Способ ремонтно-изоляционных работ в скважине

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для ремонтно-изоляционных работ в скважинах для ликвидации межпластовых перетоков флюидов, ограничения водопритоков и повышения эффективности работы скважин. Технический результат - повышение герметизирующих свойств состава для ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах, сокращение времени образования тампонирующего вещества при заполнении каналов перетока в скважине. По способу приготавливают рабочий раствор для закачивания его в изолируемый интервал с концентрацией (15,67-25,03)% плотностью (1031-1054) кг/м3. Для этого смешивают технический оксид кальция и техническую воду. Получают известковое молоко. Количество известкового молока зависит от приемистости изолируемого интервала. В качестве изолируемого интервала используют заколонное пространство скважины. После закачивания осуществляют барботирование рабочего раствора углекислым газом до образования на наружной поверхности колонны карбонатной корки и проявления эффекта твердения за счет взаимного сцепления и срастания образующихся субмикрокристаллических частичек гидроксида кальция. Необходимое количество углекислого газа определяют стехиометрически по химическому уравнению. 1 з.п. ф-лы.

 

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для ремонтно-изоляционных работ (РИР) в скважинах по ликвидации межпластовых перетоков флюидов, ограничению водопритоков и повышению эффективности работы скважин.

Известны составы, применяемые для исправительного цементирования в нефтегазовых скважинах (например, при изоляции зон поглощения бурового раствора), содержащие глинопорошок, тампонажный цемент, ускорители схватывания и техническую воду (Булатов А.И. Буровые и тампонажные растворы для строительства нефтяных и газовых скважин: учебное пособие для вузов. - Краснодар: «Просвещение-Юг», 2011. - С. 431).

Известны составы, включающие цемент, гельцемент, а также гипсоцементные (Булатов А.И. Тампонажные материалы и технология цементирования скважин. М., Недра, 1991 г., С. 151.) и алебастроцементные смеси, приготавливаемые на основе дизельного топлива (Поляков Л.П., Разуваев В.Д., Голиков А.Е. Новый способ изоляции зон поглощения промывочной жидкости при бурении скважин. Научно-технический сборник «Бурение», №9, 1965 г., С. 8-11; Поляков Л.П., Разуваев В.Д., Новикова Э.Б. Технико-экономическая оценка эффективности способов борьбы с поглощениями. Научно - технический сборник «Бурение», №6, 1967 г., С. 34-35) и технической воды (для инициации их отверждения в заколонном пространстве скважин), а также соляро-бентонитовые (СБС) и конденсато-бентонитовые (КБС) смеси, содержащие 25-30% технической бентонитовой глины, 70-75% углеводородной фракции (дизельное топливо - солярка или газовый конденсат) и техническую воду (для инициации набухания глины в заколонном пространстве скважин) (Басарыгин Ю.М., Макаренко П.П., Мавромати В.Д. Ремонт газовых скважин. М.: Издательство «Недра», 1998 г., С. 130-131).

Основным недостатком ремонтных составов указанных выше является низкая эффективность РИР, обусловленная их низкой прокачиваемостью при заполнении каналов перетока с малой приемистостью (кольцевых зазоров между обсадными колоннами и цементным камнем, трещин в цементном камне и т.д.) из-за наличия крупнодисперсной твердой фазы.

Поэтому перед их закачкой в скважину оказывается необходимым прокачка буферных пачек жидкости с высокой проникающей способностью на углеводородной или водной основе с добавками поверхностно-активных веществ, способствующих лучшему проникновению указанных ремонтных составов по каналам перетока.

Однако опыт применения указанных ремонтных составов при проведении РИР свидетельствует о непродолжительности достигаемого эффекта, поскольку межколонные давления появляются спустя несколько месяцев после проведения РИР из-за малых объемов закачки, что неминуемо вызывает возникновение заколонных перетоков флюидов; потери углеводородного сырья, а также загрязнение недр и источников водоснабжения, что способствует ухудшению экологической обстановки и другие негативные последствия.

