Солнечный коллектор

Изобретение относится к солнечной энергетике, в частности к солнечным коллекторам, и предназначено для преобразования солнечной энергии в тепловую в системах отопления и горячего водоснабжения как для бытовых потребителей, так и для сельскохозяйственных объектов. Солнечный коллектор содержит теплоизолирующий корпус 1, секционный с каналами 2 для циркуляции теплоносителя 3 радиатор-конвектор 4, на котором технологично образованы ребра-концентраторы 5 с нанесением селективного поглощающего покрытия черного цвета, два двухкамерных стеклопакета 6 с селективным покрытием 7, емкости 8 с фазопереходным веществом, горизонтальные и вертикальные тепловоспринимающие распорки и заглушки, при этом на внешнем ребре-концентраторе 5, расположенном под вертикальными тепловоспринимающими распорками, установлены симметрично магнитострикционные излучатели 11 с частотой колебаний не более 21,3 кГц и амплитудой колебаний 0,09 мм, соединенные с ультразвуковым генератором 12, а внутренняя поверхность вертикальных частей каналов 2 радиатора-конвектора 4 для циркуляции теплоносителя снабжена спиралеобразными ребрами. Техническим результатом является повышение эффективности работы солнечного коллектора за счет снижения тепловых потерь. 3 ил.

 

Изобретение относится к солнечной энергетике, в частности, к солнечным коллекторам, и предназначена для преобразования солнечной энергии в тепловую в системах отопления и горячего водоснабжения как для бытовых потребителей, так и для сельскохозяйственных объектов.

Известен солнечный коллектор (патент RU №2367851 F24J 2/24, 2008 год) содержащий теплопоглощающую панель лучистотрубной конструкции, образованную из отдельных параллельных элементов, состоящих из трубы с теплоносителем, соединенной с теплопоглощающей поверхностью элемента, которая снабжена с нижней стороны магнитострикционным излучателем с частотой колебаний не более 21,3 кГц и амплитудой колебаний 0,09 мм, подключенным к ультразвуковому генератору.

Также известен солнечный коллектор (патент RU №2550289 F24J 2/24, 2013 г. - прототип) содержащий теплоизолирующий корпус, секционный с каналами для циркуляции теплоносителя радиатор-конвектор, на котором технологично образованы ребра-концентраторы с нанесением селективного поглощающего покрытия черного цвета, два двухкамерных стеклопакета с селективным покрытием, емкости с фазопереходным веществом, горизонтальные и вертикальные тепловоспринимающие распорки и заглушки.

Известный солнечный коллектор позволяет достаточно эффективно использовать солнечную энергию, однако наблюдаются тепловые потери на 30-40% за счет отложения осадка и накипи на стенках канала, по которому циркулирует теплоноситель и недостаточного теплообмена между теплоносителем и стенками канала.

Техническим результатом является повышение эффективности работы солнечного коллектора за счет обеспечения максимального снижения тепловых потерь.

Технический результат достигается тем, что в солнечном коллекторе, содержащем теплоизолирующий корпус, секционный с каналами для циркуляции теплоносителя радиатор-конвектор, на котором технологично образованы ребра-концентраторы с нанесением селективного поглощающего покрытия черного цвета, два двухкамерных стеклопакета с селективным покрытием, емкости с фазопереходным веществом, горизонтальные и вертикальные тепловоспринимающие распорки и заглушки, согласно изобретению на внешнем ребре-концентратора, расположенного под вертикальными тепловоспринимающими распорками установлены симметрично магнитострик-ционные излучатели с частотой колебаний не более 21,3 кГц и амплитудой колебаний 0,09 мм соединенные с ультразвуковым генератором, при этом внутренняя поверхность вертикальных частей каналов радиатора-конвектора для циркуляции теплоносителя снабжена спиралеобразными ребрами.

Новизна предложенного технического решения заключается в том, что повышение эффективности работы солнечного коллектора решается за счет использования вибрационного воздействия поверхности коллектора достаточно широким спектром частот и амплитуд, создаваемых магнитострикционным преобразователем ультразвукового генератора и наличия спиралеобразных ребер на внутренней поверхности вертикальных стен канала.

