Способ электроэрозионной обработки

Изобретение относится к области машиностроения и может быть использовано при проектировании технологической оснастки для электроэрозионной обработки поверхностей. В способе электроэрозионную обработку осуществляют при вращении двух соединенных с токоподводами электродов, один из электродов является заготовкой, а второй - инструментом с подведенным к нему трубопроводом для подачи диэлектрической жидкости. Для вращения электродов используют соосно установленные с ними приводы. Электродам обеспечивают возможность крутильных колебаний, соединяя их с неподвижной частью технологической системы упругими элементами. На приводах создают импульсы крутящего момента, а регулировкой их мощности и частоты следования устанавливают амплитуду крутильных колебаний электродов не менее одного полного оборота. В способе используют токоподводы и трубопровод для подачи диэлектрической жидкости, изготовленные в виде упругих элементов, совершающих крутильные колебания вместе с электродами, к которым их присоединяют при помощи неподвижных соединений. Технический результат: упрощение электроэрозионной обработки с вращающимися электродами путем упрощения конструкции и повышения надежности технологической оснастки. 1 ил.

 

Предлагаемое изобретение относится к области машиностроения и может быть использовано при проектировании технологической оснастки для электроэрозионной обработки поверхностей.

Электроэрозионная обработка (ЭЭО) основана на удалении припуска с заготовки путем эрозии металла под воздействием последовательных электрических импульсов. Электрические импульсы генерируются в межэлектродном промежутке (МЭП), т.е. в ограниченном пространстве между двумя электродами, одним из которых является заготовка, а вторым - электрод-инструмент (ЭИ). ЭЭО обычно ведут в среде диэлектрической жидкости, в которую погружают заготовку и ЭИ. Существенным недостатком ЭЭО является то, что при обработке происходит эрозия не только заготовки, но и самого ЭИ, что приводит к погрешностям размера и формы обрабатываемой поверхности.

Известны способы электроэрозионной обработки некоторых типов поверхностей, например, плоских, цилиндрических или сферических, при реализации которых эрозия ЭИ не влияет на форму поверхности. Дополнительным условием для этого является организация дополнительных формообразующих движений, в частности вращение ЭИ [Шадуя В.Л. Современные методы обработки материалов в машиностроении: учеб. пособие / В.Л. Шадуя. - Минск: Техноперспектива, 2008, стр. 150-155, рис. 4.9г, е]. При работе вращающимся ЭИ во многих случаях ЭЭО можно вести без погружения электродов в диэлектрическую жидкость, обеспечивая заполнение МЭП принудительной подачей жидкости в полость ЭИ. Для вращения ЭИ требуются достаточно сложные дополнительные устройства - головки. Так, шлифовальная головка для ЭЭО [Размерная электрическая обработка металлов: Учеб. пособие для студентов вузов / Б.А. Артамонов, А.Л. Вишницкий, Ю.С. Волков, А.В. Глазков; Под ред. А.В. Глазков. - М.: Высш. школа, 1978. - стр. 189-190, рис 113.], помимо электропривода содержит токосъемное устройство для передачи электрической энергии на вращающиеся электроды. Диэлектрическую жидкость от подводящего трубопровода на вращающийся ЭИ в таких устройствах приходится подавать при помощи специальных сальниковых устройств с герметизирующими уплотнениями.

Известны также способы электроэрозионной обработки, в которых для достижения точности формы обрабатываемых поверхностей во вращательное движение приводится не только ЭИ, но и заготовка. Примером такого устройства является принятое в качестве прототипа техническое решение, в котором для электроэрозионного формообразования сферических поверхностей во вращение приводятся и электрод-инструмент (ЭИ), и заготовка [а.с. №442909 СССР, с приоритетом от 1974 г.]. Для вращения заготовки требуется еще одно вращательное устройство. Кроме того, помимо токосъемника и сальникового устройства на приводе ЭИ, в этом случае для передачи электрических импульсов на вращающуюся заготовку необходимо использовать еще одно токосъемное устройство. Наличие токосъемных устройств и герметизирующих сальниковых уплотнений усложняет конструкцию технологической оснастки и повышает ее стоимость, из-за трения между движущимися частями происходит изнашивание устройств и снижается их надежность.

