Устройство радиационной визуализации и система радиационной визуализации

Изобретение относится к устройству радиационной визуализации и к системе радиационной визуализации. Устройство радиационной визуализации для обнаружения радиационного изображения включает в себя панель радиационной визуализации, включающую в себя множество подложек для визуализации и сцинтиллятор, имеющий первую поверхность и вторую поверхность, которые расположены противоположно друг другу, корпус, выполненный с возможностью вмещения панели радиационной визуализации и включающий в себя первую часть в форме пластины и вторую часть в форме пластины, первый опорный элемент, расположенный между первой поверхностью сцинтиллятора и первой частью в форме пластины упомянутого корпуса, для поддержки сцинтиллятора посредством множества подложек для визуализации, и второй опорный элемент, расположенный между второй поверхностью сцинтиллятора и второй частью в форме пластины упомянутого корпуса, для поддержки сцинтиллятора. Технический результат – снижение образования артефактов на изображении, получаемом сканирующим устройством. 2 н. и 15 з.п. ф-лы, 7 ил.

 

УРОВЕНЬ ТЕХНИКИ

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001] Настоящее изобретение относится к устройству радиационной визуализации и к системе радиационной визуализации.

УРОВЕНЬ ТЕХНИКИ

[0002] В последние годы было разработано устройство радиационной визуализации, имеющее большую площадь поверхности, например, 40 см×40 см. Для реализации такого устройства визуализации, имеющего большую площадь поверхности, в устройстве радиационной визуализации, имеющем многослойную структуру сенсорной панели и сцинтиллятора, сенсорную панель формируют в виде множества подложек для визуализации. Например, в публикации заявки на патент Японии № 2012-247401 описано устройство радиационной визуализации, имеющее многослойную структуру сенсорной панели и сцинтиллятора, в котором сенсорная панель образована путем размещения множества датчиков изображения.

[0003] Однако в упакованной структуре сцинтиллятора и сенсорной панели, образованной путем размещения множества подложек для визуализации, деформация на стыке между подложками для визуализации может быть больше, чем деформация в подложке для визуализации. Такая неоднородность в деформациях вызывает неоднородное искажение сцинтиллятора, что приводит к артефакту изображения, обнаруживаемому устройством радиационной визуализации.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

[0004] Один аспект настоящего изобретения обеспечивает технологию, имеющую преимущество в ослаблении искажения сцинтиллятора в устройстве радиационной визуализации, имеющем многослойную структуру сцинтиллятора и сенсорной панели, образованную множеством подложек для визуализации.

[0005] Первый аспект настоящего изобретения обеспечивает устройство радиационной визуализации для обнаружения радиационного изображения, содержащее: панель радиационной визуализации, включающую в себя множество подложек для визуализации, и сцинтиллятор, имеющий первую поверхность и вторую поверхность, которые расположены противоположно друг другу; корпус, выполненный с возможностью вмещения панели радиационной визуализации и включающий в себя первую часть в форме пластины и вторую часть в форме пластины; первый опорный элемент, расположенный между первой поверхностью сцинтиллятора и первой частью в форме пластины упомянутого корпуса, для поддержки сцинтиллятора через множество подложек для визуализации; и второй опорный элемент, расположенный между второй поверхностью сцинтиллятора и второй частью в форме пластины упомянутого корпуса, для поддержки сцинтиллятора.

[0006] Второй аспект настоящего изобретения обеспечивает систему радиационной визуализации, содержащую: источник излучения; и устройство радиационной визуализации, как указано в первом аспекте настоящего изобретения.

[0007] Дополнительные признаки настоящего изобретения станут более ясными из нижеследующего описания примерных вариантов выполнения (со ссылкой на прилагаемые чертежи).

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0008] Фиг. 1 представляет собой перспективное изображение, по отдельности показывающее компоненты устройства радиационной визуализации согласно первому варианту выполнения настоящего изобретения;

[0009] Фиг. 2A и 2B представляют собой, соответственно, поперечный разрез и вид сверху, показывающие устройство радиационной визуализации согласно первому варианту выполнения настоящего изобретения;

[0010] Фиг. 3A и 3B представляют собой, соответственно, поперечный разрез и вид сверху, показывающие устройство радиационной визуализации изображения согласно второму варианту выполнения настоящего изобретения;

[0011] Фиг. 4A и 4B представляют собой поперечные разрезы, взятые вдоль двух направлений и показывающие устройство радиационной визуализации согласно третьему варианту выполнения настоящего изобретения;

[0012] Фиг. 5 представляет собой вид сверху, показывающий устройство радиационной визуализации согласно третьему варианту выполнения настоящего изобретения;

[0013] Фиг. 6A и 6B представляют собой виды, каждый из которых схематически показывает соотношение между способом поддержки и изгибом (искажением) сцинтиллятора (или панели радиационной визуализации); и

[0014] Фиг. 7 представляет собой вид, показывающий конфигурацию системы радиационной визуализации согласно одному варианту выполнения настоящего изобретения.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

[0015] Настоящее изобретение будет описано ниже посредством примерных вариантов выполнения, со ссылкой на прилагаемые чертежи.

