Способ и устройство для определения режима течения водогазовой смеси

Изобретение относится к нефтегазодобывающей области, в частности к системе поддержания пластового давления, и может быть использовано для контроля качества мелкодисперсной смеси воды и газа при закачке смеси в пласт через систему поддержания пластового давления. Способ определения режима течения водогазовой смеси включает измерение электродвижущей силы в N точках смеси посредством N датчиков. Измерение проводят с частотой не менее 500 Гц, и по значению тока и замеренной электродвижущей силе определяют значения электропроводности водогазовой смеси в месте установки датчиков, которую затем передают в цифровом виде для построения графиков зависимости электропроводности от времени измерения для каждого датчика. Полученные графики сравнивают с экспериментальными графиками, построенными при известных режимах течения для различных потоков, а по результатам сравнения определяют режим течения водогазовой смеси. Устройство для определения режима течения водогазовой смеси содержит измерительную головку 1, внутри которой по всему периметру поперечного сечения расположены N датчиков, подключенные к блоку обработки результатов измерений 5. Технический результат - повышение точности идентификации режима течения потока водогазовой смеси. 2 н.п. ф-лы, 6 ил.

 

Изобретение относится к нефтегазодобывающей области, в частности к системе поддержания пластового давления, и может быть использовано для контроля качества мелкодисперсной смеси воды и газа при закачке смеси в пласт через систему поддержания пластового давления.

Высокие требования к качеству подготовки водогазовой смеси, в частности при транспортировке смеси через нагнетательные скважины в пласт, обуславливаются требованием непрерывной закачки однородной гомогенной мелкодисперсной смеси воды и газа.

Известен способ для определения дисперсности (RU 2191367, МПК G01N 13/00, опубл. 22.10.2002 г.), который предусматривает получение шести групп фотографий в камере, в основании которой лежит правильный шестиугольник со стороной 10 см, а высота камеры зависит от кратности пены. Недостатком данного изобретения является его практическая невозможность использования в условиях нефтяного промысла.

Известен способ определения дисперсности водогазовой смеси (RU 2522486, МПК Е21B 43/22, G01N 13/02, G01N 15/02, опубл. 20.07.2014 г.), который включает в себя получение водогазовой смеси под повышенным давлением, отбор пробы водогазовой смеси и перевод ее в измерительную емкость при том же давлении. Перед проведением измерения определяют объем измерительной емкости, а в процессе измерения непрерывно регистрируют изменение давления свободного газа внутри измерительной емкости и объем свободного газа, соответствующее изменению давления приращение объема свободного газа, определяют общее количество газа, содержащегося в отобранной пробе. После этого определяют зависимость давления от объема свободного газа в емкости, которую затем пересчитывают в зависимость изменения давления от относительной доли текущего значения массы свободного газа, и далее определяют по формуле радиус газовых пузырьков, содержащихся в доле текущего значения массы свободного газа, и вычисляют функцию распределения радиуса пузырьков. Недостатком данного способа является сложность его реализации, связанная с необходимостью отбора проб, транспортировки пробы в измерительную лабораторию и проведения косвенных измерений для оценки диаметров пузырьков газа.

Наиболее близким к предложенному изобретению является способ и устройство для определения режима течения газожидкостного потока (RU 2390766, МПК G01N 27/22, опубл. 27.05.2010 г.). Согласно данному способу осуществляют анализ параметров газожидкостного потока по всему вертикальному сечению трубопровода путем измерения диэлектрических характеристик смеси жидкость-газ с помощью пластинчатых электродов, подключенных к измерительной плате, которая измеряет значение диэлектрической проницаемости в шести горизонтальных слоях газожидкостного потока и передает измеренное значение в цифровом виде на вторичный прибор.

Устройство для реализации способа включает в себя вторичный прибор и размещенную в трубопроводе измерительную головку, внутри которой размещены пластинчатые электроды, подключенные к измерительной плате, которая измеряет значение диэлектрической проницаемости в шести горизонтальных слоях газожидкостного потока и передает измеренное значение в цифровом виде на вторичный прибор.

Недостатком известных способа и устройства является малая информативность, низкая точность определения параметров газожидкостного потока.

Задача, решаемая изобретением, заключается в разработке способа и устройства для определения параметров потока водогазовой смеси на основе распределенных замеров электропроводности, что позволяет идентифицировать режим течения водогазовой смеси.