Известен способ приготовления тампонажного состава для РИР (Патент №2485285) включающий смешение ацетоноформальдегидной смолы с едким натром и водой, при этом предварительно готовят водный раствор едкого натра путем перемешивания едкого натра с водой, делят водный раствор едкого натра на две равные порции, вводят в ацетоноформальдегидную смолу первую порцию водного раствора едкого натра, перемешивают полученную смесь до получения однородной массы, выдерживают 60-120 мин, затем при перемешивании вводят вторую порцию водного раствора едкого натра при следующем соотношении реагентов, мас. %, ацетоноформальдегидная смола 80-95; едкий натр 1-2; вода остальное.

Недостатком данного способа является длительность срока отверждения тампонажного состава, а также ряд трудностей при приготовлении состава на промысле, а именно необходимость нагрева ацетоноформальдегидной смолы до 50-60°С при приготовлении состава. Таким образом, ввиду многоступенчатости работы, велики затраты времени и требуется наличие большого количества техники и оборудования.

Прототипом изобретения является способ изоляции цементосиликатными растворами (Патент №2519262 RU), включающий нагнетание в прискважинную зону пласта цементного раствора с ускорителем схватывания, при этом тампонирование осуществляют циклической последовательно-чередующейся закачкой в скважину растворов силиката натрия (массовая до-ля от 20 до 45%, силикатный модуль более 2,5) с наполнителем - древесной мукой (массовая доля не более 3%) и цемента, затворенного на водном растворе силиката натрия (массовая доля не более 5%) в соотношении к цементу равным 0,5, причем растворы силиката натрия и цемента при закачке разделяют буфером - пресной водой в объеме от 10 до 15% от объема технологических труб, спущенных в скважину, а объемное соотношение цементного раствора к раствору силиката натрия составляет от 0,3 до 0,7.

Недостатками данного способа является: сложность его реализации, выраженная в трудоемкости; длительность процесса схватывания раствора при проведении РИР, а также небольшая продолжительность межремонтного периода, обусловленная низкой проникающей способностью тампонирующего состава в изолируемые каналы перетоков с малой раскрытостью в заколонном пространстве скважин.

Задачей изобретения является повышение эффективности РИР и увеличение продолжительности межремонтного периода скважин при низкой приемистости в зоне изоляционных работ.

Техническим результатом изобретения является повышение герметизирующих свойств состава для ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах, сокращение времени образования тампонирующего вещества при заполнении каналов перетока в скважине.

Технический результат достигается тем, что способ ремонтно-изоляционных работ в скважине, включающий приготовление рабочего раствора, закачивание его в изолируемый интервал, при этом рабочий раствор готовят путем смешивания технического оксида кальция и воды для получения известкового молока с концентрацией 15,1% - 25,03% плотностью 1031 кг/м3 - 1054 кг\м3, количество которого зависит от приемистости изолируемого интервала, в качестве изолируемого интервала используют заколонное пространство скважины, после закачивания осуществляют барботирование рабочего раствора углекислым газом до образования на наружной поверхности колонны карбонатной корки и проявления эффекта твердения за счет взаимного сцепления и срастания образующихся субмикрокристаллических частичек гидрооксида кальция, при этом необходимое количество углекислого газа определяют стехиометрически по уравнению (1)

Повышение герметизирующих свойств состава для ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах достигается тем, что в результате протекания химической реакции оксида кальция и технической воды, получившей в промышленности название «гашение извести», образуется сильное основание - щелочь, представляющая собой тонкодисперстный гидроксид кальция Са(ОН)2, характеризующийся как водный раствор твердых частичек размером не более 5-20 мкм (А.В. Волженский. Минеральные вяжущие вещества. 4-е изд. Стройиздат, 1986. - с. 41) и обладающая высокой проникающей способностью. Кроме того, в предлагаемом рабочем растворе исключена крупнодисперсная твердая фаза (песок, техническая бетонитовая глина, цемент и т.п.), что особенно важно при проведении РИР по восстановлению герметичности заколонного пространства в зонах с малой приемистостью в газовых скважинах.