[0016] Фиг. 1 показывает по отдельности компоненты устройства 100 радиационной визуализации согласно первому варианту выполнения настоящего изобретения. Фиг. 2A представляет собой поперечный разрез, взятый вдоль линии A-A', показанной на Фиг. 1 и показывающий устройство 100 радиационной визуализации, а Фиг. 2B представляет собой вид сверху, показывающий устройство 100 радиационной визуализации. Следует отметить, что Фиг. 1 показывает только часть корпуса 150, а Фиг. 2B показывает корпус 150 при удалении его верхней части.

[0017] Устройство 100 радиационной визуализации выполнено с возможностью обнаружения изображения (радиационного изображения), образованного за счет излучения, которое было испущено из источника излучения для испускания такого излучения, как рентгеновское излучение, и пропущенного через объект. Устройство 100 радиационной визуализации включает в себя, например, панель 110 радиационной визуализации, первый 120 опорный элемент, второй 140 опорный элемент, подложку 130 схемы и корпус (внешний элемент) 150. Панель 110 радиационной визуализации включает в себя, например, множество подложек 112 для визуализации и сцинтиллятор 114, имеющий первую поверхность S1 и вторую поверхность S2, которые расположены противоположно друг другу. Устройство 100 радиационной визуализации или панель 110 радиационной визуализации могут дополнительно включать в себя основание 111 для поддержки множества подложек 112 для визуализации.

[0018] Сцинтиллятор 114 может быть расположен таким образом, чтобы множество подложек 112 для визуализации было уложено или расположено между сцинтиллятором 114 и основанием 111, или расположено таким образом, чтобы сцинтиллятор 114 был уложен или расположен между множеством подложек 112 для визуализации и основанием 111. Сцинтиллятор 114 может представлять собой узел из структур в виде колонок, изготовленных из CsI, легированного Tl. Сцинтиллятор 114 преобразует излучение 160 в свет. Множество подложек 112 для визуализации расположено одно- или двумерно, с образованием плоскости формирования изображения или области формирования изображения. Каждая подложка 112 для визуализации может иметь прямоугольную форму, с короткими сторонами и длинными сторонами. Гибкая подложка 113 схемы соединена с каждой подложкой 112 для визуализации. Каждая подложка 112 для визуализации может представлять собой, например, КМОП-датчик, изготовленный из кристаллического кремния, или PIN-датчик (датчик на основе положительного – собственного - отрицательного дипольного перехода) или МДП-датчик, изготовленный из аморфного кремния. Каждая подложка 112 для визуализации включает в себя множество пикселей для обнаружения света, преобразованного из излучения сцинтиллятором 114. Каждый пиксель включает в себя фотоэлектрический преобразователь.

[0019] Корпус 150 выполнен с возможностью вмещения панели 110 радиационной визуализации и имеет первую часть P1 в форме пластины, вторую часть P2 в форме пластины и боковую стенку (SW). Сторона 160 падения излучения представляет собой сторону второй части P2 в форме пластины. Первая часть P1 в форме пластины и вторая часть P2 в форме пластины расположены так, чтобы они были обращены друг к другу, а боковая стенка SW связывает первую часть P1 в форме пластины и вторую часть P2 в форме пластины. Первый 120 опорный элемент расположен между первой поверхностью S1 сцинтиллятора 114 и первой частью P1 в форме пластины корпуса 150, для поддержки сцинтиллятора 114 или панели 110 радиационной визуализации. Часть 120 первого опорного элемента может быть непосредственно или опосредованно связана с панелью 110 радиационной визуализации, а другая часть 120 первого опорного элемента может быть непосредственно или опосредованно связана с первой частью P1 в форме пластины корпуса 150. Второй 140 опорный элемент расположен между второй поверхностью S2 сцинтиллятора 114 и второй частью P2 в форме пластины корпуса 150, для поддержки сцинтиллятора 114 или панели 110 радиационной визуализации. Часть второго опорного элемента 140 может быть непосредственно или опосредованно связана с панелью 110 радиационной визуализации, а другая часть второго 140 опорного элемента может быть непосредственно или опосредованно связана со второй частью P2 в форме пластины корпуса 150.

[0020] Подложка 130 схемы может быть расположена между первым опорным элементом 120 и первой частью P1 в форме пластины корпуса 150, а подложка 130 схемы может опираться на первый опорный элемент 120. Подложка 130 схемы соединена с множеством подложек 112 для визуализации посредством гибких подложек 113 схемы. Подложка 130 схемы управляет множеством подложек 112 для визуализации и обрабатывает сигналы, выходящие из множества подложек 112 для визуализации.

