Гелиоэнергетическая система



Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
Гелиоэнергетическая система
H01L31/054 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с
F24S23/70 - Отопление; вентиляция; печи и плиты (тепловая защита растений в садах или лесах A01G 13/06; хлебопекарные печи и устройства A21B; устройства для варки вообще, за исключением кухонных плит A47J; ковка B21J, B21K; отопительные и вентиляционные устройства для транспортных средств, см. соответствующие подклассы классов B60-B64; устройства для зажигания топлива вообще F23; сушка F26B; промышленные печи вообще F27; электронагревательные элементы и устройства H05B)

Владельцы патента RU 2687888:

Семенов Дахир Курманбиевич (RU)

Изобретение относится к солнечной энергетике. Изобретение представляет собой гелиоэнергетическую систему, включающую не менее чем один стационарно установленный модуль параболического солнечного коллектора с опорными элементами либо солнечными батареями на плоских держателях, средствами поворота, солнечными отражателями на дугообразных держателях каркаса и преобразователем солнечного излучения, причем солнечные отражатели либо солнечные батареи на плоских держателях выполнены гибкими в виде продольно расположенных относительно держателей каркаса и параллельно друг другу лент, при этом каркас снабжен приспособлениями для натяжения лент. Изобретение способствует упрощению гелиоэнергетической системы с использованием гибких полимерных лент в качестве светоотражательной или фоточувствительной поверхности при уменьшении веса и транспортных размеров солнечных модулей и повышении их эксплуатационных характеристик. 2 н. и 4 з.п. ф-лы, 14 ил.

 

Изобретение относится к солнечной энергетике и может найти применение в солнечных системах для преобразования солнечной световой энергии в тепловую или в электрическую. Наиболее перспективным является применение изобретения в масштабных тепловых и электростанциях.

Из уровня техники известен космический аппарат, содержащий пленочный солнечный парус, управляющий отсек с источником напряжения, коммутатором и лебедками, связанными тягами с парусом, элероны на периферии паруса, соединенные через коммутатор с источником напряжения, при этом парус выполнен в виде многоугольника, образованного параллельными лентами, соединенными (склеенными, сваренными) между собой боковыми кромками, при этом ленты выполнены из гибкого и легкого материала с высокой светоотражающей способностью (см. патент на изобретение RU 2188145, оп. в 2002 году). Благодаря гибкости лент паруса, его доставляют на орбиту в сложенном состоянии в виде гофра, а разворачивают уже на орбите. Поскольку ленты соединены между собой, они образуют в разложенном состоянии цельную светоотражающую плоскость. Такими же недостатками обладает солнечный концентратор для космического аппарата, содержащий совокупность фотовольтаических элементов, объединенных с образованием прямоугольной панели солнечной батареи для выработки электрической энергии, некоторое число панелей рефлекторов, которые перед запуском космического аппарата находятся в сложенном положении, и средства выпуска панелей рефлекторов после запуска космического аппарата для установки указанных панелей рефлекторов с обеих длинных сторон панели солнечной батареи в виде корыта с получением заданного коэффициента концентрации света (см. патент на изобретение RU 2192070, оп. в 2002 году).

Известен гелиоэнергетический модуль, состоящий из протяженного фотоэлектрического преобразователя, плоских зеркальных фацет и несущей конструкции, при этом плоские зеркальные фацеты установлены на несущей конструкции, посадочные места которых выполнены по прямолинейной образующей опорного параболического цилиндра и представляют собой грани, нанесенные по этому опорному параболическому цилиндру параллельно его оси, причем каждая грань в сечении, перпендикулярном оси опорного параболического цилиндра, является хордой образующей параболы этого цилиндра, а середины всех хорд образуют геометрическое место точек, являющееся направляющей параболой внутреннего параболического цилиндра, параллельного опорному и смещенному вдоль оси направляющей параболы этого опорного цилиндра в направлении ее фокуса, при этом ось протяженного фотоэлектрического преобразователя расположена в фокусе внутреннего параболического цилиндра (см. патент на изобретение RU 2188364, оп. в 2002 году). Этот модуль предназначен для использования в солнечных электростанциях. Расположенные о параболе отдельные плоские фацеты не создают эффекта парусности, но обладают большим весом, сложны в транспортировке и монтаже, требуют ухода и регулярного мытья светоотражающей поверхности.

