Способ активации нанопорошка алюминия

Изобретение относится к порошковой металлургии, в частности, к обработке для улучшения свойств нанопорошков алюминия. Может использоваться при приготовлении твердых ракетных топлив, пиротехнических составов. Нанопорошок алюминия, полученны электрическим взрывом алюминиевой проволоки, насыпают в емкость из немагнитного материала на высоту не более 15 мм. Емкость размещают на медном проводнике так, чтобы дно емкости соприкасалось с поверхностью проводника и воздействуют в воздушной атмосфере переменным магнитным полем частотой 50 Гц, создаваемым при прохождении по проводнику тока силой 100-600 А в течение не менее 20 минут. Обеспечивается повышение удельного теплового эффекта окисления порошка, а также расширение арсенала средств активации. 1 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к порошковой металлургии, а именно к специальной обработке для улучшения свойств нанопорошков алюминия и может быть использовано при приготовлении твердых ракетных топлив, пиротехнических составов.

Известен способ активации нанопорошка алюминия, полученного методом электрического взрыва алюминиевой проволоки [RU 2637732 С1, МПК B22F 1/60 (2006.01), B82Y30/00 (2011.01), опубл. 06.12.2017], включающий пассивацию нанопорошка алюминия воздухом, содержащим пары воды с последующим его нагревом до 300-400°С в атмосфере воздуха со скоростью нагрева от 10 до 30°С/мин. Нанопорошки алюминия выдерживают при этой температуре в течение 30 мин.

Известен способ активации микро- и нанопорошков алюминия [RU 2657677 С1, МПК B22F 1/00 (2006.01), В82В 1/00 (2006.01), B82Y 40/00 (2011.01), опубл. 14.06.2018], выбранный в качестве прототипа, заключающийся в том, что микро- и нанопорошки алюминия, облучают СВЧ-излучением частотой 2,8 ГГц в атмосфере воздуха импульсами длительностью 25 нс, с частотой следования 25 Гц в течение не менее 10 минут с плотностью мощности 8 кВт/см.

Этот способ сложен и для его реализации необходимо использование мощных источников СВЧ-излучения.

Техническим результатом предлагаемого изобретения является расширение арсенала средств активации нанопорошка алюминия, полученного электрическим взрывом алюминиевой проволоки.

Способ активации нанопорошка алюминия, полученного электрическим взрывом алюминиевой проволоки, также как в прототипе, включает воздействие высокоэнергетическим излучением в воздушной атмосфере.

Согласно изобретению нанопорошок алюминия насыпают в емкость из немагнитного материала на высоту не более 15 мм. Емкость размещают на медном проводнике так, чтобы дно емкости соприкасалось с поверхностью проводника и воздействуют переменным магнитным полем частотой 50 Гц, создаваемым при прохождении по проводнику тока силой 100-600 А в течение не менее 20 минут.

Емкость может быть выполнена из полипропилена.

Предложенный способ обеспечивает увеличение положительных зарядов внутренних частей наночастиц алюминия, что приводит к увеличению удельного теплового эффекта окисления активированных нанопорошков алюминия на 22,45-32,98% по сравнению с исходными неактивированными нанопорошками алюминия. Для осуществления способа не требуется использование дорогостоящего СВЧ оборудования.

На фиг. 1 показана принципиальная схема установки для активации нанопорошка алюминия.

На фиг. 2 показана термограмма нанопорошка алюминия, не подвергнутого обработке переменным магнитным полем (образец №1), где кривая 1 отражает изменение веса образца при нагревании, кривая 2 указывает температуру в ячейке термоанализатора при проведении термоанализа, кривая 3 - разность температур между образцом и эталоном прибора, кривая 4 - тепловой поток при нагревании.

На фиг. 3 показана термограмма нанопорошка алюминия, после обработки переменным магнитным полем (образец №3) в течение 20 мин, где кривая 1 отражает изменение веса образца при нагревании, кривая 2 указывает температуру в ячейке термоанализатора при проведении термоанализа, кривая 3 - разность температур между образцом и эталоном прибора, кривая 4 - тепловой поток при нагревании.

В таблице 1 представлены условия проведения активации нанопорошка алюминия марки Alex и результаты термического анализа.

Для осуществления способа использовали установку (фиг. 1), внутри заземленного корпуса 1 которой расположен выключатель 2, подключенный к источнику напряжения. Выключатель 2 соединен с входными выводами автотрансформатора 3, выходной вывод которого соединен с одним концом первичной обмотки понижающего трансформатора 4. Другой конец первичной обмотки понижающего трансформатора 4 через скользящий (щеточный) контакт соединен с обмоткой автотрансформатора 3. Параллельно первичной обмотке понижающего трансформатора 4 подключен вольтметр 5. Параллельно обмотке автотрансформатора 3 подключена индикаторная лампа 6. Выводы вторичной обмотки понижающего трансформатора 4 соединены между собой медной шиной 7 прямоугольного сечения шириной 60 мм и толщиной 3 мм, которая выходит за пределы корпуса 1 установки.

На шине 7 установлен трансформатор тока 8 типа ТТИ-60 с коэффициентом трансформации равным 200, к выводам которого подключен стрелочный амперметр 9 типа Э377.