[0021] Между второй частью P2 в форме пластины корпуса 150 и панелью 110 радиационной визуализации или сцинтиллятором 114 обеспечено пространство (зазор). Это может предотвратить приведение в контакт друг с другом корпуса 150 и панели 110 радиационной визуализации, даже при приложении внешнего давления к устройству 100 радиационной визуализации для деформации корпуса 150, с предотвращением, таким образом, ущерба для панели 110 радиационной визуализации или сцинтиллятора 114.

[0022] С другой стороны, когда к устройству 100 радиационной визуализации прикладывают колебания, или когда устройство 100 радиационной визуализации поддерживают на горизонтальной или на наклонной плоскости формирования изображения, панель 110 радиационной визуализации может быть деформирована. Обычно деформация панели 110 радиационной визуализации на стыке между подложками 112 для визуализации может быть больше, чем деформация панели 110 радиационной визуализации в отдельных подложках 112 для визуализации. Такая неоднородность деформации вызывает неоднородное искажение сцинтиллятора 114, что приводит к образованию артефакта на изображении, сканируемом устройством 100 радиационной визуализации. С увеличением множества подложек 112 для визуализации, искажение панели 110 радиационной визуализации усиливается.

[0023] Обеспечен способ повышения толщины основания 111 для ослабления искажения панели 110 радиационной визуализации. Однако в таком способе толщина и масса устройства 100 радиационной визуализации также повышаются. В дополнение, только повышение толщины основания 111 накладывает ограничение на ослабление артефакта. Для решения этой проблемы, в первом варианте выполнения второй 140 опорный элемент располагают между второй S2 поверхностью сцинтиллятора 114 и второй частью P2 в форме пластины корпуса 150, для поддержки панели 110 радиационной визуализации. Второй 140 опорный элемент может быть выполнен таким образом, чтобы он поддерживал периферийную часть сцинтиллятора 114 и не поддерживал центральную часть внутри периферийной части. С другой точки зрения, второй опорный элемент 140 может быть выполнен таким образом, чтобы он поддерживал сцинтиллятор 114 на части или области за пределами области формирования изображения, которая образована множеством подложек 112 для визуализации.

[0024] Каждая подложка 112 для визуализации имеет прямоугольную форму с короткими сторонами и длинными сторонами. В массиве из множества подложек 112 для визуализации в направлениях x и y количество (4 в примере, показанном на Фиг. 1, 2A, и 2B) подложек 112 для визуализации, расположенных в направлении y (в первом направлении), будет больше, чем количество (2 в примере, показанном на Фиг. 1, 2A и 2B) подложек 112 для визуализации, установленных в направлении x (во втором направлении), перпендикулярном к направлению y. Является предпочтительным, чтобы второй опорный элемент 140 был выполнен с возможностью поддержки периферийной части сцинтиллятора 114 по меньшей мере частями, проходящими в направлении y (в первом направлении). Причина этого будет разъяснена со ссылкой на Фиг. 6A и 6B. Фиг. 6A схематически показывает случай, в котором второй 140 опорный элемент поддерживает периферийную часть сцинтиллятора 114 частями, проходящими в направлении y (в первом направлении). Фиг. 6B схематически показывает случай, в котором второй 140 опорный элемент, проходящий в направлении x (во втором направлении), поддерживает периферийную часть сцинтиллятора 114. Величина искажения (изгиба) сцинтиллятора 114 (или панели радиационной визуализации) в способе поддержки, показанном на Фиг. 6A, будет меньше, чем величина искажения в способе поддержки, показанном на Фиг. 6B. То есть способ поддержки, показанный на Фиг. 6A, будет лучше способа, показанного на Фиг. 6B. Это вызвано тем, что механическая прочность на стыке между подложками 112 для визуализации (механической прочностью между подложками 112 для визуализации) является низкой, и сцинтиллятор 114 (или панель радиационной визуализации) легко изгибается в этой части.

[0025] В примере, показанном на Фиг. 1, 2A, и 2B, множество подложек 112 для визуализации расположено с образованием первой и второй колонок, каждая из которых проходит вдоль направления y (вдоль первого направления). Второй 140 опорный элемент включает в себя первую часть, которая поддерживает, через сцинтиллятор 114, подложки 112 для визуализации, которые образуют первую колонку среди множества подложек 112 для визуализации, и вторую часть, которая поддерживает, через сцинтиллятор 114, подложки 112 для визуализации, образующие вторую колонку среди множества подложек 112 для визуализации. Следует отметить, что первая часть соответствует второму 140 опорному элементу с левой стороны на Фиг. 1, 2A, и 2B, а вторая часть соответствует второму 140 опорному элементу с правой стороны на Фиг. 1, 2A, и 2B.