Известно устройство для концентрации солнечного излучения в абсорбере, содержащем надувную подушку концентратора, которая содержит элемент покрывающей пленки, содержащий светопроницаемое входное окно для соединения в солнечном излучении и отражательную пленку, с образованием двух полых пространств для концентрации солнечного излучения в абсорбере, содержащего поворотное устройство, посредством которого можно повернуть шарнирную подушку, в частности, вокруг ее продольной оси (см. US 2017336100, оп. в 2017 году). В этом устройстве использованы дешевые полимерные материалы, однако его конструкция с надувными подушками оказалась на практике крайне неудобной в эксплуатации.

Известна солнечная энергетическая установка, содержащая фотоэлектрический солнечный модуль (ФСМ) с системой жидкостного охлаждения, плоский зеркальный концентратор, теплообменник с системой циркуляции жидкости, однонаправленные клапаны, систему слежения за солнцем, параболический зеркальный концентратор (см. патент на изобретение RU 2583317, оп. в 2016 году). Это устройство относится к комбинированным концентраторным солнечным энергетическим установкам с охлаждаемыми двухсторонними фотоэлектрическими солнечными модулями для преобразования солнечной энергии в электрическую и тепловую. Применение такого сложного тяжелого устройства особенно неоправданно в промышленных масштабах.

Наиболее близким техническим решением к заявленному изобретению является гелиоэнергетическая система - аппарат, использующий солнечную энергию для подогрева и выработки электроэнергии, включающий стационарно установленный модуль с опорными элементами, средствами поворота модуля, включающего солнечные отражатели солнечного концентратора на дугообразных держателях каркаса и преобразователь солнечного излучения, а также солнечные батареи на плоских держателях (см. патент на изобретение RU 2476782, оп. в 2013 году,). Эта комбинированная гелиоэнергетическая система предназначена для нагревания и аккумулирования жидкостей для различных применений и для выработки электрической энергии с высокими энергетическими КПД. Криволинейные панели солнечного концентратора изготовлены из отражающего металлического или неметаллического материала типа алюминия. Такое выполнение панелей не только очень дорого, но и обладает повышенной материалоемкостью, высокими транспортировочными трудозатратами и весом. Такие концентраторы нуждаются в регулярном мытье и очищении от пыли. У цельных модулей высокая парусность, что приводит к необходимости упрочнения и утяжеления несущей конструкции.

Технической проблемой является необходимость снижения веса конструкции гелиоэнергетической системы и уменьшения транспортировочных габаритов.

Настоящее изобретение направлено на решение технической задачи упрощения конструкции гелиоэнергетической установки при значительном снижении стоимости ее изготовления и улучшении эксплуатационных характеристик.

Решение поставленной технической задачи достигается тем, что в гелиоэнергетической системе, включающей не менее, чем один стационарно установленный модуль параболического солнечного коллектора с опорными элементами, средствами поворота, солнечными отражателями на дугообразных держателях каркаса и преобразователем солнечного излучения, солнечные отражатели выполнены гибкими в виде продольно расположенных относительно дугообразных держателей каркаса и параллельно друг другу лент, при этом каркас снабжен приспособлениями для натяжения лент. Приспособления для натяжения лент выполнены в виде креплений на их концах с винтовой нарезкой, амортизаторами и гайками, причем каркас снабжен дугообразными кронштейнами с прорезями для размещения этих креплений. Каркас снабжен дугообразными кронштейнами с установленными на них натяжными роликами, а приспособление для натяжения лент выполнено в виде креплений на их концах с натяжными роликами, связанными канатом с натяжными роликами дугообразных кронштейнов.

А также тем, что в гелиоэнергетической системе, включающей не менее, чем один стационарно установленный модуль с опорными элементами, средствами поворота каркаса с солнечными батареями на плоских держателях и преобразователем солнечного излучения, солнечные батареи выполнены гибкими в виде продольно расположенных относительно плоских держателей каркаса и параллельно друг другу лент, при этом каркас снабжен приспособлениями для натяжения лент. Приспособления для натяжения лент выполнены в виде креплений на их концах с винтовой нарезкой, амортизаторами и гайками, причем каркас снабжен плоскими кронштейнами с прорезями для размещения этих креплений. Каркас снабжен плоскими кронштейнами с установленными на них натяжными роликами, а приспособление для натяжения лент выполнено в виде креплений на их концах с натяжными роликами, связанными канатом с натяжными роликами плоских кронштейнов.

