер, который обеспечивает возможность прохождения охлаждающего воздуха от прохода 460 для охлаждающей текучей среды. Здесь следует понимать, что размер прохода 440 и размерность прохода 470 для охлаждающей текучей среды может варьироваться, в зависимости от требуемого перепада давления в проходе 460 для охлаждающей текучей среды. Следует также понимать, что количество проходов 440 и проходов 470 для охлаждающей текучей среды может варьироваться. В соответствии с иллюстративным вариантом выполнения, проход 440 обеспечивает конвективное охлаждение задней поверхности 412. Кроме того, путем направления охлаждающей текучей среды через проход 470 для охлаждающей текучей среды устраняется необходимость в формировании отверстий в задней поверхности 412. Устранение отверстий в задней поверхности 412 снижает места концентрации напряжений, которые могут негативно повлиять на покрытие ТВС 430.

[0035] Далее ссылка делается на Фиг.10 при описании второго бокового направляющего элемента 507, содержащего промежуточную часть 520. Второй боковой направляющий элемент 507 также содержит наружную поверхность 522, внутреннюю поверхность 523, или поверхность газового прохода, и заднюю поверхность 524. Поверхность 523 газового прохода и задняя поверхность 524 показаны содержащими соответствующее покрытие ТВС 526 и 527. В соответствии с иллюстративным вариантом выполнения, наружная поверхность 522 имеет канал 530. Первый боковой направляющий элемент 578 расположен рядом со вторым боковым направляющим элементом 507. Первый боковой направляющий элемент 578 содержит промежуточную часть 583. Первый боковой направляющий элемент 578 также содержит наружную поверхность 585, внутреннюю поверхность 586, или поверхность газового прохода, и заднюю поверхность 587. Поверхность 586 газового прохода и задняя поверхность 587 имеют покрытия ТВС, соответственно, 589 и 590. Кроме того, наружная поверхность 585 снабжена каналом 592. Канал 592 совмещается с каналом 530 на втором направляющем элементе 507 для формирования полости 594 под уплотнение. В соответствии с одним аспектом иллюстративного варианта выполнения, первый боковой направляющий элемент 578 отстоит от второго бокового направляющего элемента 507 для формирования прохода 597 для охлаждающей текучей среды. В соответствии с иллюстративным вариантом выполнения, второй боковой направляющий элемент 507 содержит первый проход 600, который проходит от прохода 530 до прохода 597 для охлаждающей текучей среды. Аналогично, первый боковой направляющий элемент 578 содержит второй проход 602, который проходит между каналом 592 и проходом 597 для охлаждающей текучей среды. Количество и размер проходов 600 и 602 может варьироваться.

[0036] Второй уплотнительный компонент 625 расположен в полости 594 под уплотнение для создания уплотнения между вторым боковым направляющим элементом 507 и первым боковым направляющим элементом 578. Второй уплотнительный компонент 625 содержит первый уплотнительный элемент 660, присоединенный ко второму уплотнительному элементу 661. Первый уплотнительный элемент 660 содержит по существу прямолинейную промежуточную часть 667. Промежуточная часть 667 содержит первый край 669 и противоположный второй край 670. Второй уплотнительный элемент 661 содержит в целом криволинейную промежуточную часть 676. Промежуточная часть 676 содержит первую краевую часть 682 и противоположную вторую краевую часть 683. Промежуточная часть 676 присоединена к промежуточной части 667 так, что первая краевая часть 682 отстоит от первого края 669 для ограничения первой области 686 для охлаждающей текучей среды, а вторая краевая часть 683 отстоит от второго края 670 с формированием второй области 687 для охлаждающей текучей среды. Первая область 686 для охлаждающей текучей среды проточно соединена с проходом 460 для охлаждающей текучей среды и с проходом для охлаждающей текучей среды (не показано) третьего уплотнительного компонента (также не показан). Вторая область 687 для охлаждающей текучей среды проточно соединена с полостями для охлаждающей текучей среды, связанными с уплотнительным компонентом задней рамы 46. Кроме того, первая область 686 для охлаждающей текучей среды и вторая область 687 для охлаждающей текучей среды проточно соединены с проходом 597 для охлаждающей текучей среды через проходы, соответственно, 600 и 602. Проходы 600 и 602 имеют такие размеры, чтобы обеспечивать требуемый перепад давления в первой и во второй областях 686 и 687 для охлаждающей текучей среды, чтобы установить требуемое охлаждение внутреннего и наружного направляющих элементов.