[0026] Расположение устройства 100 радиационной визуализации согласно второму варианту выполнения настоящего изобретения будет описано со ссылкой на Фиг. 3A и 3B. Следует отметить, что детали, не упомянутые во втором варианте выполнения, могут соответствовать деталям в первом варианте выполнения. Фиг. 3A и 3B согласуются, соответственно, с Фиг. 2A и 2B. Устройство 100 радиационной визуализации согласно второму варианту выполнения включает в себя опорную пластину 115 между второй S2 поверхностью сцинтиллятора 114 и вторым 140 опорным элементом для поддержки сцинтиллятора 114 (или панели 110 радиационной визуализации). Одна поверхность опорной пластины 115 непосредственно или опосредованно связана со сцинтиллятором 114 (или панелью 110 радиационной визуализации), а другая поверхность опорной пластины 115 непосредственно или опосредованно связана со вторым 140 опорным элементом. Опорная пластина 115 может иметь область для поддержки всей второй поверхности S2 сцинтиллятора 114. Опорная пластина 115 может быть расположена таким образом, чтобы множество подложек 112 для визуализации и сцинтиллятор 114 были уложены или расположены между основанием 111 и опорной пластиной 115. Опорная пластина 115 должна представлять собой функциональную единицу и иметь толщину, пригодную для пропускания излучения. Опорная пластина 115 может быть изготовлена, например, из аморфного углерода, углепластика, алюминия или титана.

[0027] Устройство 100 радиационной визуализации согласно второму варианту выполнения может дополнительно включать в себя связывающий элемент 116 для связывания основания 111 и опорной пластины 115 на области за пределами области, где расположено множество подложек 112 для визуализации и сцинтиллятор 114. Связывающий элемент 116 может быть изготовлен, например, из смолы, такой как кремнийорганическая смола, акриловая смола, эпоксидная смола или полиуретановая смола. Например, связывающий элемент 116 может быть расположен таким образом, чтобы он частично или полностью окружал множество подложек 112 для визуализации и сцинтиллятор 114. Множество подложек 112 для визуализации может опираться на второй 140 опорный элемент через связывающий элемент 116 и опорную пластину 115. Второй 140 опорный элемент может быть выполненный с возможностью поддержки опорной пластины 115 в области за пределами области, где расположен сцинтиллятор 114. Эта структура выгодна тем, что она удлиняет эффективную пиксельную область.

[0028] Расположение устройства 100 радиационной визуализации согласно третьему варианту выполнения настоящего изобретения будет описано со ссылкой на Фиг. 4A, 4B и 5. Следует отметить, что детали, не упомянутые в третьем варианте выполнения, могут соответствовать деталями, описанными в первом или во втором варианте выполнения. Фиг. 4A соответствует Фиг. 2A, а Фиг. 5 соответствует Фиг. 2B. Фиг. 4B представляет собой поперечный разрез, взятый вдоль направления, перпендикулярного разрезу, показанному на Фиг. 4A. В третьем варианте выполнения второй 140 опорный элемент выполнен с возможностью поддержки четырех сторон сцинтиллятора 114. То есть в третьем варианте выполнения второй 140 опорный элемент поддерживает периферийную часть сцинтиллятора 114 частью, проходящей в первом направлении (в направлении y), и частью, проходящей во втором направлении (в направлении x).

[0029] Система 200 радиационной визуализации согласно одному варианту выполнения настоящего изобретения будет описана ниже со ссылкой на Фиг. 7. Система 200 радиационной визуализации включает в себя источник 204 излучения для испускания излучения, такого как рентгеновское излучение, вышеописанное устройство 100 радиационной визуализации, для приема излучения, испускаемого из источника 204 излучения через объект, и блок 201 управления. В этом варианте выполнения система 200 радиационной визуализации выполнена в виде устройства радиоскопической диагностики типа рентгеновского аппарата типа C-образной рамы. То есть источник 204 излучения и устройство 100 радиационной визуализации прикреплены к вращающейся C-образной раме 203 таким образом, чтобы они были обращены друг к другу. Можно изменять направление облучения излучения в сторону объекта путем поворота C-образной рамы 203, без изменения положения объекта. Это обеспечивает возможность 3D (трехмерной) радиационной визуализации. Каждое радиационное изображение, обнаруживаемое устройством 100 радиационной визуализации, поступает на блок 201 управления и обрабатывается блоком 201 управления. Полученное 3D-изображение может быть направлено на блок 202 дисплея.

[0030] При том, что настоящее изобретение было описано с обращением к примерным вариантам выполнения, следует понимать, что изобретение не ограничено раскрытыми примерными вариантами выполнения. Объем нижеследующей формулы изобретения согласуется с самой широкой интерпретацией, охватывающей все такие модификации, эквивалентные структуры и функции.