Изобретение поясняется чертежами.

На фиг. 1 изображен общий вид одного протяженного модуля гелиоэнергетической установки по преобразованию солнечной энергии в тепловую с одной степенью свободы, в изометрии. На фиг. 2 - то же, фрагмент вида сзади на боковую опору. На фиг. 3 - то же, фрагмент вида спереди на боковую опору. На фиг. 4 - то же, вид сбоку. На фиг. 5 - то же, фрагмент натяжного устройства. На фиг. 6 - гелиоэнергетическая система по преобразованию солнечной энергии в тепловую из протяженных модулей с одной степенью свободы. На фиг. 7 изображен общий вид одного компактного модуля гелиоэнергетической установки по преобразованию солнечной энергии в тепловую с двумя степенями свободы, в изометрии. На фиг. 8 - то же, вид сзади. На фиг. 9 - то же, вид сбоку. На фиг. 10 - то же, фрагмент натяжного устройства. На фиг. 11 - гелиоэнергетическая система по преобразованию солнечной энергии в тепловую из компактных модулей с двумя степенями свободы. На фиг. 12 изображен общий вид одного компактного модуля гелиоэнергетической установки по преобразованию солнечной энергии в электрическую с двумя степенями свободы, в изометрии. На фиг. 13 - то же, вид сзади. На фиг. 14 - гелиоэнергетическая система по преобразованию солнечной энергии в электрическую из компактных модулей с двумя степенями свободы, расположенная на плоту.

Гелиоэнергетическая система (см. фиг. 1-14) предназначена для преобразования солнечной световой энергии в тепловую (фиг. 1-11) или в электрическую (фиг. 12-14).

Изображенная на фиг. 1-6 гелиоэнергетическая система включает один или комплекс протяженных модулей 1 параболического солнечного коллектора с опорными элементами, включающего расположенные на несущем элементе, выполненном, например, в виде несущей трубы 2, дугообразные держатели 3. Количество протяженных модулей 1 параболического солнечного коллектора выбирают, исходя из запланированной мощности гелиоэнергетической системы. Труба 2 установлена на опорах 4 с возможностью поворота вокруг своей оси (одна степень свободы) в опорных подшипниках 5. При этом пары концевых опор 4 снабжены раскосами 6 и распорками 7 для увеличения жесткости конструкции. Опоры 4 закреплены на фундаменте или на отдельных фундаментах 8; Концы дугообразных держателей 3 связаны распорными элементами, например, распорными трубами 9. Концы распорных труб 9 с обеих сторон связаны дугообразными натяжными кронштейнами 10, которые в свою очередь установлены на несущей трубе 2. Оба конца у дугообразных натяжных кронштейнов 10 соединены растяжками 11. Между противоположно установленными дугообразными натяжными кронштейнами 10 натянуты солнечные отражатели - гибкие светоотражающие ленты 12. Оба конца светоотражающих лент 12 снабжены натяжными приспособлениями. Это могут быть крепления 13 с винтовой нарезкой на концах для установки в прорезях 14 дугообразных кронштейнов 10 (см. фиг. 5). На концах креплений 13 с противоположной от лент 12 стороны закреплены амортизаторы 15 с гайками 16 для регулировки натяжения лент 12. Ленты 12 натянуты между дугообразных натяжных кронштейнов 10 с образованием параболического солнечного коллектора. Дугообразные держатели 3 расположены с нерабочей стороны лент 12. При этом на несущей трубе 2 с внутренней стороны параболического солнечного коллектора установлены стойки 17 нагревательной трубы 18 с теплоносителем. Нагревательная труба 18 угловыми патрубками 19 связана с устройством преобразования тепловой энергии теплоносителя (на рисунке не показано). На опорах 4 закреплены линейные приводы 20 поворота параболического солнечного коллектора относительно опорных подшипников 5 трубы 2 с образованием поворотного механизма с одной степенью свободы. Свободными концами линейные приводы 20 связаны с кронштейнами 21, установленными на дугообразных держателях 3. Кронштейн 22 крепления хвостовика линейного привода 20 связан с опорой 4. Поворотный механизм модуля 1 параболического солнечного коллектора связан с устройством слежения за солнцем и управления поворотом коллектора (на рисунке не показано).