Микровибрации при частоте 21,3 кГц и амплитуде колебаний 0,09 мм определены экспериментальным путем коллектора позволяют ламинарный слой нагреваемого теплоносителя перевести в турбулентный, что в свою очередь позволяет увеличить теплоотдачу от коллектора к теплоносителю см. Г. Шлихтинг «Теория пограничного слоя». - М.: изд. «Наука», 1974 г. стр. 48-51. Предложенное техническое решение позволяет также получить существенный экономический эффект за счет уменьшения потребления электроэнергии, в частности за счет исключения циркуляционного насоса. Это обстоятельство особенно важно, учитывая тенденцию к непрерывному росту цен на энергоносители.

Предложенное техническое решение поясняется следующими чертежами: - на фиг. 1 показана конструкция солнечного коллектора; на фиг. 2 показан поперечный разрез А-А фиг. 1; - на фиг. 3 показан продольный разрез Б-Б фиг. 1

Солнечный коллектор, содержит теплоизолирующий корпус 1, секционный с каналами 2 для циркуляции теплоносителя 3 радиатор-конвектор 4, на котором технологично образованы ребра-концентраторы 5 с нанесением селективного поглощающего покрытия черного цвета, два двухкамерных стеклопакета 6 с селективным покрытием 7, емкости 8 с фазопереходным веществом, горизонтальные и вертикальные тепловоспринимающие распорки 9, заглушки 10. На внешнем ребре-концентратора 5, расположенного под вертикальными тепловоспринимающими распорками 9 установлены симметрично магнитострикционные излучатели 11 с частотой колебаний не более 21,3 кГц и амплитудой колебаний 0,09 мм соединенные с ультразвуковым генератором 12, при этом внутренняя поверхность вертикальных частей каналов 2 радиатора-конвектора 4 для циркуляции теплоносителя снабжена спиралеобразными ребрами 13.

Солнечный коллектор работает следующим образом.

Солнечные лучи, падающие под разными углами и проникающие через двухкамерный стеклопакет 6 с селективным покрытием 7, которое полностью пропускает солнечное излучение, но не дает ему вернуться обратно в окружающую среду, тем самым снижает тепловые потери в солнечном коллекторе, попадают на поверхность радиатора-конвектора 4, выполненного например, из алюминия, меди или биметалла, на которых технологично образованы ребра - концентраторы 5, поверхность которых покрыта селективным покрытием, после чего в процессе многократных отражений на поверхностях ребер концентратора 5 энергетически важная составляющая солнечного луча полностью поглощается. Часть солнечных лучей попадает на емкости 8 с фазопереходным веществом, находящиеся между двумя передними и задними ребрами - концентратора 5, тем самым закрывающие зазоры, образованные при жестком соединении секций между собой. Фазопереходное вещество за период солнечного излучения накапливает в себе полезную энергию, которую впоследствии отдает через стенки канала 2 теплоносителю 3 в часы, когда солнце теряет свою активность.

Солнце-воспринимающая поверхность солнечного коллектора нагревается и начинает равномерно распределять тепловые массы по всему солнечному коллектору, тем самым эффективно передавая его теплоносителю 3. Благодаря рационально выбранному направлению теплоносителя 3, при помощи заглушек 9, будет выполняться быстрый и энергосберегающий водоотбор, а также появится возможность создавать повышенное давление столба жидкости. Использование распорок 7 не только помогает эффективно жестко разместить секции радиатор-конвектора 5 внутри теплоизолирующего корпуса 1, но и дает дополнительную активную площадь для теплообмена. Теплоизолирующий корпус 1, защищает от потерь тепла в окружающую среду и повышает механическую прочность. Для исключения отложения осадка и накипи используют магнитострикционные излучатели 11, которые подключены к ультразвуковому генератору 12. Расположение магнитострикционных излучателей 11 симметрично на внешнем ребре-концентратора 5, под вертикальными тепловоспринимающими распорками 7 обеспечивает равномерное распределение микровибраций по всей высоте радиатора-конвектора 4. В результате воздействия микровибраций происходит турбулизация потока теплоносителя (жидкости) и не образуется накипь на стенках канала, что приводит к улучшению теплопередачи от коллектора теплоносителю. Кроме того, наличие спиралеобразных ребер 13 на внутренней поверхности вертикальных частей каналов 2 радиатора-конвектора 4 способствует снижению внутреннего трения при турболизации потока в теплоносителе, что улучшает его циркуляцию, а также увеличению теплопередачи за счет выступающих частей ребер в полость канала.