[0037] Здесь следует понимать, что иллюстративные варианты выполнения обеспечивают уплотнительный узел, который ограничивает протечку компрессорных газов в область контакта между переходным патрубком и первой ступенью турбины. В дополнение к сокращению протечки, уплотнительный узел направляет охлаждающий поток через область контакта в компоненты турбины. То есть, в отличие от известных систем, в которых любая охлаждающая текучая среда, пропущенная к уплотнениям, сбрасывается в газовый тракт для смешения с горячими газами, протекающими через турбину, иллюстративные варианты выполнения направляют охлаждающую текучую среду в компоненты турбины. Таким образом, охлаждающая текучая среда используется для обработки нескольких компонентов турбины и, тем самым, продолжает оказывать положительное влияние на производительность турбины, вместо того, чтобы потеряться в горячих газах. Дальнейшее использование охлаждающей текучей среды приводит к повышению коэффициента полезного действия турбомашины.

[0038] Несмотря на то, что изобретение подробно описано в связи с ограниченным количеством вариантов выполнения, следует понимать, что оно не ограничивается этими вариантами выполнения. Наоборот, изобретение может быть модифицировано, чтобы включать любое количество вариаций, изменений, замен или эквивалентных конструкций, до сих пор не описанных, но которые соизмеримы с сущностью и объемом изобретения. Кроме того, несмотря на то, что описаны различные варианты выполнения изобретения, следует понимать, что его аспекты могут включать лишь некоторые из описанных вариантов выполнения. Таким образом, изобретение не следует рассматривать как ограниченное приведенным выше описанием, и оно ограничивается только объемом прилагаемой формулы изобретения.

1. Уплотнительный узел переходного патрубка, содержащий первое уплотнение и второе уплотнение, соединенное с первым уплотнением и расположенное от него на расстоянии с образованием прохода для охлаждающей текучей среды.

2. Уплотнительный узел по п.1, в котором первое уплотнение имеет первый конец, который проходит до второго конца через, по существу, прямолинейную промежуточную часть, имеющую первый край, проходящий до второго края.

3. Уплотнительный узел по п.2, в котором второе уплотнение содержит первую торцевую часть, которая проходит до второй торцевой части через, по существу, прямолинейную промежуточную часть, имеющую первую краевую часть, которая проходит до второй краевой части, причем первая краевая часть соединена с первым краем первого уплотнения.

4. Уплотнительный узел по п.2, в котором второе уплотнение содержит первую торцевую часть, которая проходит до второй торцевой части через, по существу, криволинейную промежуточную часть, которая соединена с промежуточной частью первого уплотнения.

5. Уплотнительный узел по п.4, в котором второе уплотнение содержит первую краевую часть и вторую краевую часть, причем первая краевая часть расположена на расстоянии от первого края с формированием первой области для охлаждающей текучей среды, а вторая краевая часть расположена на расстоянии от второго края с формированием второй области для охлаждающей текучей среды.

6. Уплотнительный узел по п.5, в котором второе уплотнение содержит первую группу отверстий, проходящих вблизи первой краевой части, и вторую группу отверстий, проходящих вдоль второй краевой части.

7. Уплотнительный узел по п.2, дополнительно содержащий кронштейн, функционально соединенный с первым концом первого уплотнительного элемента.