Технический результат, на достижение которого направлено изобретение, заключается в повышении точности идентификации режима течения потока водогазовой смеси и способности различать следующие режимы течения: мелкодисперсный режим, расслоенный режим и пробковый режим на основе измерения электропроводности смеси по всему поперечному сечению трубопровода, что позволяет повысить качество подготовки водогазовой смеси и обеспечивает бесперебойную закачку однородной мелкодисперсной водогазовой смеси в пласт.

Указанный технический результат в части способа достигается тем, что в способе определения режима течения водогазовой смеси, при котором осуществляют анализ параметров потока одновременно по всему вертикальному сечению трубопровода путем измерения электрических характеристик смеси с помощью датчиков, расположенных внутри трубопровода, измеряют электродвижущую силу в N точках смеси посредством N датчиков в виде пар электрических контактов, установленных по периметру поперечного сечения на внутренней поверхности трубопровода, к которым подводят заданный электрический ток, причем измерение проводят с частотой не менее 500 Гц, и по значению тока и замеренной электродвижущей силе посредством блока обработки результатов измерения определяют значения электропроводности водогазовой смеси в месте установки датчиков, которую затем передают в цифровом виде для построения графиков зависимости электропроводности от времени измерения для каждого датчика, после чего полученные графики сравнивают с экспериментальными графиками, построенными при известных режимах течения для различных потоков, а по результатам сравнения определяют режим течения водогазовой смеси.

Указанный технический результат в части устройства достигается тем, что в устройстве для определения режима течения водогазовой смеси, которое содержит измерительную головку с расположенными внутри нее датчиками электрических характеристик смеси и блок обработки результатов измерения, измерительная головка выполнена в виде участка трубопровода с присоединительными фланцами, а датчики электрических характеристик смеси, выполненные в виде N пар электрических контактов, установлены по периметру поперечного сечения измерительной головки на кольцеобразной электроизоляционной вставке и подключены к блоку обработки результатов измерения.

Изобретение обеспечивает автоматизированное определение режима течения водогазовой смеси посредством непрерывного измерения электропроводности смеси по всему поперечному сечению трубопровода непосредственно в процессе ее закачки через нагнетательную скважину в пласт в режиме реального времени. Измерения ведутся с высокой частотой, в результате чего образуется достоверная последовательность значений электропроводности водогазовой смеси. По данной последовательности значений электропроводности водогазовой смеси проводится анализ, и за счет большой разницы в значениях электропроводности для воды и для газа появляется возможность идентифицировать режим течения.

Оценка электропроводности проводится для каждого из датчиков измерения электрических параметров водогазовой смеси, которые расположены равномерно по всему поперечному сечению трубопровода, в результате чего появляется возможность формировать целостную картину режима течения водогазовой смеси.

Эффективность предложенного решения обусловлена: относительной простотой его реализации, возможностью установки устройства на эксплуатируемый участок трубопровода перед нагнетательной скважиной, что позволяет идентифицировать режим течения водогазовой смеси в режиме реального времени непосредственно перед его транспортировкой в пласт.

Благодаря наличию большого числа датчиков измерения параметров водогазовой смеси, имеется возможность идентификации режима течения водогазовой смеси по всему сечению трубопровода.

Сущность изобретения поясняется чертежами, где на фиг. 1 изображен продольный разрез устройства для определения режима течения водогазовой смеси; на фиг. 2 - сечение А-А фиг. 2; на фиг. 3 приведен график зависимости электропроводности от времени измерения, полученный экспериментально при прохождении через устройство чистой воды; на фиг. 4 - график зависимости электропроводности от времени измерения при прохождении через устройство чистого газа; на фиг. 5 и 6 приведены графики электропроводности, полученные при конкретной реализации изобретения, соответственно в пробковом режиме водогазовой смеси и в мелкодисперсном режиме.

Устройство для определения режима течения водогазовой смеси содержит измерительную головку 1 с присоединительными фланцами 2, посредством которых она крепится на участке трубопровода. Внутри измерительной головки 1 по всему периметру поперечного сечения расположены N датчиков в виде пар электрических контактов 3, которые закреплены на кольцеобразной электроизоляционной вставке 4 и подключены к блоку обработки результатов измерений 5.