1. Устройство радиационной визуализации для обнаружения радиационного изображения, содержащее:

- панель радиационной визуализации, включающую в себя множество подложек для визуализации и сцинтиллятор, имеющий первую поверхность и вторую поверхность, которые расположены противоположно друг другу, причём каждая из множества подложек для визуализации имеет множество пикселей, каждый из которых выполнен с возможностью обнаружения света, преобразованного из излучения сцинтиллятором, причём количество подложек для визуализации, расположенных в первом направлении (направлении y) в массиве из множества подложек для визуализации, больше, чем количество подложек для визуализации, расположенных во втором направлении (направлении x), перпендикулярном первому направлению в массиве;

- корпус, выполненный с возможностью вмещения панели радиационной визуализации и включающий в себя первую часть в форме пластины и вторую часть в форме пластины;

- первый опорный элемент, расположенный между первой поверхностью сцинтиллятора и первой частью в форме пластины упомянутого корпуса для поддержки сцинтиллятора посредством множества подложек для визуализации; и

- второй опорный элемент, расположенный между второй поверхностью сцинтиллятора и второй частью в форме пластины упомянутого корпуса для поддержки сцинтиллятора, причём второй опорный элемент включает в себя часть, проходящую в первом направлении, при этом второй опорный элемент выполнен с возможностью поддерживать периферийную часть сцинтиллятора, которая проходит в первом направлении, посредством упомянутой части, и не поддерживать центральную часть сцинтиллятора, которая находится внутри периферийной части.

2. Устройство по п. 1, дополнительно содержащее:

- опорную пластину, расположенную между второй поверхностью сцинтиллятора и вторым опорным элементом для поддержки сцинтиллятора.

3. Устройство по п. 2, в котором опорная пластина имеет область для поддержки всей второй поверхности сцинтиллятора.

4. Устройство по п. 2, дополнительно содержащее:

- основание, выполненное с возможностью поддержки множества подложек для визуализации,

причем первый опорный элемент поддерживает сцинтиллятор через основание и множество подложек для визуализации.

5. Устройство по п. 4, в котором опорная пластина расположена таким образом, чтобы множество подложек для визуализации и сцинтиллятор были уложены между основанием и опорной пластиной.

6. Устройство по п. 5, дополнительно содержащее:

- связывающий элемент, выполненный с возможностью связывания основания и опорной пластины в области за пределами области, в которой расположено множество подложек для визуализации и сцинтиллятор.

7. Устройство по п. 1, в котором:

- каждая из множества подложек для визуализации имеет прямоугольную форму с короткими сторонами и длинными сторонами, и

- периферийная часть является частью, размещённой за пределами области формирования изображения, которая образована множеством подложек для визуализации.

8. Устройство по п. 7, в котором множество подложек для визуализации размещено с образованием первой колонки и второй колонки, каждая из которых проходит вдоль первого направления, а упомянутая часть второго опорного элемента включает в себя первую часть, проходящую в первом направлении и выполненную с возможностью поддержки, через сцинтиллятор, подложек для визуализации, образующих первую колонку среди множества подложек для визуализации, и вторую часть, проходящую в первом направлении и выполненную с возможностью поддержки, через сцинтиллятор, подложек для визуализации, образующих вторую колонку среди множества подложек для визуализации.

9. Устройство по п. 1, в котором второй опорный элемент выполнен с возможностью поддержки четырех сторон сцинтиллятора.

10. Устройство по п. 1, в котором часть второго опорного элемента включает в себя первую часть, непосредственно или опосредованно соединённую с панелью радиационной визуализации, и вторую часть, непосредственно или опосредованно соединённую со второй частью в форме пластины.

11. Устройство по п. 10, в котором корпус включает в себя боковую стенку, соединяющую первую часть в форме пластины и вторую часть в форме пластины, при этом второй опорный элемент не соединён с боковой стенкой.

12. Устройство по п. 1, в котором упомянутая часть второго опорного элемента включает в себя первую часть, непосредственно соединённую с панелью радиационной визуализации, и вторую часть, непосредственно соединённую со второй частью в форме пластины.

13. Устройство по п. 8, в котором каждая из первой и второй частей второго опорного элемента включает в себя первую часть, непосредственно или опосредованно соединённую с панелью радиационной визуализации, и вторую часть, непосредственно или опосредованно соединённую со второй частью в форме пластины.

14. Устройство по п. 13, в котором корпус включает в себя боковую стенку, соединяющую первую часть в форме пластины и вторую часть в форме пластины, при этом второй опорный элемент не соединён с боковой стенкой.

15. Устройство по п. 8, в котором каждая из первой и второй частей второго опорного элемента включает в себя первую часть, непосредственно соединённую с панелью радиационной визуализации, и вторую часть, непосредственно соединённую со второй частью в форме пластины.