Техническим результатом предлагаемого технического решения является упрощение конструкции и повышение надежности технологической оснастки, используемой при электроэрозионной обработке с вращением электродов путем замены изнашивающихся подвижных соединений неподвижными. Для достижения результата используется такое положительное качество ЭЭО с вращающимися электродами как индифферентность процесса обработки по отношению к направлению и частоте вращения электродов.

Технический результат достигается тем, что электроэрозионную обработку производят при вращении двух соединенных с токоподводами электродов, одним из электродов является заготовка, а вторым - инструмент с подведенным к нему трубопроводом для подачи диэлектрической жидкости. Для вращения электродов используются соосно установленные с ними приводы. Электродам обеспечивают возможность крутильных колебаний, соединяя их с неподвижными корпусами приводов упругими элементами. На приводах создают импульсы крутящего момента, регулировкой мощности и частоты следования которых устанавливают амплитуду крутильных колебаний электродов не менее одного полного оборота. Токоподводы и трубопровод для подачи диэлектрической жидкости также изготавливают в виде упругих элементов, совершающих крутильные колебания вместе с электродами, к которым их присоединяют при помощи неподвижных соединений.

Величина амплитуды крутильных колебаний самостоятельного влияния на ход ЭЭО не оказывает, но для создания условий правильного профилирования поверхностей ЭИ и заготовки, она должна быть не менее одного полного оборота. Частота крутильных колебаний электродов также не оказывает самостоятельного влияния на ЭЭО. Поэтому для создания оптимального режима обработки, регулировкой частоты импульсов крутящего момента обеспечивают их соответствие собственной частоте крутильных колебаний электродов, зависящей от инерционных характеристик вращающихся частей и жесткости упругих элементов, в этом случае для создания необходимой амплитуды крутильных колебаний необходима наименьшая мощность приводов. При работе в режиме крутильных колебаний среднее положение электродов неизменно, а угловые отклонения от него незначительны. Это исключает необходимость токосъемных устройств и герметизирующего сальникового уплотнения и позволяет прикрепить к электродам токоподводы и трубопровод надежным неподвижным соединением. Для этого токоподводы и трубопровод выполняют гибкими, способными участвовать в крутильных колебаниях, не препятствуя им.

На фиг. 1 показана схема реализации способа электроэрозионной обработки вращающейся заготовки вращающимся трубчатым электродом-инструментом, где:

1 - электрод-инструмент (ЭИ);

2 - привод;

3 - упругий элемент;

4 - токоподводы

5 - трубопровод для подвода диэлектрической жидкости;

6 – заготовка.

Электроэрозионную обработку производят следующим образом. Электрод-инструмент 1 присоединяют к приводу 2 и упругому элементу 3, выполненному, например, в виде цилиндрической пружины. Упругий элемент 3 ограничивает круговое перемещение ЭИ 1, сопротивляясь ему крутящим моментом, возрастающим пропорционально углу поворота и стремящимся вернуть ЭИ 1 в исходное положение. Аналогично соединяют с таким же приводом и упругим элементом заготовку 6 (на фиг. 1 не показаны).

На приводах 2 формируются импульсы крутящего момента, чередующиеся с некоторой частотой. Во время действия единичного импульса крутящего момента ротор привода 2 вместе с ЭИ 1 поворачивается из исходного положения в одном из направлений на определенный угол, ограничиваемый упругим элементом 3. После завершения импульса крутящего момента под воздействием упругого элемента 3 ротор не только возвращается в исходное положение, но по инерции смещается на некоторый угол в обратном направлении. Под воздействием очередного и последующих импульсов крутящего момента рассмотренный цикл повторяется, т.е. ЭИ 1 приходит в режим устойчивых крутильных колебаний. Возможна подача на привод реверсируемых импульсов крутящего момента, что на режим ЭЭО принципиально не влияет.