8. Уплотнительный узел переходного патрубка, содержащий:
первый уплотнительный компонент, содержащий первый уплотнительный элемент, присоединенный ко второму уплотнительному элементу и имеющий первый конец, который проходит до второго конца через, по существу, прямолинейную промежуточную часть, имеющую первый край, который проходит до второго края, причем второй уплотнительный элемент содержит первую торцевую часть, которая проходит до второй торцевой части через, по существу, прямолинейную промежуточную часть, имеющую первую краевую часть, которая проходит до второй краевой части, при этом первая краевая часть соединена с первым краем первого уплотнительного элемента, а второй уплотнительный элемент отстоит от первого уплотнительного элемента с формированием прохода для охлаждающей текучей среды, и
второй уплотнительный компонент, содержащий первый уплотнительный элемент, присоединенный ко второму уплотнительному элементу и имеющий первый конец, который проходит до второго конца через, по существу, прямолинейную промежуточную часть, имеющую первый край, который проходит до второго края, при этом второй уплотнительный элемент содержит первую торцевую часть, которая проходит до второй торцевой части через, по существу, криволинейную промежуточную часть, которая присоединена к промежуточной части первого уплотнительного элемента.

9. Уплотнительный узел по п.8, дополнительно содержащий крышку, выполненную с возможностью присоединения к первому уплотнительному компоненту с помощью второго уплотнительного компонента.

10. Уплотнительный узел по п.8, в котором первая краевая часть второго уплотнительного элемента распложена на расстоянии от первого края первого уплотнительного элемента для формирования первой области для охлаждающей текучей среды, а вторая краевая часть второго уплотнительного элемента расположена на расстоянии от второго края первого уплотнительного элемента для формирования второй области для охлаждающей текучей среды, причем либо первая, либо вторая область для охлаждающей текучей среды проточно соединена с проходом для охлаждающей текучей среды.

11. Уплотнительный узел по п.10, в котором второй уплотнительный элемент содержит первую группу отверстий, проходящих вдоль, по существу, криволинейной промежуточной части вблизи первой краевой части, и вторую группу отверстий, проходящих вдоль, по существу, криволинейной промежуточной части вблизи второй краевой части.

12. Турбомашина, содержащая:
турбину, механически соединенную с турбиной,
первый переходной патрубок, проточно соединенный с турбиной и содержащий заднюю раму, имеющую наружный направляющий элемент, внутренний направляющий элемент и первый и второй боковые направляющие элементы, соединяющие наружный и внутренний направляющие элементы,
второй переходной патрубок, проточно соединенный с турбиной смежно с первым переходным патрубком и содержащий заднюю раму, имеющую наружный направляющий элемент, внутренний направляющий элемент и первый и второй боковые направляющие элементы, соединяющие наружный и внутренний направляющие элементы, при этом первый боковой направляющий элемент соединен со вторым боковым направляющим элементом с обеспечением создания полости под уплотнение,
первый уплотнительный компонент, функционально соединенный между турбиной и наружным направляющим элементом и содержащий первый уплотнительный элемент, присоединенный ко второму уплотнительному элементу, при этом первый уплотнительный элемент имеет первый конец, который проходит до второго конца через, по существу, прямолинейную промежуточную часть, имеющую первый край, который проходит до второго края, причем второй уплотнительный элемент содержит первую торцевую часть, которая проходит до второй торцевой части через, по существу, прямолинейную промежуточную часть, имеющую первую краевую часть, которая проходит до второй краевой части, причем первая краевая часть соединена с первым краем первого уплотнительного элемента, а второй уплотнительный элемент расположен на расстоянии от первого уплотнительного элемента для формирования прохода для охлаждающей текучей среды, и
второй уплотнительный компонент, расположенный внутри полости под уплотнение и содержащий первый уплотнительный элемент, присоединенный ко второму уплотнительному элементу, при этом первый уплотнительный элемент имеет первый конец, который проходит до второго конца через, по существу, прямолинейную промежуточную часть, имеющую первый край, который проходит до второго края, причем второй уплотнительный элемент содержит первую торцевую часть, которая проходит до второй торцевой части через, по существу, криволинейную промежуточную часть, которая присоединена к промежуточной части первого уплотнительного элемента.

13. Турбомашина по п.12, в которой как наружный, так и внутренний направляющие элементы имеют поверхность газового тракта, выполненную и расположенную с обеспечением воздействия на нее горячих газов, и заднюю поверхность, проходящую, по существу, перпендикулярно от поверхности газового тракта, при этом поверхность газового тракта имеет выполненный на ней слой из термобарьерного покрытия (ТВС).

14. Турбомашина по п.13, в которой задняя поверхность имеет износную полосу.

