Экспресс-способ прогнозирования пожароопасных свойств сложных эфиров масляной и пропионовой кислот с использованием молекулярных дескрипторов и искусственных нейронных сетей

Изобретение относится к способу прогнозирования таких пожароопасных свойств, как температуры кипения и температуры вспышки сложных эфиров масляной и пропионовой кислот. Способ характеризуется использованием молекулярных дескрипторов и искусственных нейронных сетей, обеспечивая анализ пожароопасных свойств веществ. Технический результат заключается в упрощении процедуры определения физико-химических свойств. 5 пр., 8 табл.

 

Изобретение относится к области моделирования пожароопасных свойств веществ. Экспресс-способ прогнозирования пожароопасных свойств сложных эфиров масляной и пропионовой кислоты основывается на использовании молекулярных дескрипторов и искусственных нейронных сетей. Технический результат заключается в упрощении процедуры определения физико-химических свойств.

Известен способ прогнозирования пожароопасных свойств веществ на основе данных об углеродной цепи, в соответствии с которым проводится анализ зависимостей температур вспышки, воспламенения, самовоспламенения, температурных и концентрационных пределов от длины углеводородной цепи, позволяющий определить линейные и степенные показатели пожарной опасности. [Алексеев С.Г., Барбин Н.М., Алексеев К.С., Орлов С.А. Связь показателей пожарной опасности с химическим строением. I. Алканолы // Пожаровзрывобезопасность. - 2010. - Т. 19. - №5. - С. 23-30.]

Недостатком известного способа является то, что метод углеродной цепи (МУЦ) позволяет прогнозировать свойства веществ лишь в пределах одного гомологического ряда.

Наиболее близким по прогнозированию пожароопасных свойств веществ и получению значений является дескрипторный способ прогнозирования, который основан на построении моделей, отражающих взаимосвязь структуры молекул химических соединений с их свойствами. В этом методе для описания строения молекулы применяются дескрипторы - показатели, рассчитываемые из структурной формулы (молекулярная масса, количество атомов, частичные заряды на атомах и т.п.) или фрагменты структуры. Для описания строения молекул исследуемых соединений применяются дескрипторы структурной формулы - топологические индексы (индекс Винера W, индекс Рандича χ) и геометрические дескрипторы - площадь поверхности молекулы S, гравитационные индексы G1 (all bonds) и G2 (all pairs) [Калач А.В., Карташова Т.В., Сорокина Ю.Н., Облиенко М.В. Прогнозирование пожароопасных свойств органических соединений с применением дескрипторов // Пожарная безопасность. - 2013. - №1. - С. 70-74].

К недостаткам данного способа относится необходимость составления аппроксимационных уравнений и их дальнейшее решение. Все это влечет за собой большие временные затраты, тем самым накладывая ограничения на определение физико-химических свойств веществ.

Технической задачей изобретения является прогнозирование пожароопасных свойств новых соединений, либо еще не синтезированных, что, в свою очередь, позволит решить главную проблему - обеспечение пожарной безопасности промышленных объектов путем использования веществ и материалов с заранее известными или заданными свойствами.

Поставленная техническая задача достигается тем, что в способе прогнозирования, основанном на использовании молекулярных дескрипторов и искусственных нейронных сетей, вводимая исходная информация об исследуемом веществе представлена в виде молекулярного дескриптора (дескриптор - это финальный результат логических и математических процедур, которые трансформируют химическую информацию, закодированную в рамках символического представления молекулы, в полезное число или результат какого-либо стандартизированного эксперимента), который подвергается обработке искусственными нейронными сетями. Программный продукт совмещает модульное и иконное представление результатов функционирования нейронной сети с реализацией усовершенствованных процедур обучения. При этом объектно-ориентированный дизайн позволяет рассматривать нейронную сеть в виде нейронных компонентов.

Предлагаемый способ реализуется следующим образом:

- сначала выбирают объекты исследования и необходимый параметр для прогнозирования;

- затем, используя молекулярные дескрипторы, обрабатывают в нейропакете КДС 1.0 посредством искусственных нейронных сетей.