Использовали нанопорошок алюминия марки Alex, с площадью удельной поверхности 14 м2/г, полученный методом электрического взрыва проводника. Нанопорошок 10 засыпали в пробирки 11, объемом 2 см изготовленные из полипропилена на высоту 5, 15, 30 мм (могут быть использованы емкости другого размера и формы). Уровень нанопорошка алюминия 10 в пробирке 11 измеряли с помощью измерительной линейки. Пробирки 11 закрыли полипропиленовыми крышками.

Каждую пробирку 11 с нанопрошком алюминия 10 размещали на шине 7 с помощью каркаса из картона 12 таким образом, чтобы дно пробирки 11 касалась шины 7.

С помощью выключателя 2 подавали напряжение на вход автотрансформатора 6, при этом свечение индикаторной лампы 6 свидетельствовало о наличии напряжения на входе автотрансформатора 6. При вращении ручки автотрансформатора 6 увеличивали напряжение на входе понижающего трансформатора 4, которое измерялось вольтметром 5, при этом увеличивалась сила тока в шине 7. С помощью понижающего трансформатора 4 создавали силу тока в 50, 100, 300 или 600 А в шине 7, при этом понижающий трансформатор 4 предохранял автотрансформатор 6 и питающую электрическую сеть от перегрузки по току. Силу тока в шине 7 контролировали с помощью амперметра 9, подключенного к трансформатору тока 8. Активацию нанопорошков алюминия 10 проводили в течение 10, 20 или 40 мин. Время воздействия переменным магнитным полем частотой 50 Гц измеряли с помощью электронного секундомера.

Образцы нанопорошка алюминия подвергали дифференциальному термическому анализу, используя термоанализатор Q600 SDT. Точность измерения температуры составляла 0,001°С, калориметрическая точность ±2%, масса навески 5,9-6,7 мг., мг, скорость нагрева 102С/с, атмосфера - воздух.

Результат увеличения удельного теплового эффекта окисления каждого активированного образца нанопорошка алюминия определяли как разность между удельным тепловым эффектом активированного образца и удельным тепловым эффектом неактивированного исходного нанопорошка алюминия при нагревании в воздухе до 1200°С в ячейке термоанализатора.

После воздействия магнитным полем частотой 50 Гц произошло активирование нанопорошка алюминия, что подтверждается увеличением удельного теплового эффекта окисления на величину отклонения теплового эффекта по сравнению с неактивированныи порошком. Тепловой эффект окисления рассчитывался термоанализатором автоматически. Удельный тепловой эффект окисления определяли как сумму двух экзоэффектов при окислении. Для образца 1 исходного нанопорошка алюминия (таблица 1), не подвергнутого активации, он равен 9368 Дж/г, то есть сумме 6004 Дж/г и 3364 Дж/г (фиг. 2). Для образца 3, активированного переменным магнитным полем, соответствующая сумма равна 12458 Дж/г (фиг. 3). Разность величин удельных тепловых эффектов активированного магнитным полем нанопорошка 12458 Дж/г и исходного нанопорошка 9368 Дж/г является результатом увеличения удельного теплового эффекта 3090 Дж/г.Это увеличение составило 32,98% относительно неактивированного нанопорошка алюминия. Аналогичным образом рассчитывали результат увеличения удельного теплового эффекта для остальных активированных образцов нанопорошка алюминия.

По данным таблицы 1 увеличение удельных тепловых эффектов произошло при всех значениях силы тока в шине, уровней нанопорошков алюминия в пробирках и времен активации и составило от 2,70% до 32,98%. Наибольшие значения увеличения удельного теплового эффекта наблюдались при силах тока 100, 300, 600 А, при уровнях нанопорошков алюминия в пробирках 5 и 15 мм и при временах воздействия 20 и 40 минут.

1. Способ активации нанопорошка алюминия, полученного электрическим взрывом алюминиевой проволоки, включающий воздействие высокоэнергетическим излучением в воздушной атмосфере, отличающийся тем, что нанопорошок алюминия насыпают в емкость из немагнитного материала на высоту не более 15 мм, емкость размещают на медном проводнике так, чтобы дно емкости соприкасалось с поверхностью проводника, и воздействуют переменным магнитным полем частотой 50 Гц, создаваемым при прохождении по проводнику тока силой 100-600 А в течение не менее 20 минут.

2. Способ по п. 1, отличающийся тем, что используют емкость, выполненную из полипропилена.



 

Похожие патенты:

Изобретение относится к способу получения сложных эфиров таллового масла, которые могут найти применение для получения жёстких пенополиуретанов. По первому варианту способ получения сложных эфиров таллового масла для получения жёстких пенополиуретанов, включает этерификацию таллового масла многоатомными спиртами путём нагревания при температуре 140–150°С в течение 3 часов в присутствии катализатора на основе сульфатированного оксида циркония на силикагеле, с размерами частиц 120-200 нм, в количестве 2,5-3,5% от количества таллового масла.