Способ осуществляют следующим образом. Через устройство (фиг. 1, 2), врезанное в трубопровод, проходит поток водогазовой смеси. Посредством установленных по всему периметру поперечного сечения датчиков 3, к которым подводится электрический ток, производится непрерывное измерение электродвижущей силы (ЭДС). По заданному току и измеренной ЭДС в блоке обработки результатов измерения 5 определяют электропроводность водогазовой среды в месте установки каждого датчика 3. Измерения производятся с частотой не менее 500 Гц. При меньшей частоте измерения теряется информативность, недостаточно идентифицируются особенности режима течения смеси, связанные с размерами пузырьков.

Данные об электропроводности, преобразованные в блоке 5 в цифровой вид, подвергаются обработке для построения графиков зависимости электропроводности от времени измерения, причем для оптимизации процесса выбираются максимальные и минимальные значения измеренной электропроводности. Такие графики строятся для каждого из датчиков в отдельности. Каждый график анализируют посредством его сравнения с графиками, полученными экспериментально при известных режимах течения водогазовой смеси.

На фиг. 3-6 представлены графики для конкретного примера реализации устройства с 12 датчиками.

Известно, что при прохождении через датчик чистой воды (фиг. 3), значения электропроводности изменяются в пределах от 1400 до 1550 у.е., при прохождении чистого газа (фиг. 4) значения электропроводности изменяются в пределах от 0 до 200 у.е., поэтому при расслоенном режиме течения водогазовой смеси (в случае, когда газ проходит по верхней части трубопровода, а вода по нижней части трубопровода) датчики, расположенные выше границы раздела воды и газа, фиксируют значения электропроводности на уровне 1400-1550 у.е., датчики, расположенные ниже границы раздела газа и воды, фиксируют значения электропроводности на уровне 0-200 у.е. Также известно, что при пробковом режиме течения (фиг. 5) наблюдаются резкие скачки значений электропроводности от 350 до 1500 у.е. Также известно, что при прохождении через датчики водогазовой смеси с дисперсно-пузырьковым режимом течения (фиг. 6) значения электропроводности изменяются без существенных скачков от 600 до 1250 у.е. Это подтверждается представленными чертежами.

Примеры реализации изобретения

Пример 1. В процессе транспортировки водогазовой смеси в пласт с использованием данного изобретения были произведены синхронные замеры ЭДС со всех двенадцати датчиков. По полученным данным с каждого датчика были построены временные зависимости в соответствии с предложенным способом. Полученные зависимости электропроводности представлены на фиг. 5.

По представленному графику можно сделать следующий вывод: через датчики R1 и R12 проходит чистый газ, поскольку электропроводность с помощью этих датчиков фиксируется на уровне, близком к 0 у.е. Через датчики R3-R10 проходит чистая вода, поскольку электропроводность, измеренная на этих датчиках, составляет 1500 у.е. Значение электропроводности смеси в датчиках R2 и R12 изменяется во времени скачкообразно, с большой амплитудой, что означает попеременное прохождение через данные датчики воды и газа и характеризует пробковый режим течения. Таким образом, по результатам анализа графика электропроводности водогазовой смеси можно сделать вывод, что режим течения данной смеси расслоенный в средней части трубопровода, а также пробковый на границе раздела двух сред.

Пример 2. В процессе транспортировки водогазовой смеси в пласт были произведены замеры электропроводности со всех двенадцати датчиков. По полученным данным с каждого датчика были построены временные зависимости в соответствии с предложенным способом. Полученные зависимости электропроводности представлены на фиг. 6.

По представленному графику можно сделать следующий вывод: через датчики R1 и R12 проходит чистый газ, поскольку электропроводность с помощью этих датчиков фиксируется на уровне, близком к 0 у.е. Через датчики R3-R10 проходит чистая вода, поскольку электропроводность, измеренная на этих датчиках, составляет 1500 у.е. Значения электропроводности смеси в датчиках R2 и R11 принимают промежуточные значения от 600 до 1200 у.е., без явных скачков, что свидетельствует о мелкодисперсном режиме течения в области установки данных датчиков.

Таким образом, изобретение позволяет определять режим течения водогазовой смеси в реальном времени непосредственно в процессе ее закачки через нагнетательную скважину в пласт и обеспечивает точную идентификацию потока, что повышает качество подготовки водогазовой смеси до однородного мелкодисперсного состояния для бесперебойной закачки ее в пласт.