Изображенная на фиг. 7-11 гелиоэнергетическая система включает один или комплекс компактных модулей 23 параболического солнечного коллектора с двумя степенями свободы. Модули 23 состоят из расположенных на несущем элементе, выполненном, например, в виде несущей трубы 2, дугообразных держателей 3 и дугообразных натяжных кронштейнов 10. Несущая труба 2 установлена на неподвижной опоре 4 с фундаментом 8 посредством двух поворотных механизмов: поворотного в горизонтальной плоскости привода 24 с траверсой 25 и линейного привода 20 с кронштейном 26 для поворота в вертикальной плоскости. Концы дугообразных держателей 3 связаны распорными элементами, например, распорными трубами 9. Между противоположно установленными дугообразными натяжными кронштейнами 10 натянуты гибкие светоотражающие ленты 12. Оба конца светоотражающих лент 12 снабжены натяжным приспособлениями. Это могут быть крепления 27, связанные канатом 28 с натяжными роликами 29, с возможностью натягивания относительно кронштейна 10 (см. фиг. 10). Светоотражающие ленты 12 натянуты между дугообразных натяжных кронштейнов 10 с образованием параболического солнечного коллектора. Дугообразные держатели 3 расположены с нерабочей стороны лент 12. При этом на несущей трубе 2 с внутренней стороны параболического солнечного коллектора установлены стойки 17 нагревательной трубы 18 с теплоносителем. Нагревательная труба 18 угловыми патрубками 19 связана с устройством преобразования тепловой энергии теплоносителя (на рисунке не показано). Поворотные механизмы параболического солнечного коллектора связаны с устройством слежения за солнцем и управления поворотом коллектора (на рисунке не показано).

Изображенная на фиг. 12-14 гелиоэнергетическая система по преобразованию солнечной энергии в электрическую включает один или комплекс компактных модулей 31 с двумя степенями свободы. Модуль 31 включает несущую трубу 2, по концам которой установлены плоские натяжные кронштейны 32. Концы натяжных кронштейнов 32 связаны распорными трубами 9. Гибкие тонкопленочные солнечные батареи 33 натянуты между натяжными кронштейнами 32 с образованием плоской поверхности. Для натяжения гибких тонкопленочных солнечных батарей 33 можно использовать приспособления, изображенные на фиг. 5 и 10. Несущая труба 2 установлена на неподвижной опоре 4 с фундаментом 8 посредством двух поворотных механизмов: поворотного в горизонтальной плоскости привода 24 с траверсой 25 и линейного привода 20 с кронштейном 26 для поворота в вертикальной плоскости. Гибкие тонкопленочные батареи 33 связаны с устройством накопления и преобразования электрического тока (на рисунке не показано).

Модули 1, 23 и 31 можно устанавливать на любом грунте, а также на воде с помощью легкого устойчивого плота 34, как показано на фиг. 14. Плот 34 может быть снабжен элементами балансировки в виде гироскопа (на рисунке не показано) для уменьшения степени качания на волнах водоема.