15. Турбомашина по п.13, дополнительно содержащая по меньшей мере один канал, проходящий через каждый наружный и внутренний направляющий элемент к турбине, причем указанный по меньшей мере один канал проточно соединяет проход для охлаждающей текучей среды с турбиной.

16. Турбомашина по п.12, в котором как первый боковой, так и второй боковой направляющие элементы имеют часть поверхности газового тракта, выполненную и расположенную с обеспечением воздействия на нее горячих газов, и часть задней поверхности, проходящей, по существу, перпендикулярно от части поверхности газового тракта, при этом часть поверхности газового тракта имеет выполненный на ней слой из термобарьерного покрытия (ТВС).

17. Турбомашина по п.16, в которой указанная часть задней поверхности имеет выполненный на ней слой из термобарьерного покрытия (ТВС).

18. Турбомашина по п.12, дополнительно содержащая проход для охлаждающей текучей среды, проходящий между первым боковым направляющим элементом и вторым боковым направляющим элементом, при этом проход для охлаждающей текучей среды проточно соединен с полостью под уплотнение.

19. Турбомашина по п.12, в которой первая торцевая часть второго уплотнительного элемента расположена на расстоянии от первого края первого уплотнительного элемента для формирования первой области для охлаждающей текучей среды, а вторая торцевая часть второго уплотнительного элемента расположена на расстоянии от второго края первого уплотнительного элемента для формирования второй области для охлаждающей текучей среды, при этом либо первая, либо вторая область для охлаждающей текучей среды проточно соединена с проходом для охлаждающей текучей среды.

20. Турбомашина по п.19, в которой второй уплотнительный элемент содержит первую группу отверстий, проходящих вдоль, по существу, криволинейной промежуточной части вблизи первой торцевой части, и вторую группу отверстий, проходящих вдоль, по существу, криволинейной промежуточной части вблизи второй торцевой части.



 

Похожие патенты:

Выпускной патрубок (11) паровой турбины содержит выпускную секцию (12, 13) и поворотную пластину (70), расположенную в этой секции (12, 13). Поворотная пластина (70) имеет поперечное сечение сложного криволинейного профиля, имеющее первую секцию (80), которая проходит между первой концевой частью (73) и средней частью (76), и вторую секцию (82), которая проходит между указанной средней частью (76) и второй концевой частью (75).

Предложен выравнивающий элемент (18, 118, 318) для сегмента (4) диафрагмы турбины. Выравнивающий элемент (18, 118, 318) выполнен с обеспечением прохождения в радиальном направлении через часть указанного сегмента (4) диафрагмы турбины.

Группа изобретений относится к балансировочной системе для ротора, используемого в турбомашинном оборудовании. Пассивная динамическая инерционная балансировочная система ротора включает в себя множество балансировочных элементов, посаженных на вал ротора в местах расчетного максимального модального отклонения вала.

Упругодемпферная опора ротора турбомашины с демпфером с дроссельными канавками, содержащая корпус, втулку, закрепленную в корпусе, упругое кольцо с равномерно чередующимися наружными и внутренними выступами, выполненными соответственно на наружной и внутренней поверхностях кольца, подшипник качения, форсуночное кольцо с форсунками и уплотнение масляной полости опоры.

Изобретение относится к области металлургии, а именно к многослойному сварному шву. Многослойный сварной шов, сформированный на участке поверхности турбинного ротора из высокохромистой стали, контактирующем с подшипником, содержащий нижний и верхний наплавленные слои, при этом нижний наплавленный слой содержит, в вес.%: С от 0,05 до 0,2, Si от 0,1 до 1,0, Mn от 0,3 до 1,5, Cr от 4,0 до менее 6,5, Мо от 0,5 до 1,5, Fe и неизбежные примеси - остальное.

Изобретение относится к области металлургии, а именно к защитному покрытию для защиты конструкционной детали от коррозии и/или окисления. Безрениевый сплав на основе никеля, обладающий стойкостью к коррозии и/или окислению, содержит, в вес.%: кобальт 24-26, хром 12-15, алюминий 10,5-11,5, по меньшей мере один элемент из скандия и/или редкоземельных элементов, в частности иттрий, 0,1-0,7, тантал 0,1-3, необязательно кремний 0,05-0,6, никель - остальное.