1. Способ определения режима течения водогазовой смеси, при котором осуществляют анализ параметров потока одновременно по всему вертикальному сечению трубопровода путем измерения электрических характеристик смеси с помощью датчиков, расположенных внутри трубопровода, отличающийся тем, что измеряют электродвижущую силу в N точках смеси посредством N датчиков в виде пар электрических контактов, установленных по периметру поперечного сечения на внутренней поверхности трубопровода, к которым подводят заданный электрический ток, причем измерение проводят с частотой не менее 500 Гц, и по значению тока и замеренной электродвижущей силе посредством блока обработки результатов измерения определяют значения электропроводности водогазовой смеси в месте установки датчиков, которую затем передают в цифровом виде для построения графиков зависимости электропроводности от времени измерения для каждого датчика, после чего полученные графики сравнивают с экспериментальными графиками, построенными при известных режимах течения для различных потоков, а по результатам сравнения определяют режим течения водогазовой смеси.

2. Устройство для определения режима течения водогазовой смеси, которое содержит измерительную головку с расположенными внутри нее датчиками электрических характеристик смеси и блок обработки результатов измерения, отличающееся тем, что измерительная головка выполнена в виде участка трубопровода с присоединительными фланцами, а датчики электрических характеристик смеси, выполненные в виде N пар электрических контактов, установлены по периметру поперечного сечения измерительной головки на кольцеобразной электроизоляционной вставке и подключены к блоку обработки результатов измерения.



 

Похожие патенты:

Изобретение относится к способам анализа преимущественно жидких углеводородных топлив, содержащих продукты этерификации растительных или животных жиров, или масел, и может быть использовано на автозаправочных станциях и нефтебазах.

Использование: для определения распределения по фазам в многофазных средах. Сущность изобретения заключается в том, что схема включает три расположенные друг над другом плоскости из проволочных электродов, которые натянуты в корпусе сенсора, при этом электроды расположены в каждой плоскости на небольшом расстоянии друг от друга; две из плоскостей электродов изолированы от исследуемой среды с помощью изоляционного слоя и одна из этих двух плоскостей электродов функционирует как плоскость излучения, и другая плоскость функционирует как плоскость-приемник, и обе эти плоскости повернуты относительно друг друга под углом и расположены параллельно; третья плоскость электродов напротив не изолирована и имеет заземление и тем самым находящиеся с ней в контакте высокопроводимые части фазы аналогично заземлены, и при этом схема соединена с электронным измерительным устройством, чтобы измерять электрическую емкость или проницаемость среды в отдельных пунктах пересечения, которые образуются электродами излучения и электродами-приемниками, при этом электронное измерительное устройство загружает последовательно соответствующие электроды излучения переменным напряжением, в то время как другие электроды излучения включаются на массу и электронное измерительное устройство одновременно параллельно на всех электродах-приемниках осуществляет функцию моментального ответа сигнала тока.
Использование: для контроля шероховатости поверхности участков шахтных стволов в соляных породах. Сущность изобретения заключается в том, что в нескольких местах контролируемой поверхности с использованием измерительных инструментов определяют среднюю глубину впадин, затем в этих же местах определяют значение электрической емкости воздушного зазора, образованного между поверхностью шахтного ствола, сложенного соляными породами, и поверхностью датчика прибора для измерения электрической емкости при размещении его на контролируемой поверхности, после этого по полученным данным определяют зависимость величины электрической емкости воздушного зазора в нескольких местах контролируемой поверхности от глубины впадин на этих же участках, далее определяют электрическую емкость на всей боковой поверхности породной стенки в районе пикотажного уплотнения, после чего рассчитывают ее шероховатость.

Использование: для измерения характеристик сверхтвердой поликристаллической структуры. Сущность заключается в том, что устройство включает в себя устройство измерения емкости, имеющее положительный и отрицательный выводы, выщелоченный компонент, содержащий поликристаллическую структуру, первый провод и второй провод, выщелоченный компонент включает в себя первую поверхность и противоположную вторую поверхность, первый провод электрически соединяет положительный вывод с одной из поверхностей выщелоченного компонента, а второй провод электрически соединяет отрицательный вывод с другой поверхностью выщелоченного компонента.

Изобретение относится к датчику для определения содержания газа в двухфазной текучей среде, протекающей в проточной линии. Указанный датчик содержит патрон (10), выполненный с возможностью расположения в проточной линии, в потоке (F) текучей среды.