Данный способ имеет универсальное применение для прогнозирования пожароопасных свойств веществ, в том числе при получении продуктов с заданными свойствами. Ниже приведен пример реализации предлагаемого способа. В качестве объектов исследования выбраны сложные эфиры масляной и пропионовой кислот.

Некоторые физико-химические свойства исследуемых веществ представлены в табл. 1. [Корольченко А.Я., Корольченко Д.А. Пожаровзрывоопасность веществ и материалов и средства их тушения: справочник. - В 2-х ч. - 2-е изд., перераб. и доп. - М.: Асе. "Пожнаука", 2004. - Ч. I. - 713 с; Корольченко А.Я., Корольченко Д.А. Пожаровзрывоопасность веществ и материалов и средства их тушения: справочник. - В 2-х ч. - 2-е изд., перераб. и доп. - М.: Асе. "Пожнаука", 2004. - Ч.П. - 774 с.]

Пример 1.

В качестве исходных данных использовали молекулярные дескрипторы сложных эфиров масляной и пропионовой кислоты (табл. 2, табл. 3), коррелирующие с температурой вспышки веществ (R2>0,8): топологические индексы - индекс Винера W (Wiener index), индекс Рандича χ (Randic index), геометрические дескрипторы - площадь поверхности молекулы S (Molecular surface area) и гравитационные индексы (Gravitation index) - G1 (all bonds) и G2 (all pairs)

Для проверки работы искусственной сети и верификации данных спрогнозировали температуру кипения исследуемых веществ.

Первоначально осуществляли обучение сети на 70% данных. Затем добавляли к изученным параметрам новые молекулярные дескрипторы и осуществляли прогноз. Способ осуществим. Полученные результаты представлены в табл. 4.

Пример 2.

С целью прогнозирования новых свойств, а именно температуры вспышки сложных эфиров масляной кислоты, повторяли все действия как указано в примере 1. Способ осуществим. Получили значения температуры вспышки (табл. 5)

Пример 3.

Для прогнозирования температуры кипения сложных эфиров пропионовой кислоты повторяли все действия как указано в примере 1. Способ осуществим. Получили значения температуры кипения (табл. 6)

Пример 4.

Для прогнозирования температуры вспышки сложных эфиров пропионовой кислоты повторяли все действия как указано в примере 1. Способ осуществим. Получили значения температуры кипения (табл. 7)

Пример 5.

Для прогнозирования температуры самовоспламенения сложных эфиров пропионовой кислоты повторяли все действия как указано в примере 1. Способ не осуществим. Получили значения температуры самовоспламенения (табл. 8)

Из примеров 1-5 и табл. 4-8 следует, что наибольший эффект по предлагаемому способу прогнозирования температуры кипения и вспышки, включающему удовлетворительную верификацию данных и прогнозирование новых свойств веществ, достигается с применением нейропакета КДС 1.0, реализующий искусственную нейронную сеть с тремя скрытыми слоями и обратным распространением ошибки.

При определении температуры самовоспламенения использование такого типа ИНС требует дополнительной оптимизации, т.к. полученные значения имеют большую погрешность (пример 5).

Таким образом, способ прогнозирования пожароопасных свойств веществ, основанный на использовании молекулярных дескрипторов и искусственных нейронных сетей, позволяет:

- повысить оперативность прогнозирования пожароопасных свойств веществ за счет отсутствия сложных математических вычислений;

- расширить справочную и нормативную литературу новыми физико-химическими свойствами веществ;

- исключить условия образования горючей среды за счет возможности прогнозировать свойства еще не синтезированных веществ;

- исключить условия образования источников зажигания за счет возможности решения спорных вопрос при расчете системы молниезащиты, выборе температурного класса взрывозащищенного электрооборудования;

- оптимизировать расходы на обеспечении пожарной безопасности.