Предложенное техническое решение позволяет максимально использовать солнечную энергию и повысить эффективность работы солнечного коллектора.

Солнечный коллектор, содержащий теплоизолирующий корпус, секционный с каналами для циркуляции теплоносителя радиатор-конвектор, на котором технологично образованы ребра-концентраторы с нанесением селективного поглощающего покрытия черного цвета, два двухкамерных стеклопакета с селективным покрытием, емкости с фазопереходным веществом, горизонтальные и вертикальные тепловоспринимающие распорки, заглушки, отличающийся тем, что на внешнем ребре-концентраторе, расположенном под вертикальными тепловоспринимающими распорками, установлены симметрично магнитострикционные излучатели с частотой колебаний не более 21,3 кГц и амплитудой колебаний 0,09 мм, соединенные с ультразвуковым генератором, при этом внутренняя поверхность вертикальных частей каналов радиатора-конвектора для циркуляции теплоносителя снабжена спиралеобразными ребрами.



 

Похожие патенты:

Изобретение относится к способам использования извлеченного геотермального тепла для охлаждения грунтов вокруг тоннелей метрополитена и трансформирования его для нагрева воды в системе горячего водоснабжения.

Изобретение относится к гелиотехнике и предназначено для круглосуточного нагрева воздуха до заданной температуры солнечной энергией с целью использования его в бытовых условиях, например в сушильных установках или для обогрева помещений.

Изобретение относится к гелиотехнике и предназначено для нагревания воды за счет преобразования солнечной энергии в тепловую и может быть использовано в биотехнологической, пищевой, сельскохозяйственной и других отраслях промышленности, а также в быту.

Солнечное оптоволоконное осветительное устройство содержит концентратор, оптоволоконный жгут, рассеивающую линзу. Концентратор выполнен неподвижным с оптическим способом наведения светового потока на вход оптоволоконного жгута и содержит цилиндрическую сужающую линзу Френеля на внутренней поверхности прозрачного куполообразного корпуса, в фокусе которой расположен второй прозрачный купол с цилиндрической расширяющей линзой Френеля, на третьем внутреннем прозрачном куполе имеются несимметричные цилиндрические полосковые линзы Френеля, плоскость фокусировки которых перпендикулярна плоскости фокусировки двух предыдущих линз.

Изобретение относится к солнечной энергетике и может быть использовано для снабжения потребителей электроэнергией и горячей водой. Комбинированная гелиоколлекторная установка содержит корпус с крышкой, прозрачное покрытие, теплоизолирующий слой, защитный кожух.

Изобретение относится к области солнечной энергетики, а именно к устройствам, использующим солнечное тепло с оптическими элементами для концентрации энергии. Тепловой коллектор может быть использован в системах отопления, горячего водоснабжения, приточно-вытяжной вентиляции, для преобразования тепловой энергии в другие виды энергии.

Изобретение относится к плавучим средствам навигационного оборудования, в частности к бую, предназначенному для ограждения фарватеров и отдельных навигационных опасностей на судоходных акваториях, а также для проведения сейсмических и экологических наблюдений.

Изобретение относится к солнечной энергетике, используемой для преобразования энергии солнечного излучения в тепловую энергию, в дальнейшем используемую для нагрева воды.

Изобретение относится к области экологически чистой энергии и, в частности, к многофункциональной солнечной энергетической системе, в которой используется солнечная энергия.
Изобретение относится к солнечному коллектору для временного хранения тепла, полученного в любое время от солнечного излучения. Солнечный коллектор 1 для временного хранения тепла, полученного от солнечного излучения, содержит проводник 8, 9 излучения, оптические средства 7, предназначенные для концентрирования солнечного излучения на первом конце проводника излучения.