Регулировкой частоты следования импульсов крутящего момента добиваются близости ее к частоте собственных крутильных колебаний системы, т.е. приводят ее в состояние резонанса, а регулировкой мощности единичных импульсов обеспечивают оптимальную амплитуду колебаний не менее одного полного оборота электродов относительно среднего положения в каждую сторону.

Напряжение для ЭЭО подводят к ЭИ 1 и заготовке 6 при помощи токоподводов 4, которые выполняют достаточно гибкими, чтобы не препятствовать совершению электродами крутильных колебаний.

Для подвода диэлектрической жидкости к входному отверстию в ЭИ 1 при помощи неподвижного соединения герметично прикрепляют трубопровод 5, которому также обеспечивают достаточную гибкость для участия в крутильных колебаниях. Подвод к заготовке 6 диэлектрической жидкости обычно не требуется, но в случае необходимости она может быть подведена аналогичным образом.

Предложенное техническое решение обеспечивает достижение необходимого технического результата, так как существенно упрощает конструкцию оснастки, позволяет исключить сложные подвижные соединения в виде токосъемников и сальникового уплотнительного устройства, работающие в режиме трения скольжения. Отсутствие подвижных соединений, кроме того, повышает надежность технологической оснастки, используемой при электроэрозионной обработке с вращением электродов.

Способ электроэрозионной обработки, включающий вращение двух соединенных с токоподводами электродов, одним из которых является заготовка, а вторым - инструмент с подведенным к нему трубопроводом для подачи диэлектрической жидкости, при использовании для вращения электродов располагаемых соосно с ними приводов, отличающийся тем, что обеспечивают возможность крутильных колебаний электродов путем соединения их с неподвижными корпусами приводов упругими элементами, при этом на валах приводов создают импульсы крутящего момента, регулировкой мощности и частоты следования которых устанавливают амплитуду крутильных колебаний электродов не менее одного полного оборота, причем используют токоподводы и трубопровод для подачи диэлектрической жидкости, изготовленные в виде упругих элементов, совершающих крутильные колебания вместе с электродами, к которым их присоединяют при помощи неподвижных соединений.



 

Похожие патенты:

Изобретение относится к области машиностроения и может быть использовано при разработке технологических процессов и проектировании технологической оснастки для электроэрозионного формообразования сферических поверхностей.

Изобретение относится к электрохимической обработке металлов и сплавов и предназначено для обработки ступенчатых валов. Устройство содержит диэлектрический корпус, внутренняя часть которого выполнена в виде призмы, в каждой плоскости которой встроены регулируемые опоры осевой фиксации заготовки, оси которых пересекаются в центре оси заготовки и расположены друг относительно друга под углом 90°.

Изобретение относится к машиностроению, в частности к технологическому инструменту для осуществления электрофизической обработки внутренних поверхностей деталей машин и механизмов, выполненных в форме цилиндра, в частности внутренней поверхности цилиндров двигателей внутреннего сгорания, корпусов гидроцилиндров, посадочных отверстий для подшипников и т.п.

Изобретение относится к электроэрозионному формообразованию прецизионных сферических поверхностей. Электроэрозионную обработку осуществляют вращающимся электрод-инструментом, подаваемым продольно вдоль оси, пересекающейся с осью вращающейся заготовки в центре сферической поверхности, причем используют трубчатый электрод-инструмент, выполненный из двух соосных частей, каждая из которых разделена на равное, не менее трех, число сегментов, равномерно распределенных по окружности, обеспечивающий возможность осевого смещения одной части относительно другой.

Изобретение относится к области металлообработки и может быть использовано для электрохимической обработки крупногабаритных тонкостенных деталей типа тел вращения.

Изобретение относится к электродуговому нанесению покрытий и может быть использовано в машиностроении при производстве износостойкого режущего инструмента для обработки металлов, сплавов и других высокопрочных материалов.