16. Система радиационной визуализации, содержащая:

- источник излучения; и

- устройство радиационной визуализации по любому из пп. 1-15, размещенное для обнаружения излучения, испускаемого источником излучения.

17. Система по п. 16, в которой источник излучения и устройство радиационной визуализации прикреплены к вращающейся C-образной раме таким образом, чтобы они были обращены друг к другу.



 

Похожие патенты:

Использование: для проверки груза. Сущность изобретения заключается в том, что рентгенографическая установка для проверки груза, находящегося в относительном движении, содержит источник излучения импульсов расходящегося рентгеновского излучения; коллиматор источника для ограничения падающего пучка рентгеновского излучения; и датчики приема рентгеновского излучения, расположенные в области прохождения падающего пучка для приема рентгеновского излучения после его прохождения через груз и для генерирования необработанных сигналов изображения.

Изобретение относится к области протонной радиографии, в частности к способу регистрации оптических изображений, сформированных с помощью протонного излучения, и может быть использовано в системах цифровой съемки для определения внутренней структуры объектов или исследования быстропротекающих процессов.

Использование: для калибровки компьютерно-томографического (КТ) изображения. Сущность изобретения заключается в том, что осуществляют: размещение фиксированного калибровочного элемента снаружи области канала и в пределах максимальной области реконструирования сканирующего устройства компьютерной томографии (КТ) и сохранение теоретического значения фиксированного калибровочного элемента; сбор проекционных данных фиксированного калибровочного элемента для получения фактического реконструированного изображения фиксированного калибровочного элемента; и сравнение фактического реконструированного изображения с сохраненным соответствующим теоретическим значением для установления функции отображения для корректировки фактического реконструированного изображения в теоретическое значение.

Изобретение относится к способу и системе для инспекции тела человека на основе обратного рассеивания. Способ предусматривает получение сканированного изображения тела человека на основе обратного рассеивания в ходе инспекции, обособление изображения тела от фонового изображения в сканированном изображении на основе обратного рассеивания и вычисление характерного параметра фонового изображения для определения того, переносят ли радиоактивное вещество в теле или на теле человека.

Использование: для отображения изображения в СТ-системе. Сущность изобретения заключается в том, что способ отображения изображения в системе компьютерной томографии (CT), содержащий этапы, на которых: осуществляют CT-сканирование проверяемого объекта, чтобы получить данные СТ-проекции; организуют данные СТ-проекции в соответствии с предварительно определенным интервалом; извлекают базовые данные из организованных данных СТ-проекции, используя фиксированный угол в качестве начального угла и используя 360 градусов в качестве интервала; формируют цифровое радиографическое (DR) изображение, основываясь на извлеченных базовых данных; реконструируют трехмерное изображение проверяемого объекта из данных СТ-проекции; и отображают на экране одновременно DR-изображение и реконструированное трехмерное изображение.

Использование: для досмотра объекта посредством компьютерной томографии (КТ). Сущность изобретения заключается в том, что предложены система КТ для досмотра и соответствующий способ.

Группа изобретений относится к способам и устройствам для формирования дифференциальных фазовых контрастных изображений. Техническим результатом является обеспечение возможности корректировки количества артефактов в данных изображения.
Изобретение используется для регистрации радиографических изображений, сформированных с помощью ионизирующего излучения, относится к области радиографии, в частности к способам регистрации оптических изображений, сформированных с помощью протонного излучения, и может быть использовано, например, в системах цифровой съемки для определения внутренней структуры плотных объектов или исследования быстропротекающих процессов.

Использование: для спиральной компьютерной томографии. Сущность изобретения заключается в том, что вычисляют минимальное количество рядов детекторов, необходимое для покрытия окна Тама в соответствии с шагом системы спиральной КТ в геометрии конусного пучка и межрядным интервалом множества рядов детекторов; компенсируют утерянные проекционные данные посредством взвешивания дополнительных проекционных данных в случае, если количество рядов детекторов системы спиральной КТ в геометрии конусного пучка меньше минимального количества рядов детекторов; пересортировывают данные конусного пучка в данные параллельных конусных пучков; выполняют взвешивание косинуса угла конуса по пересортированным данным параллельных конусов, а затем выполняют одномерную фильтрацию по данным в направлении ряда виртуальных детекторов, образованных при пересортировке проекционных данных в данные параллельных пучков; и выполняют обратное проецирование в геометрии параллельных конусных пучков без взвешивания по отфильтрованным данным для получения восстановленных изображений.

Группа изобретений относится к медицинской технике, а именно к визуализации с помощью компьютерной томографии. Система визуализации содержит источник излучения, чувствительную к излучению матрицу детекторов и динамический послепациентный фильтр, включающий в себя один или более сегментов фильтра, при этом сегменты фильтра выполнены с возможностью перемещения в направлении оси z и перпендикулярно направлению пучка излучения или в направлении, поперечном оси z, и перпендикулярно направлению пучка излучения.