Выбор концентрации Са(ОН)2 и плотности рабочего раствора определяется приемистостью каналов негерметичности в заколонном пространстве скважин. Рабочий раствор Са(ОН)2 с концентрацией 15,1% - 25,03% и плотностью 1031 кг/м3 - 1054 кг/м3 глубоко проникает в зазоры между обсадными колоннами и цементным камнем, а также в трещины, поры и другие дефекты, образующие переточные каналы за обсадными колоннами.

В результате закачки углекислого газа и его барботирования через пачку гидроксида кальция образуется твердое вещество - карбонат кальция CaCO3 согласно уравнения (1).

Из производственного опыта известно, что СаСО3 обладает хорошей адгезией к металлу труб и образует на их наружной поверхности плотное карбонатное покрытие - корку с антикоррозионными свойствами, что способствует улучшению герметизации заколонного пространства и увеличению продолжительности межремонтного периода скважин.

Эффект твердения обусловливается взаимным сцеплением и срастанием образующихся субмикроскопических частичек гидроксида кальция. От них зависит физико-механическая прочность и герметичность всей системы, состоящей из гидратирующегося вяжущего, воды, заполнителя и порового пространства.

Для получения твердого осадка при нормальных условиях (давление 1 атм., температура 20 С°) необходимы эквивалентные количества компонентов, то есть на 1 моль Са(ОН)2 необходимо 22,4 л CO2. Большее количество углекислого газа нецелесообразно, поскольку при дальнейшей обработке углекислым газом образуется кислая соль - гидрокарбонат кальция и выпавший осадок СаСО3 растворится.

Сокращение времени проведения ремонтно-изоляционных работ (РИР) по герметизации каналов перетока флюидов за обсадными колоннами в газовых скважинах и нефтяных скважинах с большим газовым фактором достигается использованием быстрогасящейся негашеной извести, время гашения которой не более 8-10 минут.

Способ РИР в скважине реализуется следующим образом.

Пример 1. Для проведения РИР необходимо подготовить скважину в соответствии с действующими нормативными документами и едиными правилами безопасности в нефтегазовой промышленности, для этого определяют приемистость скважины закачкой технологической жидкости в объеме, превышающем внутренний объем насосно-компрессорных труб при давлении закачки, не превышающем 70% от допустимого внутреннего давления на трубы обсадной колонны. Затем подготавливают оборудование, доставляют необходимые компоненты и приготовляют рабочий раствор.

В зависимости от определенной приемистости скважины, готовят необходимый объем рабочего раствора исходя из следующего расхода компонентов на 1 м3. Так, для приготовления 1 м3 рабочего раствора Ca(ОН)2 с концентрацией 15,1% и плотностью 1031 кг/м3 смешивают 130,7 кг технического 95% СаО и 869,3 литров технической воды. (Плотность известковых растворов и процентное содержание СаО определяют согласно СНИП 290-74 - Инструкция по приготовлению и применению строительных растворов; Л.Д. Глузман, И.И. Эдельман Лабораторный контроль коксохимического производства, Издательство «Металлургия», Москва, 1968, С. 250).

Рабочий раствор перемешивают в цементно-смесительных машинах (непосредственно на скважине перед закачкой в интервал негерметичности заколонного пространства) в течении 8-10 минут. Необходимый объем приготовленного рабочего раствора Ca(ОН), закачивают в негерметичное заколонное пространство скважины. После закачивания осуществляют его барботирование в изолируемом интервале углекислым газом, при этом необходимое количество углекислого газа определяют стехиометрически по уравнению (1):

В соответствии с уравнением (1), для получения твердого осадка CaCO3 на 1 моль Са(ОН)2 необходимо 22,4 л CO2. Соответственно для барботирования 1 м3 рабочего раствора Са(ОН)2 с концентрацией 15,1% и плотностью 1031 кг/м3, содержащего 164,1 кг Са(ОН)2 необходимо 53,34 л CO2.