Изобретение относится к технике измерения влажности газов. Емкостной сенсор влажности содержит чувствительный элемент конденсаторного типа, состоящий из диэлектрического субстрата, нижнего электрода из коррозионно-стойкого металла или сплава, верхнего наноструктурированного электрода из коррозионно-стойкого металла или сплава, проницаемого для паров влаги, и влагочувствительного слоя, имеющего диэлектрическую постоянную, меняющуюся в зависимости от количества паров воды в окружающей среде.

Изобретение относится к синтезу островковых металлических катализаторов и углеродных нанообъектов и может быть использовано в промышленности для производства нанообъектов и наноструктурированных пленок.

Группа изобретений относится к медицине и может быть использована для определения электрической емкости биосенсорной камеры. Для этого инициируют электрохимическую реакцию пробы после ее внесения в биосенсорную камеру, имеющей два электрода, расположенных в камере и соединенных с микроконтроллером.

Использование: для определения объемного содержания воды в нефти. Сущность изобретения заключается в том, что способ основан на определении изменений параметров электромагнитного поля в потоке исследуемой жидкой среды при изменении ее компонентного состава, поток жидкости в зоне измерений разбивают на множество изолированных потоков, каждый из которых взаимодействует с резонатором электромагнитного поля через выделенный участок поверхности контакта, в результате чего в резонаторе формируется электромагнитное поле, обобщающее влияния всех изолированных потоков жидкости, параметры которого принимают за среднее взвешенное для совокупности потоков в изолированных каналах и сопоставляют с соответствующими показателями продукта-аналога, обладающего известными свойствами, которые могут быть эмпирически идентифицированы как доля воды в смеси с углеводородной жидкостью.

Изобретение относится к нефтяной промышленности и может быть использовано при проведении исследований для определения состава продукции отдельных пластов и в целом скважины.

Использование: для контроля толщины осадка в осадкообразующих жидкостях. Сущность изобретения заключается в том, что способ контроля толщины осадка основан на изменении емкости датчика при увеличении толщины осадка и заключается в размещении в сосуде с жидкостью, образующей осадок, предварительно отпарированного датчика контроля толщины осадка, содержащего электроды, выполненные в виде двух плоских гребенок, имеющих зубья и основание в виде плоских прямоугольников, соединенных между собой и нанесенных на плоское диэлектрическое основание, при этом зубья одной гребенки входят в зазоры между зубьями второй гребенки с образованием равномерно чередующихся зубьев и зазоров между ними, причем ширина зазора между зубьями равна ширине зуба, согласно изобретению с двух диаметрально расположенных углов датчика устанавливают дополнительные электроды таким образом, что на каждом упомянутом углу размещается по меньшей мере два плоских Г-образных электрода, причем внутренний Г-образный электрод образуют зубом и основанием соответствующей плоской гребенки, при этом потенциал дополнительных электродов обеспечивают по величине и знаку равным потенциалу вблизи расположенного электрода, образующего гребенку. Технический результат: обеспечение возможности уменьшения влияния емкости других тел на изменение емкости рабочего тела конденсатора, что, в свою очередь, обеспечивает возможность нивелировать краевой эффект и, тем самым, повысить точность измерений. 2 з.п. ф-лы, 4 ил.

Изобретение относится к способам и устройствам определения физических свойств веществ путем электрических измерений. Способ экспрессного контроля теплотехнических качеств материалов строительных конструкций включает в себя операции по измерению емкости, преобразованию ее в пачки импульсов, передаче информации в измерительно-вычислительный блок, вычислению значений искомых параметров по индивидуальным формулам для каждого параметра и регистрации этих значений на индикаторном элементе. При этом вычисление значений искомых параметров выполняют по единой формуле, имеющей вид Yi=ai+bi⋅ΔX+ci⋅(ΔX)2, где Yi - искомый параметр; ai, bi, ci - эмпирические константы, полученные экспериментально и внесенные в постоянную память устройства; ΔХ - разность между числами импульсов в пачках, переданных в измерительно-вычислительный блок до и после установки датчика на поверхность контролируемой конструкции, соответственно, причем число определяемых параметров больше двух (i>2). Техническим результатом является расширение функциональных возможностей, заключающееся в увеличении числа измеряемых параметров, и упрощение вычислений. 6 ил.