Изобретение относится к энергетике. Способ измерения геометрических деформаций компонента турбины, в частности канавки ротора или хвостовика лопатки, при котором обеспечивают компонент турбины, или канавку ротора, или хвостовик лопатки, соответственно, по меньшей мере одной измерительной меткой, используют упомянутую измерительную метку в качестве опорной точки для определения при первом измерении некоторой длины, эксплуатируют турбину в течение некоторого периода времени, определяют при втором измерении упомянутую длину вновь с использованием упомянутой измерительной метки в качестве опорной точки после упомянутого периода времени эксплуатации и сравнивают измеренные длины.

Изобретение относится к энергетике. Гибкая поворотная конструкция неразрушающего контроля содержит продольный корпус и привод, позволяющий изменять изгиб части продольного корпуса, причем привод удерживается держателем, сопряженным с продольным корпусом, дистальная часть которого расположена в стороне или смещена относительно продольного корпуса и соединена с частью продольного корпуса посредством проволоки натяжения.

Изобретение относится к энергетике. Установка для определения кпд секции паровой турбины, которая содержит физическое вычислительное устройство с материальным машиночитаемым носителем информации, содержащим код.

Изобретение относится к машиностроению, преимущественно к авиационным газотурбинным двигателям. .

Изобретение относится к энергетике. Эндоскопическая система 10 содержит эндоскоп 12 и устройство 16 обработки данных, в котором эндоскоп 12 содержит устройство 13 записи изображений, причем эндоскоп 12 выполнен с возможностью передачи записей изображений от устройства 13 записи изображений изнутри газовой турбины 11 к устройству 16 обработки данных, при этом эндоскопическая система 10 выполнена с возможностью позиционирования и юстировки определенным образом в газовой турбине 11 эндоскопа 12, содержащего устройство 13 записи изображений, которое введено в газовую турбину 11. Также представлен способ для обследования газовой турбины. Изобретение позволяет обеспечить хорошую воспроизводимость результатов обследования, малую длительность испытаний и повышенное качество испытаний при обследовании газовых турбин. 2 н. и 11 з.п. ф-лы, 7 ил.

Группа изобретений относится к статору компрессора низкого давления осевой турбомашины. Статор содержит кольцевой ряд лопаток статора 26, имеющих радиальные концы, проходящие через отверстия 36 внутреннего кожуха 28, и содержащие радиальные крепежные пазы 38. Пазы 38 имеют конусность, образованную крюками 44. Статор содержит кольцо 30 для закрепления лопаток 26 на кожухе 28. Кольцо 30 изогнуто по окружности для его установки в крепежные пазы 38 и имеет форму полосы с дугообразным поперечным профилем, который находится в контакте с конусами и опирается на них так, чтобы кольцо 30 удерживалось внутри пазов 38. Кожух 28 содержит кольцевой слой истираемого материала 32, который окружает кольцо таким образом, чтобы блокировать кривизну дугообразного профиля кольца 30 с целью предотвращения расцепления его контакта с конусами пазов 38. Группа изобретений направлена на улучшение закрепления между лопаткой и кольцом с дугообразным поперечным профилем в осевой турбомашине, а также на увеличение срока службы статора с лопатками. 2 н. и 22 з.п. ф-лы, 4 ил.