Экспресс-способ прогнозирования таких пожароопасных свойств, как температуры кипения и температуры вспышки сложных эфиров масляной и пропионовой кислот, отличающийся использованием молекулярных дескрипторов и искусственных нейронных сетей, обеспечивая анализ пожароопасных свойств веществ.



 

Похожие патенты:

Изобретения относятся к области генетики и медицины и касаются способов неинвазивного пренатального установления отцовства. В способах применяются генетические измерения наличия однонуклеотидных полиморфизмов, делеций, дупликаций и инверсий нуклеотидных последовательностей, выполненные в плазме, взятой от беременной матери, вместе с аналогичными генетическими измерениями предполагаемого отца для определения того, является или не является предполагаемый отец биологическим отцом плода.

Группа изобретений относится к медицине. Раскрыта система для генерации отчета на основе данных изображения.

Изобретение относится к медицинской технике. Электронное установочное устройство с встраиваемым блоком, монтируемым в розетку, установленную под штукатуркой, из программы для установки под штукатурку для электроустановочной системы для сбора и записи данных о состоянии здоровья, уровне спортивной формы, здоровом образе жизни и состоянии жизненно важных органов содержит беспроводной или связанный по кабелю с применением радиосвязи, инфракрасной техники, USB шины, USB флэш памяти, карт памяти или Ethernet интерфейс сбора данных для сбора данных с устройства для сбора и обработки данных о состоянии здоровья, уровне спортивной формы, здоровом образе жизни и состоянии жизненно важных органов.

Изобретение относится к области популяционной генетики и предназначено для поддержания жизнеспособности популяций животных или растений на урбанизированных территориях.

Группа изобретений относится к планированию выписки пациентов, имеющих определенные заболевания и/или состояния. Оценивают посредством процессора историю болезни пациента, включающую в себя параметры данных пациента для пациента.

Изобретение относится к системам управления работоспособностью автоматизированных технологических объектов газотранспортных систем и может быть использовано на объектах газотранспортных предприятий.

Изобретение относится к каротажу бурового флюида или газовому каротажу в процессе бурения и, более конкретно, к способу и системе для получения характеристик пластовых флюидов в реальном времени.

Игровое устройство, содержащее блок получения положения точки ввода и блок управления первой игрой. Блок получения положения точки ввода получает положение точки ввода, предоставляемой игроком через сенсорную панель, которая может одновременно считывать несколько точек ввода.

Группа изобретений относится к медицине. Предложен постоянный машиночитаемый носитель данных, на котором хранится совокупность команд, исполняемых процессором, при этом совокупность команд приводится в действие для того, чтобы: принимать совокупность данных рассматриваемого пациента, относящихся к рассматриваемому пациенту; сопоставлять совокупность данных рассматриваемого пациента с множеством совокупностей данных предшествующих пациентов, при этом каждая из совокупностей данных предшествующих пациентов соответствует предшествующему пациенту, причем совокупность данных рассматриваемого пациента и множество совокупностей данных предшествующих пациентов представлены в виде совокупности признаков, причем каждый признак представляет собой индивидуальную характеристику, соответствующую каждому пациенту, и качественные признаки представлены на шкале от 0 до 1; выбирать множество совокупностей данных предшествующих пациентов на основе уровня сходства между выбранным множеством совокупностей данных предшествующих пациентов и совокупностью данных рассматриваемого пациента; предоставлять множество выбранных совокупностей данных предшествующих пациентов пользователю; генерировать план лечения на основе соответствующих планов лечения из множества выбранных совокупностей данных предшествующих пациентов; оснащать весовыми коэффициентами каждый из соответствующих планов лечения на основе сходства каждого пациента из множества выбранных предшествующих пациентов с рассматриваемым пациентом; и представлять пользователю посредством устройства отображения графическое сопоставление между совокупностью данных рассматриваемого пациента и каждой из множества совокупностей данных предшествующих пациентов, причем сопоставление содержит указание на степень сходства между признаками рассматриваемого пациента и каждым из множества признаков предшествующих пациентов.