Пример 2. Для проведения РИР необходимо подготовить скважину в соответствии с действующими нормативными документами и едиными правилами безопасности в нефтегазовой промышленности, для этого определяют приемистость скважины закачкой технологической жидкости в объеме, превышающем внутренний объем насосно-компрессорных труб при давлении закачки, не превышающем 70% от допустимого внутреннего давления на трубы обсадной колонны. Затем подготавливают оборудование, доставляют необходимые компоненты и приготовляют рабочий раствор. В зависимости от определенной приемистости скважины готовят необходимый объем рабочего раствора исходя из следующего расхода компонентов на 1 м3. Для приготовления 1 м3 рабочего раствора Са(ОН)2 с концентрацией 25,03% и плотностью 1054 кг/м3 смешивают 231,68 кг технического 95% СаО и 768,68 л технической воды. (Плотность известковых растворов и процентное содержание СаО определяют согласно СНИП 290-74 - Инструкция по приготовлению и применению строительных растворов; Л.Д. Глузман, И.И. Эдельман Лабораторный контроль коксохимического производства, Издательство «Металлургия», Москва, 1968, С. 250). Рабочий раствор перемешивают в цементно-смесительных машинах (непосредственно на скважине перед закачкой в интервал негерметичности заколонного пространства) в течение 8-10 минут. Необходимый объем приготовленного рабочего раствора Са(ОН)2 закачивают в негерметичное заколонное пространство скважины. После закачивания осуществляют его барботирование в изолируемом интервале углекислым газом, при этом необходимое количество углекислого газа определяют стехиометрически по уравнению (1): В соответствии с уравнением (1), для получения твердого осадка СаСО3 на 1 моль Са(ОН)2 необходимо 22,4 л CO2. Соответственно для барботирования 1 м3 рабочего раствора Са(ОН)2 с концентрацией 25,03% и плотностью 1054 кг/м3, содержащего 290,85 кг Са(ОН)2 необходимо 60,63 л CO2.

1. Способ ремонтно-изоляционных работ в скважине, включающий приготовление рабочего раствора, закачивание его в изолируемый интервал, отличающийся тем, что рабочий раствор готовят с концентрацией (15,67-25,03)% плотностью (1031–1054) кг/м3 путем смешивания технического оксида кальция и технической воды для получения известкового молока, количество которого зависит от приемистости изолируемого интервала, в качестве изолируемого интервала используют заколонное пространство скважины, после закачивания осуществляют барботирование рабочего раствора углекислым газом до образования на наружной поверхности колонны карбонатной корки и проявления эффекта твердения за счет взаимного сцепления и срастания образующихся субмикрокристаллических частичек гидроксида кальция, при этом необходимое количество углекислого газа определяют стехиометрически по уравнению

Ca(OH)2 + CO2 = CaCO3 ↓ + H2O.

2. Способ ремонтно-изоляционных работ в скважине по п. 1, отличающийся тем, что смешивание технического оксида кальция и воды проводят в течение 8-10 мин до полного гашения оксида кальция.



 

Похожие патенты:

Группа изобретений относится к пакеру-подвеске хвостовика гидромеханической цементируемой, узлу якоря пакера-подвески хвостовика, муфте якоря пакера-подвески хвостовика, якорному элементу пакера-подвески хвостовика.

Группа изобретений относится к пакеру-подвеске хвостовика гидромеханической цементируемой, гидравлическому приводу якоря пакера-подвески хвостовика, поршню гидравлического привода якоря пакера-подвески хвостовика, узлу гидравлического привода якоря пакера-подвески хвостовика.