Изобретение может быть использовано в биомедицине для диагностики и терапии злокачественных новообразований. Способ получения стержневидных наночастиц магнетита включает подготовку водной суспензии прекурсора, представляющего собой стержневидные наночастицы акагенита, в который добавляют раствор восстановителя, представляющего собой соединение из группы гидразинов с двумя свободными электронами.

Группа изобретений относится к области газового анализа. Способ изготовления одноэлектродного газового сенсора на основе титановой проволоки, которую согласно изобретению окисляют методом анодирования в электрохимической ячейке, чтобы сформировать мезопористый оксидный слой, состоящий из радиально-ориентированных упорядоченных нанотрубок ТiO2 с толщиной стенок до 20 нм и внутренним диаметром до 150 нм.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта бадана характеризуется тем, что сухой экстракт бадана добавляют в суспензию альгината натрия в гексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 800 об/мин, далее приливают 6 мл пропилацетата, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.

Группа изобретений относится к медицине, а именно к неврологии, и касается применения терапевтически эффективного количества композиции для получения лекарственного средства для стимуляции ремиелинизации нейронов у млекопитающего, где указанные нейроны демиелинизированы вследствие нарушения клеточного дыхания.

Изобретение относится к области химии и нанотехнологии. Способ синтеза нанокомпозитов Ag/C включает приготовление совместного раствора полиакрилонитрила (ПАН) и нитрата серебра в диметилформамиде (ДМФА), выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагрев полученного твердого остатка.
Изобретение относится к способу получения композитного материала для активного электрода суперконденсатора (СК), содержащего матрицу из термоокисленного полиметилметакрилата и наполнителя из однослойных углеродных нанотрубок.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта гуараны характеризуется тем, что сухой экстракт гуараны добавляют в суспензию альгината натрия в метаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 900 об/мин, далее приливают 6 мл циклогексана, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта шалфея характеризуется тем, что сухой экстракт шалфея добавляют в суспензию гуаровой камеди в петролейном эфире в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 800 об/мин, далее приливают 1,2-дихлорэтана, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.

Изобретение относится к металлорежущему инструменту, в частности к режущим пластинам и фрезам, используемым для обработки изделий из трудно обрабатываемых материалов, в том числе из титана и его сплавов.
Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.
Изобретение относится к области абразивной обработки и может быть использовано при изготовлении алмазного инструмента, в частности отрезного круга, для резки железобетона, кирпича, керамогранита, мрамора и других твердых минералов.

Изобретение относится к медицинской технике. Предложен способ обнаружения и ликвидации отдельных раковых клеток и их скоплений.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта расторопши характеризуется тем, что сухой экстракт расторопши добавляют в суспензию альгината натрия в изопропиловом спирте в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают толуол, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.

Группа изобретений относится к области газового анализа, а именно к устройствам распознавания состава многокомпонентных газовых смесей и способам их изготовления.
Изобретение может быть использовано в медицине, в области композиционных материалов для изготовления эндопротезов, используемых в ортопедии для замены пораженных естественных суставов человека.

Изобретение относится к фармацевтике и раскрывает антисептическое средство. Антисептическое средство представляет собой нанокомпозитный материал серебра в дистиллированной воде с размером наночастиц 5-50 нм и содержит 0.5-25 мг/л нанокластеров серебра и 0.1-10 г/л натриевой соли карбоксиметилцеллюлозы (КМЦ).

Группа изобретений относится к области фармацевтической промышленности. Предложена терапевтическая наночастица, которая содержит 10-25 мас.

Использование: для формирования электропроводящих структур на полимерной пленке. Сущность изобретения заключается в том, что способ изготовления тонкопленочного датчика влажности резистивного типа основан на создании электропроводящих структур на гибкой полимерной пленке, для чего, на поверхности полимерной подложки формируется пленка оксида графена путем нанесения водной суспензии оксида графена и последующей ее сушки, далее, на поверхности подготовленной полимерной подложки посредством полупроводникового лазера облучается электропроводящая дорожка электродов.

Изобретение относится к нанотехнологии. Порошок карбоксилированных наноалмазов суспендируют в жидкой среде из группы, включающей полярные протонные или апротонные растворители, биполярные апротонные растворители, ионные жидкости или их смеси, например, в воде.

Изобретение относится к порошковой металлургии. Порошки Fe, Аl при соотношении 70:30 смешивают в шаровой мельнице 2-3 ч и дегазируют в вакуумной камере 1 при давлении 10 Па.

Изобретение относится к порошковой металлургии, в частности, к обработке для улучшения свойств нанопорошков алюминия. Может использоваться при приготовлении твердых ракетных топлив, пиротехнических составов. Нанопорошок алюминия, полученны электрическим взрывом алюминиевой проволоки, насыпают в емкость из немагнитного материала на высоту не более 15 мм. Емкость размещают на медном проводнике так, чтобы дно емкости соприкасалось с поверхностью проводника и воздействуют в воздушной атмосфере переменным магнитным полем частотой 50 Гц, создаваемым при прохождении по проводнику тока силой 100-600 А в течение не менее 20 минут. Обеспечивается повышение удельного теплового эффекта окисления порошка, а также расширение арсенала средств активации. 1 з.п. ф-лы, 3 ил., 1 табл.

Наверх