Система очистки канала турбомашины содержит первый канал для воздушного потока, имеющий первое впускное отверстие, первое выпускное отверстие и первую промежуточную часть, содержащую первый фильтр грубой очистки. Второй канал для воздушного потока проточно соединен с первым каналом для воздушного потока. Второй канал для воздушного потока имеет вторую промежуточную часть, содержащую второй фильтр грубой очистки. Первый клапан расположен в первой промежуточной части, выше по потоку от первого фильтра грубой очистки, и второй клапан расположен во второй промежуточной части, выше по потоку от второго фильтра грубой очистки. Первый и второй клапаны выборочно приводятся в действие для управления текучей средой, проходящей в соответствующий один канал для воздушного потока, первый или второй, для фильтрации воздуха, проходящего от компрессора к турбине. Технический результат изобретения – уменьшение загрязнения воздуха и исключение необходимости остановки турбомашины для устранения засорения каналов для охлаждения воздуха. 3 н. и 17 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике. Система управления потоком включает по меньшей мере один управляющий клапан, связанный по меньшей мере с одним соплом турбинного двигателя, при этом упомянутый управляющий клапан сконфигурирован для регулирования потока текучей среды в первом направлении или втором направлении. Первое направление соответствует ситуации, когда текучую среду направляют из компрессора в сопло, а второе направление соответствует ситуации, когда упомянутую текучую среду направляют из сопла в секцию выпуска упомянутого турбинного двигателя. С управляющим клапаном связан контроллер, который сконфигурирован для управления потоком текучей среды в первом направлении во время работы упомянутого двигателя и для изменения направления потока текучей среды с первого направления на второе направление для обеспечения восстановления упомянутого турбинного двигателя. Также представлены электрогенераторная система и способ восстановления турбинного двигателя в электрогенераторной системе. Изобретение позволяет обеспечить противодействие засорению охлаждающих каналов. 3 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции упругих опор с изменяемой податливостью, применяемых в стендовых динамических испытаниях роторов турбомашин. Упругодемпферная опора ротора турбомашины содержит радиальный подшипник качения, установленный на валу, статорный элемент, жестко закрепленный на наружном кольце подшипника корпус, образующий со статорным элементом демпфирующую полость, внутри которой расположено упругое кольцо, а также графитовое уплотнение и вторичное лабиринтное уплотнение, содержащее крышку лабиринтных уплотнений. Упругодемпферная опора содержит установленную на статорном элементе фиксирующую крышку; при этом упругое кольцо закреплено с возможностью смещения в демпфирующей полости совместно с корпусом подшипника, графитовым уплотнением и крышкой лабиринтов в радиальном и осевом направлениях в пределах допустимых зазоров и ограничены фиксирующей крышкой от осевого смещения с одной стороны и статорным элементом - с другой стороны. Наружное кольцо подшипника, упругое кольцо, графитовое уплотнение и крышка лабиринтного уплотнения жестко установлены на корпусе подшипника. Изобретение позволяет снизить зазор между статорной и роторной частями, что приводит к снижению потерь в лабиринтных уплотнениях. 1 з.п. ф-лы, 1 ил.

Изобретение относится к системе индикации и может быть использовано для диагностики состояния элементов внутри турбинных узлов и деталей проточных частей на закрытой турбине, как на валоповороте, так и на полном останове турбин. Устройство мониторинга состояния внутри турбинных узлов и деталей паровых турбин состоит из шлюзов для обеспечения доступа без вскрытия проточных частей паровой турбины в процессе эксплуатации, как на валоповороте, так и на полном останове турбин, видеозондов, входящих в эндоскопический узел с регистратором, блока создания светового потока различной направленности. Все действия по определению места положения эндоскопического узла относительно получения данных с видеозондов согласуются с калиброванным синхродатчиком, размещенным стационарно на валу паровой турбины, который по обратной связи через центр обработки контролирует местоположение видеозондов относительно лопаточного аппарата и элементов проточной части. Изобретение позволяет проводить визуальную диагностику в автоматическом режиме элементов внутри турбинных узлов и деталей проточных частей паровых турбин без вскрытия в процессе эксплуатации, как на валоповороте, так и на полном останове турбин. 6 ил.