Изобретение относится к вычислительной технике и может быть использовано при моделировании процессов функционирования судоходных шлюзов для различных стратегий движения судов через судоходный шлюз с учетом специфики подготовки отдельных систем шлюза и динамики его применения.

Изобретение относится к смеси алкиловых эфиров жирных кислот для применения в качестве сырья для получения биотоплива, содержащей по меньшей мере 50% масс. .

Изобретение относится к способу получения сложных эфиров жирных кислот (C15-C22) и алифатических спиртов (C1-C5), используемых в качестве регуляторов вязкости поливинилхлоридных композиций и резинотехнических изделий.
Изобретение относится к усовершенствованным способам получения сложных алкиловых эфиров, которые могут быть использованы в качестве дизельного топлива, реакцией переэтерификации или этерификации.

Изобретение относится к производным 3-аминокапролактама формулы (I): где Х представляет собой -CO-R1 или -SO2-R2, R1 представляет собой алкильный (за исключением 5-метилгептанила и 6-метилгептанила, где радикал R1 присоединен к карбонилу в положении 1), галогеналкильный, алкокси (за исключением трет-бутилокси), алкенильный, алкинильный или алкиламино радикал из 4-20 атомов углерода (например, из 5-20 атомов углерода, 8-20 атомов углерода, 9-20 атомов углерода, 10-18 атомов углерода, 12-18 атомов углерода, 13-18 атомов углерода, 14-18 атомов углерода, 13-17 атомов углерода) и R2 представляет собой алкильный радикал из 4-20 атомов углерода (например, из 5-20 атомов углерода, 8-20 атомов углерода, 9-20 атомов углерода, 10-18 атомов углерода, 12-18 атомов углерода, 13-18 атомов углерода, 14-18 атомов углерода, 13-17 атомов углерода); или к его фармацевтически приемлемой соли.

Изобретение относится к усовершенствованному способу получения низших алифатических сложных эфиров, включающему взаимодействие низшего олефина с насыщенной низшей алифатической монокарбоновой кислотой, предпочтительно, в присутствии воды, в паровой фазе в присутствии гетерополикислотного катализатора, характеризующемуся тем, что а) реакцию проводят в нескольких последовательно размещенных реакторах или в одном длинном реакторе с несколькими последовательными слоями гетерополикислотного катализатора и б) исходные реагенты практически очищены от металлических примесей или соединений металлов таким образом, что перед введением в контакт с гетерополикислотным катализатором содержание металлов и/или соединений металлов составляет не более 0,1 ppm.

Изобретение относится к получению метилового эфира фенилзамещенной пропионовой кислоты. .

Изобретение относится к синтетической органической химии, а именно к способу получения сложных эфиров карбоновых кислот общей формулы: где R алкил, арил, замещенный арил, фурил, замещенный фурил R' алкил С1-С4.

Изобретение относится к каталитической органической химии и может найти применение в фармацевтической промышленности для получения препарата "Валидол", который представляет собой 25-30%-ный раствор ментола в ментиловом эфире изовалериановой кислоты (1).

Группа изобретений относится к устройству приема радионавигационных сигналов, многорежимному приемнику для содействия навигации летательного аппарата, гибридной системе содействия навигации. Устройство приема радионавигационных сигналов содержит два модуля GNSS, каждый из которых содержит средство обработки радионавигационных сигналов, средство вычисления данных наведения и средство сравнения данных обоих модулей. Многорежимный приемник для содействия навигации летательного аппарата содержит систему посадки по приборам ILS и устройство приема радионавигационных сигналов. Гибридная система содействия навигации содержит многорежимный приемник с системой посадки по приборам ILS с гибридизационной инерциальной системой GNSS-IRS, где IRC – инерциальная система, а GNSS – средство гибридизации навигационных данных, устройство приема радионавигационных сигналов. Обеспечивается точность приземления и автоматического руления самолета в условиях недостаточной видимости. 3 н. и 11 з.п. ф-лы, 9 ил.
Наверх