Использование: для формирования изображений разных областей объекта. Сущность изобретения заключается в том, что многоэнергетический многодозовый ускоритель содержит электронную пушку, выполненную с возможностью обеспечивать первое напряжение электронной пушки и второе напряжение электронной пушки, и ускорительную трубку, выполненную с возможностью генерировать первое рентгеновское излучение, имеющее первую дозу и первую энергию, соответствующие первому напряжению электронной пушки, и генерировать второе рентгеновское излучение, имеющее вторую дозу и вторую энергию, соответствующие второму напряжению электронной пушки, причем первая доза представляет собой дозу, которая может быть допустимой для человеческих тел и намного меньше, чем вторая доза, причем первое рентгеновское излучение используется для обследования первой области, где находится человек, а второе рентгеновское излучение используется для обследования второй области, где находятся товары. Технический результат: обеспечение возможности быстрого контроля транспортного средства, включающего кабину водителя и контейнер. 3 н. и 12 з.п. ф-лы, 12 ил.

Использование: для непроникающего досмотра транспортных средств. Сущность изобретения заключается в том, что система для осуществления указанного способа включает мобильную сканирующую установку на автошасси, где размещена конструкция, несущая оснастку, в которую входят панели детекторов, соответствующих выбранному типу проникающего излучения. Для транспортировки несущая конструкция складывается, обеспечивая минимальные габариты. Для сканирования несущая конструкция раскладывается, приобретая П-образную форму, и имеет с одной стороны в основании источник проникающего излучения, а с противоположной стороны - панель детекторов. Сканирующая система включает также передвижной центр управления, размещаемый за пределами закрытой зоны а и дистанционно управляющий всеми технологическими процессами непроникающего досмотра. Передвижной центр управления оснащен подсистемой сбора, обработки, хранения и вывода изображений на экран. В систему сканирования входит подсистема защиты периметра и подсистема автоматизированного регулирования движения транспорта. Технический результат: обеспечение возможности высокой пропускной способности и полного радиографического обследования транспорта. 2 н. и 4 з.п. ф-лы, 9 ил.

Группа изобретений относится к сканирующей системе получения изображения. Технический результат - обеспечение выравнивания изображения DR-данных и изображения СТ-данных. Для этого предложена система, содержащая транспортировочное устройство, первую систему получения изображения и вторую систему получения изображения. Расстояние между пучком излучения от первого генератора излучения первой системы получения изображения и пучком излучения от второго генератора излучения второй системы получения изображения в направлении транспортировки примерно равняется L. Контроллер выполнен с возможностью получения, опираясь на величину счета счетного модуля, соотношения соответствий между данными в положении исследуемого объекта в направлении транспортировки, которые собираются первой системой получения изображения, и данными в положении исследуемого объекта в направлении транспортировки, которые собираются второй системой получения изображения. 2 н. и 7 з.п. ф-лы, 2 ил.

Использование: для исследования объекта исследования с помощью компьютерной томографии. Сущность изобретения заключается в том, что осуществляют круговое сканирование исследуемого объекта посредством рентгеновских лучей в соответствии с предварительно заданным значением угловой дискретизации, которое представляет собой число точек дискретизации на одном круге, для получения группы дискретизационных данных проекций при различных углах проекции, предварительно заданное значение угловой дискретизации больше 1000; обрабатывают дискретизационные данные проекций для получения данных проекций множества виртуальных подфокусов, эквивалентных большому фокусу источника излучения в системе компьютерной томографии (КТ); и осуществляют реконструкцию изображения в соответствии с данными проекций множества виртуальных подфокусов. Технический результат: обеспечение возможности повышения пространственного разрешения изображения. 3 н. и 15 з.п. ф-лы, 3 ил.

Использование: для неразрушающего контроля различных материалов, изделий и объектов с помощью импульсных рентгеновских лучей, а также для медицинской рентгенодиагностики. Сущность изобретения заключается в том, что просвечивают объект импульсным рентгеновским излучением, преобразование прошедшего объект излучения рентгенолюминесцентным преобразователем, изображение с которого передается на синхронизованную во времени с рентгеновским источником облучения оптоэлектронную информационную систему. При этом облучение объекта рентгеновским излучением и регистрацию его оптического изображения производят в интервале времени между радиационными космическими и сопутствующими рассеянными рентгеновскими импульсами. Технический результат: повышение чувствительности изображения исследуемого предмета и снижение дозы облучения материала рентгеновским излучением. 2 ил.