Гелиоэнергетическую систему собирают и используют следующим образом. Для изготовления гибких светоотражающих лент 12 и гибких тонкопленочных солнечных батарей 33 можно использовать самые дешевые полимерные материалы, например, отходы пластиковых банок и бутылок. Транспортирование комплектов системы к месту установки облегчено за счет компактности и небольшого веса лент 12 и пленочных батарей 33. Простые приспособления для натяжения лент 12 и батарей 33 позволяют быстро развернуть модули 1, 23 и 31 системы в рабочее положение. В отличие от зеркальных и кремниевых поверхностей типовых солнечных коллекторов пленочные поверхности не являются хрупкими, не боятся ударов. Их не надо часто мыть: за счет гибкости лент 12 и батарей 33 на воздухе они вибрируют даже от небольшого ветерка, стряхивая пыль, грязь, влагу. Гелиоэнергетическая система не боится парусности. Сильные порывы ветра легко проходят между лентами 12 или батареями 33, не опрокидывая модули 1, 23, 31. Такие порывы только способствуют самоочищению поверхности лент 12 и батарей 33. Но, когда возникает необходимость в мытье модулей 1, 23 и 31, нет опасности повреждения гибких поверхностей - она прочная и удароустойчивая. Для замены износившейся поверхности коллектора не надо демонтировать его целиком, достаточно заменить только поврежденные ленты 12 либо батареи 33, которые легко снимаются и устанавливаются.

Таким образом, технический результат, достигаемый с использованием заявленного изобретения, заключается в упрощении гелиоэнергетической системы с использованием гибких полимерных лент в качестве светоотражательной или фоточувствительной поверхности при уменьшении веса и транспортных размеров солнечных модулей и повышении их эксплуатационных характеристик.

1. Гелиоэнергетическая система, включающая не менее чем один стационарно установленный модуль параболического солнечного коллектора с опорными элементами, средствами поворота, солнечными отражателями на дугообразных держателях каркаса и преобразователем солнечного излучения, отличающаяся тем, что солнечные отражатели выполнены гибкими в виде продольно расположенных относительно дугообразных держателей каркаса и параллельно друг другу лент, при этом каркас снабжен приспособлениями для натяжения лент.

2. Система по п. 1, отличающаяся тем, что приспособления для натяжения лент выполнены в виде креплений на их концах с винтовой нарезкой, амортизаторами и гайками, причем каркас снабжен дугообразными кронштейнами с прорезями для размещения этих креплений.

3. Система по п. 1, отличающаяся тем, что каркас снабжен дугообразными кронштейнами с установленными на них натяжными роликами, а приспособление для натяжения лент выполнено в виде креплений на их концах с натяжными роликами, связанными канатом с натяжными роликами дугообразных кронштейнов.

4. Гелиоэнергетическая система, включающая не менее чем один стационарно установленный модуль с опорными элементами, средствами поворота каркаса с солнечными батареями на плоских держателях и преобразователем солнечного излучения, отличающаяся тем, что солнечные батареи выполнены гибкими в виде продольно расположенных относительно плоских держателей каркаса и параллельно друг другу лент, при этом каркас снабжен приспособлениями для натяжения лент.

5. Система по п. 4, отличающаяся тем, что приспособления для натяжения лент выполнены в виде креплений на их концах с винтовой нарезкой, амортизаторами и гайками, причем каркас снабжен плоскими кронштейнами с прорезями для размещения этих креплений.

6. Система по п. 4, отличающаяся тем, что каркас снабжен плоскими кронштейнами с установленными на них натяжными роликами, а приспособление для натяжения лент выполнено в виде креплений на их концах с натяжными роликами, связанными канатом с натяжными роликами плоских кронштейнов.



 

Похожие патенты:

Изобретение относится к области приема оптического излучения и касается приемника лазерного излучения. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом.

Изобретение относится к области приема оптического излучения и касается оптического приемника. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом.

Настоящее изобретение относится к клею для ламинированных листов, подложке для солнечной батареи и к модулю солнечной батареи. Указанный клей содержит уретановую смолу, получаемую смешиванием акрилового полиола с алифатическим изоцианатным соединением, а также имеет химическую структуру, полученную из диенового полимера.

Изобретение относится к области концентраторных солнечных фотоэлектрических преобразователей, применяемых на наземных гелиоэнергетических установках. Согласно изобретению в известном фотоэлектрическом модуле, содержащем корпус с боковыми стенками, прозрачную фронтальную стенку с линзой Френеля, расположенной на внутренней его стороне, фотоэлектрические преобразователи с различной шириной запрещенной зоны, оптический фильтр, расположенный в зоне действия линзы Френеля, при этом фотоэлектрические преобразователи с различной шириной запрещенной зоны расположены на уровне оптического фильтра, выполненного в виде призмы, расположенной между линзой Френеля и светоотражающими фокусирующими зеркалами, установленными на тыльной стороне фотоэлектрического модуля, направленными на соответствующие фотоэлектрические преобразователи с определенной шириной запрещенной зоны, при этом рабочие поверхности призмы обращены к линзе Френеля и фокусирующим зеркалам с возможностью поворота призмы относительно оптической оси линзы Френеля.