В предложенной теплогенерирующей системе (1) осуществляется управление избыточной теплоотдачей для увеличения числа мест протекания реакции тепловыделения в ячейках (16) теплогенерирующих элементов, которые генерируют избыточное тепло с помощью реакции тепловыделения, из числа множества ячеек (16) теплогенерирующих элементов, и в результате этого, даже если множество ячеек (16) теплогенерирующих элементов включает ячейку (16) теплогенерирующего элемента, которая не генерирует избыточное тепло вследствие недостаточной реакции тепловыделения, соответствующее количество тепла может быть рекуперировано на выходе путем выполнения компенсации с использованием другой ячейки (16) теплогенерирующего элемента, в которой реакция тепловыделения определенно протекает. Следовательно, можно стабильно получать тепло при использовании ячеек (16) теплогенерирующих элементов, которые генерируют тепло с использованием водород-аккумулирующего металла или водород-аккумулирующего сплава. 5 н. и 6 з.п. ф-лы, 8 ил.

Изобретение относится к гелиотехнике. Концентратор солнечного излучения выполнен в виде тела вращения, внутренняя поверхность которого является отражающей поверхностью, и расположенного под ним приемника излучения. Рабочая поверхность приемника излучения находится в фокальной плоскости концентратора. Ось вращения концентратора проходит через центр фокального пятна концентратора, перпендикулярно к нему. Степень концентрации в каждой точке фокального пятна одинакова. Отражающая поверхность состоит из нескольких расположенных друг на друге частей, каждая из которых представляет собой тело вращения. Осью вращения всех частей является ось вращения концентратора. Каждая часть отражающей поверхности обеспечивает однородную засветку всего фокального пятна. Количество отраженных лучей, приходящих в каждую точку фокального пятна, равно количеству частей отражающей поверхности. Части отражающей поверхности гладко сливаются друг с другом. Профиль отражающей поверхности описывается предложенной системой уравнений, учитывающей координаты точки падения луча на отражающую поверхность, координату точки падения отраженного луча на фокальное пятно, степень концентрации излучения в фокальном пятне концентратора, обеспечиваемую каждой частью отражающей поверхности, суммарную степень концентрации, количество частей отражающей поверхности, радиусы наименьшего и наибольшего сечений каждой части отражающей поверхности, перпендикулярных оси вращения концентратора. Технический результат заключается в уменьшении отражения излучения от рабочей поверхности и повышении эффективности преобразования. 1 табл., 3 ил.

Изобретение относится к испарителю для получения пара с помощью магмы вулкана и способу его работы. Испаритель содержит корпус, воронку для отвода осадка, снабженную системой датчиков уровня наполнения, канал подачи воды, канал отвода пара, при этом нижняя часть корпуса, воронка и часть канала подачи воды перед входом в корпус выполнены с возможностью электрического подогрева. Способ включает подачу воды в по меньшей мере один испаритель, корпус которого размещен под наклоном к горизонту в кратере действующего вулкана непосредственно над магмой, контроль процесса удаления осадка, подогрев нижней части испарителя и/или воронки в случае отсутствия или замедления процесса удаления осадка, подогрев подаваемой воды непосредственно перед входом в испаритель в случае замедления скорости ее подачи и отвод полученного пара. Изобретение направлено на повышение надежности и стабильности процесса генерации пара с помощью магмы вулкана. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к солнечной энергетике, в частности к солнечным коллекторам, и предназначено для преобразования солнечной энергии в тепловую в системах отопления и горячего водоснабжения как для бытовых потребителей, так и для сельскохозяйственных объектов. Солнечный коллектор содержит теплоизолирующий корпус 1, секционный с каналами 2 для циркуляции теплоносителя 3 радиатор-конвектор 4, на котором технологично образованы ребра-концентраторы 5 с нанесением селективного поглощающего покрытия черного цвета, два двухкамерных стеклопакета 6 с селективным покрытием 7, емкости 8 с фазопереходным веществом, горизонтальные и вертикальные тепловоспринимающие распорки и заглушки, при этом на внешнем ребре-концентраторе 5, расположенном под вертикальными тепловоспринимающими распорками, установлены симметрично магнитострикционные излучатели 11 с частотой колебаний не более 21,3 кГц и амплитудой колебаний 0,09 мм, соединенные с ультразвуковым генератором 12, а внутренняя поверхность вертикальных частей каналов 2 радиатора-конвектора 4 для циркуляции теплоносителя снабжена спиралеобразными ребрами. Техническим результатом является повышение эффективности работы солнечного коллектора за счет снижения тепловых потерь. 3 ил.

Наверх