Изобретение относится к устройствам для определения влажности зерна. Каждый зерновой бункер содержит блок сбора данных, соединенный с множеством емкостных кабелей для измерения влажности, причем каждый содержит множество сенсорных узлов, расположенных вдоль него с шагом. Каждый сенсорный узел содержит пару проходящих продольно емкостных пластин емкостного датчика измерения влажности, расположенных параллельно и на расстоянии друг от друга с образованием проходящего продольно между емкостными пластинами зазора. В продольном зазоре между емкостными пластинами расположена монтажная плата, содержащая микропроцессор, память и датчик температуры. Наружный корпус обеспечивает герметичный кожух, расположенный вокруг монтажной платы, емкостных пластин и продольного отрезка кабеля для измерения влажности, который проходит через отверстия в каждом продольном торце корпуса и уплотняет их. 2 н. и 18 з.п. ф-лы, 14 ил.

Изобретение относится к устройствам для определения влажности зерна. Каждый зерновой бункер содержит блок сбора данных, соединенный с множеством емкостных кабелей для измерения влажности, причем каждый содержит множество сенсорных узлов, расположенных вдоль него с шагом. Каждый сенсорный узел содержит пару проходящих продольно емкостных пластин емкостного датчика измерения влажности, расположенных параллельно и на расстоянии друг от друга с образованием проходящего продольно между емкостными пластинами зазора. В продольном зазоре между емкостными пластинами расположена монтажная плата, содержащая микропроцессор, память и датчик температуры. Наружный корпус обеспечивает герметичный кожух, расположенный вокруг монтажной платы, емкостных пластин и продольного отрезка кабеля для измерения влажности, который проходит через отверстия в каждом продольном торце корпуса и уплотняет их. 2 н. и 18 з.п. ф-лы, 14 ил.

Изобретение относится к области автомобилестроения, в частности к системам двигателя с датчиком влажности. Представлены способы и системы эксплуатации двигателя с емкостным датчиком влажности. В одном из вариантов осуществляют контроль за изменениями датчика давления и влажности с одновременным направлением газов в воздухозаборник двигателя ниже по потоку от датчика влажности и выше по потоку от компрессора, в случае, если контролируемые изменения датчика давления и влажности меньше соответствующих пороговых значений, осуществляют интрузивное регулирование давления в воздухозаборнике и выполняют индикацию ухудшения работы датчика влажности, когда показания влажности изменяются на величину, которая меньше первого порогового значения, а давление на датчике изменяется на величину, которая больше второго порогового значения. Техническим результатом является повышение точности показаний датчика влажности. 3 н. и 16 з.п. ф-лы, 8 ил.

Изобретение относится к области автомобилестроения, в частности к системам двигателя с датчиком влажности. Представлены способы и системы эксплуатации двигателя с емкостным датчиком влажности. В одном из вариантов осуществляют контроль за изменениями датчика давления и влажности с одновременным направлением газов в воздухозаборник двигателя ниже по потоку от датчика влажности и выше по потоку от компрессора, в случае, если контролируемые изменения датчика давления и влажности меньше соответствующих пороговых значений, осуществляют интрузивное регулирование давления в воздухозаборнике и выполняют индикацию ухудшения работы датчика влажности, когда показания влажности изменяются на величину, которая меньше первого порогового значения, а давление на датчике изменяется на величину, которая больше второго порогового значения. Техническим результатом является повышение точности показаний датчика влажности. 3 н. и 16 з.п. ф-лы, 8 ил.

Группа изобретений относится к области медицинского тестирования, в частности к определению концентрации аналита в образце. Способ определения концентрации аналита в образце включает: введение образца с аналитом в электрохимическую ячейку; определение первой концентрации аналита; определение результата измерения параметра, коррелирующего с физическим свойством электрохимической ячейки; вычисление поправочного коэффициента и определение концентрации аналита с учетом поправочного коэффициента. Электрохимическая ячейка имеет первый и второй электроды, при этом на втором электроде отсутствует покрытие из слоя реагента. При этом определение емкости электрохимической ячейки содержит: приложение первого тестового потенциала Е1 между первым и вторым электродами, приложение второго тестового потенциала Е2 между первым и вторым электродами и обработку части тестовых токов посредством суммирования токов. Также раскрывается вариант способа определения концентрации аналита в образце и варианты электрохимической системы. Группа изобретений обеспечивает сохранение точности определения концентрации аналита во время хранения электрохимической системы. 4 н. и 15 з.п. ф-лы, 9 ил., 4 табл., 5 пр.
Наверх