Cолнечная батарея с объемной конструкцией выполнена в виде перевернутой, усеченной, многогранной пирамиды, причем на внутренних поверхностях боковых сторон и основания усеченной пирамиды расположены фотоэлектрические преобразователи, причем на ребрах пирамиды установлены зеркальные элементы, отражающие свет внутрь пирамиды, на поверхность противолежащих фотоэлектрических преобразователей.

Группа изобретений относится к технологии устройств твердотельной электроники и может быть использована при разработке фотоприемников видимого и ближнего ИК-диапазона.

Изобретение относится к области гелиоэнергетики и касается фотоэлектрического модуля. Фотоэлектрический модуль включает в себя корпус с боковыми стенками, прозрачную фронтальную стенку с линзой Френеля, расположенной на внутренней ее стороне, фотоэлектрические преобразователи с различной шириной запрещенной зоны и оптический фильтр, расположенный в зоне действия линзы Френеля.

Закрытое устройство для использования солнечной энергии содержит первый приемник, который образует относительно закрытую первую полость, на которой обеспечено одно входное световое отверстие, один элемент преобразования световой энергии или один элемент преобразования световой энергии и по один светоотражающий элемент, который обеспечен на внутренней стенке первой полости или во внутреннем пространстве первой полости, световодное устройство плотно соединеное с входным световым отверстием, для направления собранного снаружи солнечного света таким образом, чтобы он входил в первую полость через входное световое отверстие, второй приемник, который образован в виде второй полости, на которой обеспечено входное световое отверстие, при этом второй приемник частично обеспечен во внутреннем пространстве первой полости, элемент преобразования световой энергии обеспечен на внутренней стенке второй полости или обеспечен во внутреннем пространстве второй полости, световодное устройство проходит через входное световое отверстие первой полости и плотно соединено с входным световым отверстием второй полости для направления собранного снаружи солнечного света во вторую полость, световодное устройство, соединенное с входным световым отверстием второй полости, плотно соединено с входным световым отверстием второй полости, вторая полость дополнительно снабжена одним входным отверстием второго рабочего тела, чтобы позволить второму рабочему телу входить во вторую полость, и выходным отверстием второго продукта, чтобы позволить второму продукту выходить из второй полости в присоединенную снаружи систему циркуляции, причем второй продукт является веществом, получаемым после воздействия по меньшей мере части энергии солнечного света на первое рабочее тело.
Изобретение относится к области полупроводникового материаловедения и может быть использовано в изделиях оптоэлектроники, работающих в инфракрасной области спектра, лазерной и сенсорной технике.

Способ изготовления светопроницаемого тонкопленочного солнечного модуля на основе халькопирита включает нанесение слоя металлических электродов на прозрачную предварительно очищенную подложку, формирование на ней слоя металлических электродов в виде массива поочередно расположенных отдельных металлических электродов, очистку прозрачной подложки со слоем металлических электродов от отходов процесса формирования массива металлических электродов, формирование фотоактивного слоя халькопирита CIGS, нанесение буферного слоя, удаление части буферного слоя и нижележащей части фотоактивного слоя над каждым металлическим электродом для обеспечения доступа к слою металлического электрода, нанесение слоя прозрачного электрода, удаление части прозрачного электродного слоя, нижележащей части буферного слоя и нижележащей части фотоактивного слоя над каждым металлическим электродом для обеспечения доступа к слою металлического электрода, образуя последовательное соединение элементов солнечного модуля, при этом формирование фотоактивного слоя осуществляют способом электрохимического осаждения или способом печати прекурсоров фотоактивного слоя халькопирита CIGS с последующей термической обработкой, при этом нанесение прекурсоров осуществляют непосредственно на поверхность каждого металлического электрода, исключая другие участки.