Группа изобретений относится к области направленного бурения при разработке нефтяных месторождений и, в частности, к направленному бурению хвостовиком и его цементированию с использованием извлекаемой компоновки низа бурильной колонны.

Группа изобретений относится к области строительства скважин и, в частности, к обеспечению целостности ствола скважины в сложных геологических условиях с вращением обсадной колонны/хвостовика во время бурения, а также других устройств и приемов, обеспечивающих улучшения цементирования обсадных колонн или хвостовиков в скважине в соединении с буровым долотом.

Изобретение относится к строительству скважин и может быть использовано при оборудовании скважин направлением в многолетнемерзлых породах с высокой льдистостью. Технический результат – повышение качества крепления скважины и обеспечение ее эксплуатационной надежности.

Изобретение относится к нефтегазодобывающей промышленности, а именно к области строительства нефтяных и газовых скважин, к устройствам для спуска, крепления и цементирования потайных колонн в боковых стволах многозабойных скважин, с одновременной эксплуатацией двух или более стволов.

Изобретение относится к области нефтегазодобывающей промышленности, в частности к ремонту нагнетательной скважины путем спуска дополнительной колонны труб и ее последующего цементирования.
Изобретение относится к области строительства и ремонта нефтегазобывающих скважин и, в частности, к области восстановления герметичности эксплуатационной колонны скважины.

Группа изобретений относится к области цементирования скважин и, в частности, к оконным узлам, применяемым во время выполнения операций цементирования в скважинной системе.

Изобретение относится к строительству глубоких нефтяных и газовых скважин и, в частности, к способам вскрытия высоконапорных продуктивных пластов и крепления интервалов вскрытия обсадной колонной.

Группа изобретений относиться к флюидам для скважинных операций. Технический результат – повышение скорости бурения, снижение скручивающих и осевых нагрузок на бурильную колону, возможность применения в горизонтальных скважинах.

Изобретение относится к бурению нефтяных, газовых и геолого-разведочных скважин, а именно к смазочным добавкам для буровых растворов. Технический результат - сохранение высоких показателей смазочных свойств, а также повышение противоприхватных свойств на границе «металл - глинистая корка» и «металл - металл» в пресных и минерализованных буровых растворах.

Изобретение относится к нефтедобывающей промышленности, в частности к способам укрепления призабойной зоны скважины и предотвращения выноса породы. Способ укрепления призабойной зоны скважины включает последовательную закачку закрепляющего состава и отвердителя.

Настоящее изобретение относится к усилителям действия разжижителей, содержащих соединения железа, и способам их применения при гидроразрыве подземного пласта. Способ гидроразрыва подземного пласта - ГРПП, через который проходит ствол скважины, включающий стадию введения в ствол скважины жидкости для обработки скважины под давлением и со скоростью потока, которые достаточны для разрыва подземного пласта, где жидкость для обработки скважины содержит воду, по меньшей мере, один акриламидсодержащий полимер - ААСП, одну или более соль двухвалентного железа и одно или более соединений-усилителей, где количество указанной соли составляет приблизительно от 0,001 до 0,05% от объема жидкости для обработки скважины, и одно или более соединений-усилителей выбраны из группы, состоящей из мочевины, этилендиаминтетрауксусной кислоты - ЭДТА, солей ЭДТА, лимонной кислоты, аминотрикарбоновой кислоты и ее солей, полифосфонатных и полифосфатных соединений, борной кислоты и ее солей, карбонатных солей щелочных металлов, диэтилентриаминпентауксусной кислоты - ДТПА, гуминовых кислот и лигносульфатов.
Изобретение относится к способу получения концентрированной депрессорной суспензии и ингибитора асфальтосмолопарафиновых отложений. Способ включает смешение полиальфаолефина в растворе спирта, в качестве которого используют бутанол и/или гексанол, при добавлении стабилизатора анионного или катионного поверхностно-активного вещества, представляющего собой бензалкониум хлорид или лаурилсульфат натрия.