Изобретение относится к области металлообработки, а именно к оборудованию для электрохимической обработки крупногабаритных тонкостенных деталей типа тел вращения.
Изобретение относится к области механической обработки листового, рулонного или слоистого материала, в частности к средствам механической деформации без удаления материала, а именно к конструкции валков для ротационного тиснения, которые могут быть использованы при изготовлении упаковочных материалов, обоев и др.

Изобретение относится к области металлообработки деталей машин, в частности к способу электромеханической обработки, и может найти применение в различных отраслях машиностроения.

Изобретение относится к машиностроению и может быть использовано для повышения качества деталей машин при изготовлении шпоночных пазов на наружных и внутренних поверхностях.

Изобретение относится к области машиностроения и может быть использовано для упрочнения поверхностей металлических деталей, например пар трения. Способ эрозионно-лучевого упрочнения поверхности металлической детали включает одновременное электроэрозионное нанесение с помощью электрода-инструмента на поверхность детали гранул износостойкого сплава, нанесение микропорошка вязкого материала слоем, толщина которого не превышает размеров упомянутых гранул, и оплавление микропорошка путем лучевого нагрева.

Изобретение относится к области порошковой металлургии, в частности к получению порошка титана, и может быть использовано в авиа- и ракетостроении, в кораблестроении.
Изобретение относится к области машиностроения, а именно к способам нанесения покрытий методами электроискрового легирования. Способ формирования износостойкого слоя на поверхности деталей из титана или сплавов на его основе включает проведение процесса методом электроискрового легирования на различных режимах, при этом на обрабатываемую поверхность упрочняемой детали предварительно наносят слой материала на основе углерода, который для адгезии к поверхности детали наносят в виде краски или пасты толщиной не менее 0,01 мм.

Изобретение относится к области электрофизической и электрохимической обработки, в частности к электроэрозионному легированию. Способ оребрения наружной поверхности стальной трубы теплообменного аппарата включает формирование на трубе поверхностных слоев путем электроэрозионного легирования поверхности стальной трубы электродом из меди, бронзы, стали или графита, при котором задают шероховатость легированной поверхности от 1 до 200 мкм изменением энергии разряда в диапазоне Wp = 0,01-6,8 Дж.

Изобретение относится к области машиностроения, в частности к электрофизическим методам обработки закаленных стальных деталей электроискровым легированием. В способе электроискрового легирования закаленных стальных деталей осуществляют перенос легирующего материала электрода-инструмента на поверхность детали под действием импульсных электроискровых разрядов между подключенными к источнику постоянного электрического тока в качестве анода электродом-инструментом, а в качестве катода деталью.

Изобретение относится к области электрофизической и электрохимической обработки, в частности к электроэрозионному легированию вкладышей подшипников скольжения.

Изобретение относится к области машиностроения и может быть использовано при изготовлении запорных устройств, например, для нефтегазовых магистралей. Способ обработки сопрягаемых поверхностей запорного устройства, выполненного в виде расположенного между щеками шибера, включает обработку шибера в рабочем положении низковольтными импульсами переменного тока в воздушной среде с возвратно-поступательным перемещением шибера относительно щек и вибрацией щек относительно шибера, при этом наибольшие амплитуды импульсов переменного тока совмещают с периодом сближения упомянутых сопрягаемых поверхностей и обработку ведут до достижения стабильной величины тока.

Изобретение относится к машиностроению, а именно к нанесению покрытий. Способ электроискрового нанесения покрытия на деталь включает контактную обработку поверхности детали, подключенной к отрицательному полюсу источника тока, вращающимся электродом, подключенным к положительному полюсу источника тока.

Изобретение относится к электроэрозионной обработке. Устройство 100 для электроэрозионного объемного копирования содержит бак 110 для размещения текучей среды 112 и электроды 104, 106, устанавливаемые в баке 110 и имеющие формы 120, задающие формы участкам 122, 162 заготовки 102.

Изобретение относится к области электрофизической и электрохимической обработки, в частности к электроэрозионному легированию, и может быть использовано для обработки подшипниковых шеек валов, контактирующих с вкладышами подшипников скольжения.
Наверх