Изобретение относится к испарителю для получения пара с помощью магмы вулкана и способу его работы. Испаритель содержит корпус, воронку для отвода осадка, снабженную системой датчиков уровня наполнения, канал подачи воды, канал отвода пара, при этом нижняя часть корпуса, воронка и часть канала подачи воды перед входом в корпус выполнены с возможностью электрического подогрева.

Изобретение относится к гелиотехнике. Концентратор солнечного излучения выполнен в виде тела вращения, внутренняя поверхность которого является отражающей поверхностью, и расположенного под ним приемника излучения.

В предложенной теплогенерирующей системе (1) осуществляется управление избыточной теплоотдачей для увеличения числа мест протекания реакции тепловыделения в ячейках (16) теплогенерирующих элементов, которые генерируют избыточное тепло с помощью реакции тепловыделения, из числа множества ячеек (16) теплогенерирующих элементов, и в результате этого, даже если множество ячеек (16) теплогенерирующих элементов включает ячейку (16) теплогенерирующего элемента, которая не генерирует избыточное тепло вследствие недостаточной реакции тепловыделения, соответствующее количество тепла может быть рекуперировано на выходе путем выполнения компенсации с использованием другой ячейки (16) теплогенерирующего элемента, в которой реакция тепловыделения определенно протекает.

Изобретение относится к солнечной энергетике, в частности к солнечным коллекторам, и предназначено для преобразования солнечной энергии в тепловую в системах отопления и горячего водоснабжения как для бытовых потребителей, так и для сельскохозяйственных объектов.

Изобретение относится к способам использования извлеченного геотермального тепла для охлаждения грунтов вокруг тоннелей метрополитена и трансформирования его для нагрева воды в системе горячего водоснабжения.

Изобретение относится к гелиотехнике и предназначено для круглосуточного нагрева воздуха до заданной температуры солнечной энергией с целью использования его в бытовых условиях, например в сушильных установках или для обогрева помещений.

Изобретение относится к гелиотехнике и предназначено для нагревания воды за счет преобразования солнечной энергии в тепловую и может быть использовано в биотехнологической, пищевой, сельскохозяйственной и других отраслях промышленности, а также в быту.

Солнечное оптоволоконное осветительное устройство содержит концентратор, оптоволоконный жгут, рассеивающую линзу. Концентратор выполнен неподвижным с оптическим способом наведения светового потока на вход оптоволоконного жгута и содержит цилиндрическую сужающую линзу Френеля на внутренней поверхности прозрачного куполообразного корпуса, в фокусе которой расположен второй прозрачный купол с цилиндрической расширяющей линзой Френеля, на третьем внутреннем прозрачном куполе имеются несимметричные цилиндрические полосковые линзы Френеля, плоскость фокусировки которых перпендикулярна плоскости фокусировки двух предыдущих линз.

Изобретение относится к солнечной энергетике и может быть использовано для снабжения потребителей электроэнергией и горячей водой. Комбинированная гелиоколлекторная установка содержит корпус с крышкой, прозрачное покрытие, теплоизолирующий слой, защитный кожух.

Изобретение относится к области солнечной энергетики, а именно к устройствам, использующим солнечное тепло с оптическими элементами для концентрации энергии. Тепловой коллектор может быть использован в системах отопления, горячего водоснабжения, приточно-вытяжной вентиляции, для преобразования тепловой энергии в другие виды энергии.

Изобретение относится к области приема оптического излучения и касается приемника оптических сигналов. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя рабочими положениями. В состав устройства введен привод шторки, включающий плоскую пружину, замкнутую в виде кольца, диаметрально противоположные стороны которого стянуты растяжкой с усилием, определяемым заданным быстродействием привода шторки. Шторка связана с пружиной с помощью передаточного звена таким образом, чтобы при изменении длины растяжки шторка перемещалась на заданное расстояние между исходным и рабочим положениями. Растяжка представляет собой токопроводящую нить, к концам которой подведен внешний источник управляющего электрического сигнала, при подаче которого растяжка нагревается, и ее длина увеличивается за счет температурного расширения. Технический результат заключается в обеспечении работоспособности устройства в условиях активного и пассивного лазерного противодействия при минимальных габаритах и максимальной чувствительности при малом уровне сигналов. 4 з.п. ф-лы, 3 ил.
Наверх