Изобретения относятся к оборудованию и способам для удаления песка из турбомашины, такой как авиационный турбореактивный двигатель, который содержит, по меньшей мере, одно устройство визуализации эндоскопией, содержащее средства визуализации и трубку, в которой закреплены световодные средства передачи изображения, всасывающее устройство, содержащее всасывающие средства, соединенные с всасывающей трубкой, закрепленной на вышеупомянутой трубке устройства визуализации, и устройство генерирования плазменной струи, содержащее плазменную горелку, соединенную со средствами подачи газа и средствами электроснабжения, способными питать указанную плазменную горелку, причем указанная плазменная горелка закреплена на трубке указанного устройства визуализации. Технический результат изобретений – упрощение и повышение эффективности данных способа и оборудования. 3 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к области стендовых испытаний деталей и корпусов турбомашин, в частности авиационного двигателестроения, а именно к конструкции стендовых силовых рам для статических и циклических испытаний. Универсальная модульная портальная силовая рама содержит силовые стойки, вспомогательные балки и прямоугольное основание. Вспомогательные балки выполнены с возможностью крепления на силовые стойки и между собой посредством разъемного соединения. На каждой большей стороне прямоугольного основания жестко и неразъемно закреплены как минимум по три силовые стойки, причем как минимум одна из силовых стоек расположена в области середины соответствующей большей стороны, а по одной в углах прямоугольного основания. Сверху на силовых стойках закреплены цельные балки посредством жесткого неразъемного соединения, сориентированные вдоль соответствующих больших сторон прямоугольного основания и образующие с последними и силовыми стойками четырехугольные порталы. На угловых силовых стойках посредством жесткого неразъемного соединения закреплено как минимум по одной проушине. Силовая рама снабжена как минимум одной П-образной балкой, установленной поперек силовых стоек и выполненной с возможностью перемещения вдоль последних и фиксацией на них в требуемом положении. Изобретение позволяет за счет наличия жесткой неразъемной конструкции, реализованной с учетом специфики стендовых испытаний деталей и корпусов турбомашин, возможности различных комбинаций установки силовых модулей, профиля и соединений элементов силовой рамы увеличить жесткость, прочность и универсальность последней. 19 з.п. ф-лы, 3 ил.

Газотурбинный двигатель включает внешний кожух, канал для отвода выхлопных газов, охлаждающий канал, панельную структуру и воздуховод. Канал для отвода выхлопных газов расположен внутри внешнего кожуха и содержит внешнюю и внутреннюю стенки канала, формирующие кольцевой проход и распложенные радиально внутрь от внешнего кожуха. Охлаждающий канал связан с наружной поверхностью внешнего кожуха и имеет вход канала и выход канала. Панельная структура расположена вокруг внешнего кожуха и радиально отстоит от его наружной поверхности с формированием охлаждающего канала между ними. Панельная структура содержит множество панельных секций с простирающимися в осевом направлении зазорами между смежными панельными секциями, расположенными по окружности на расстоянии друг от друга, причем зазоры обеспечивают прохождение окружающего воздуха в охлаждающий канал. Воздуховод включает входной конец, гидравлически сообщающийся с выходом канала, и выходной конец, гидравлически сообщающийся с областью пониженного давления относительно входного конца воздуховода. В области выходного конца воздуховода расположена выходная полость, в которой формируется пониженное давление для того, чтобы засасывать воздух из канала охлаждения в воздуховод. В другом варианте газотурбинный двигатель включает распорку, простирающуюся от внешнего кожуха до корпуса подшипника, и экранирующую структуру, окружающую распорку, чтобы защищать ее от отработанных газов. В еще одном варианте газотурбинного двигателя внешний кожух содержит выхлопной кожух, содержащий расположенные вверх и вниз по потоку фланцы, выступающие радиально наружу от наружной поверхности указанного внешнего кожуха. Панельная структура содержит расположенный вверх по потоку конец, закрепленный на расположенном вверх по потоку фланце, и расположенный вниз по потоку конец, закрепленный на расположенном вниз по потоку фланце. Группа изобретений позволяет повысить надежность газотурбинного двигателя за счет обеспечения охлаждения его внешнего кожуха. 3 н. и 14 з.п. ф-лы, 14 ил.

Изобретение относится к лопастной машине. Лопастная машина содержит внутренний корпус, радиально ограничивающий проточный канал машины. Вокруг внутреннего корпуса расположен нанесенный на наружную сторону стенки внутреннего корпуса теплоизоляционный слой, который представляет собой покрытие (1), которое содержит базовый материал (2). Материал (2) содержит микропористую пластмассу, выбранную из группы, включающей в себя полиуретан, полиэтилен, полиолефин, полиэфир, полипропилен, политетрафторэтилен, эпоксидную смолу, эластомеры, цеолиты и смесь этих материалов или неорганические материалы. Изобретение направлено на создание легко изготавливаемой теплоизоляции для лопастной машины. 12 з.п. ф-лы, 1 ил.
Наверх