Использование: для досмотра крупногабаритных объектов на таможенных и полицейских пунктах пропуска и контроля с целью обнаружения незаконных скрытых вложений. Сущность изобретения заключается в том, что в классическую конструкцию между поворотным механизмом и автомобильным шасси мобильного инспекционно-досмотрового комплекса (МИДК) дополнительно введен стабилизирующий механизм, состоящий из двух платформ, неподвижной и подвижной (качающейся), связанных между собой посредством стержня. Неподвижная платформа жестко связана с шасси автомобиля, подвижная платформа жестко связана поворотным механизмом, на котором устанавливается источник рентгеновского излучения (ИРИ) со стрелой. Между платформами по углам ставятся попарно пневматические рессоры и амортизаторы. Технический результат: повышение качества рентгеновских изображений объектов контроля за счет стабилизации в горизонтальном положении источника рентгеновского излучения (ИРИ) и П-образных «ворот». 6 ил.

Использование: для бесконтактного рентгеновского досмотра крупногабаритных объектов. Сущность изобретения заключается в том, что в комплексе применяется один источник рентгеновского излучения, который перемещается с изменяющимся шагом по направляющей в форме дуги длиной, равной четверти окружности. Веерообразный пучок лучей пронизывает движущийся с постоянной скоростью объект контроля. После облучения осуществляется регистрация пройденного через объект контроля излучения, преобразование его в цифровые коды с последующей компьютерной обработкой и представление на экране монитора плоских или объемных изображений объектов контроля. Детекторная линейка имеет длину, равную длине дуги сектора, образованного крайними рентгеновскими лучами веерообразного рентгеновского пучка, и свободно перемещается в обе стороны внутри кожуха, имеющего длину, позволяющую перемещаться детекторной линейке в нем так, чтобы регистрировать рентгеновское излучение во всем диапазоне движения источника рентгеновского излучения по направляющей. Концы детекторной линейки с помощью двух гибких тросов, проложенных в соответствующих каналах, механически связаны с обеими сторонами источника рентгеновского излучения, а радиус кожуха равен радиусу направляющей. Технический результат: упрощение детекторной линейки досмотрового комплекса. 3 ил.

Использование: для определения характеристик изделия, изготовленного из композитного материала, имеющего тканое, плетеное или прошитое волоконное упрочнение. Сущность изобретения заключается в том, что осуществляют этап определения с использованием рентгеновской томографии для определения уровней серого по меньшей мере части изделия, за которым следует этап использования упомянутых уровней серого для получения информации, касающейся тканья, посредством различения между по меньшей мере свободной матрицей и прядями волокон, смешанных с матрицей, упомянутые пряди рассматривают как материал, который является однородным. Технический результат: повышение достоверности и полноты определения характеристик изделия, изготовленного из композитного материала, имеющего тканое, плетеное или прошитое волоконное упрочнение, на основе неразрушающей методики. 12 з.п. ф-лы, 6 ил.

Изобретение относится к области проверки безопасности с использованием рентгеновских/гамма-лучей и, более конкретно, к расположению детекторов в системе досмотра рентгеновскими/гамма-лучами. Модуль детектора, расположенный на кронштейне детектора, содержит один или множество блоков детектора, расположенных в рассредоточенной конфигурации, причем каждый из блоков детектора в модуле детектора установлен нацеленным на центр пучка источника лучей, причем угол, под которым установлен каждый из блоков детектора, отличается от других и связан с высотой соответствующего блока детектора на кронштейне детектора таким образом, чтобы гарантировать нацеливание каждого из блоков детектора на центр пучка. Технический результат – повышение качества получаемого изображения. 3 н. и 17 з.п. ф-лы, 5 ил.

Использование: для досмотра транспортного средства. Сущность изобретения заключается в том, что осуществляют следующие шаги: реализацию досмотра с использованием сканирования излучением досматриваемого транспортного средства для получения изображения досматриваемого транспортного средства путем сканирования излучением; извлечение информации о характеристиках транспортного средства; сравнение информации о характеристиках досматриваемого транспортного средства с эталонными характеристиками транспортного средства, запомненными в блоке памяти, выбор эталонной характеристики транспортного средства, наиболее подходящей к информации о характеристиках данного транспортного средства, и обнаружение наиболее подходящего эталонного изображения, полученного путем просвечивания излучением, на основе соответствующего соотношения между эталонными характеристиками транспортного средства и эталонными изображениями, полученными путем просвечивания излучением, запомненными в блоке памяти; определение первой различительной области изображения, полученного при досмотре путем сканирования излучением, исходя из наиболее подходящего эталонного изображения, полученного путем просвечивания излучением, посредством сравнения изображения, полученного при досмотре путем сканирования излучением досматриваемого транспортного средства, с наиболее подходящим эталонным изображением, полученным путем просвечивания излучением. Также раскрыта система досмотра транспортного средства. Технический результат: обеспечение возможности различать в изображении конструкции самого транспортного средства и загруженных товаров. 4 н. и 16 з.п. ф-лы, 9 ил.
Наверх