Изобретение относится к устройствам для обработки призабойной зоны скважины за счет разрыва пласта газообразными продуктами сгорания твердых топлив и может быть использовано для повышения продуктивности нефтяных скважин.

Группа изобретений относится к нефтегазодобывающей промышленности. Технический результат - оптимальные структурно-реологические свойства бурового раствора для применения на сероводородсодержащих нефтяных, газовых и газоконденсатных месторождениях с низкими и аномально низкими пластовыми давлениями, предотвращение поглощений бурового раствора при проведении внутрискважинных работ, морозостойкость, нейтрализация сероводорода, минимизация негативной экологической нагрузки на окружающую среду.

Изобретение относится к нефтяной и газовой промышленности. Технический результат - сохранение фильтрационно-емкостных свойств и профилактика осложнений при бурении и первичном вскрытии продуктивных пластов в условиях, характеризующихся высокими забойными температурами и аномально высокими пластовыми давлениями.

Изобретение относится к нефтегазодобывающей промышленности, в частности к буровым растворам, промывочным и технологическим жидкостям, используемым при заканчивании и капитальном ремонте нефтяных и газовых скважин с низкими пластовыми давлениями, с пластовой температурой до 110°С, со средними и низкопроницаемыми коллекторами на сероводородсодержащих месторождениях.

Изобретение относится к повторному гидроразрыву подземного пласта. Способ проведения повторного гидравлического разрыва подземного пласта, в котором проходит скважина, имеющая ряд зон, включает: а) проведение гидравлического разрыва продуктивной зоны внутри подземного пласта, б) изолирование продуктивной зоны, подвергнутой гидравлическому разрыву, от второй зоны в скважине посредством закачки в скважину негидратированной борированной галактоманнановой камеди и сшивающего агента, где до перехода в сшитое состояние негидратированная борированная галактоманнановая камедь содержит борат-ионы, и формирования загущенного временного уплотнения посредством взаимодействия указанной камеди и сшивающего агента, тем самым изолируя указанную продуктивную зону от второй зоны, в) деструкцию загущенного указанного временного уплотнения посредством закачки в скважину агента, снижающего вязкость, и снижения вязкости загущенного временного уплотнения посредством этого агента, закачиваемого в скважину под давлением, недостаточным для создания или расширения трещины в подземном пласте, и г) проведение повторного гидравлического разрыва указанной изолированной зоны после деструкции загущенного временного уплотнения посредством закачки в скважину текучей среды для гидравлического разрыва пласта под давлением, достаточным для создания или расширения трещины в изолированной продуктивной зоне, подвергнутой гидравлическому разрыву.

Изобретение относится к извлечению битума из подземных локаций. Технический результат - более низкая концентрация и более высокая термальная стабильность используемых добавок, отсутствие загрязнения почвы. Способ извлечения битума из подземных локаций включает закачивание паровой смеси в подземную локацию, содержащую битум, причем паровая смесь содержит эфир алкиленгликоля и пар, извлечение по меньшей мере части битума из подземной локации на поверхность, где эфир алкиленгликоля отличен от эфира аминогликоля и где эфир алкиленгликоля имеет следующую химическую формулу: H(OR1)nOR2, где R1 представляет собой алкиленовый остаток, OR1 представляет собой алкиленгликолевый остаток, R2 представляет собой алкил или арил, OR2 представляет собой эфирный фрагмент алкила или эфирный фрагмент арила и n - целое число от одного до менее десяти, каждый алкиленовый остаток имеет от более двух до менее восьми углеродов, и когда n больше одного, R1 в каждом алкиленгликолевом остатке может быть одинаковым или различным. 10 з.п. ф-лы, 1 ил., 3 табл., 7 пр.
Наверх