N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов



N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов
N-гетероциклические производные борниламина в качестве ингибиторов ортопоксвирусов

Владельцы патента RU 2687254:

Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ГНЦ ВБ "Вектор" Роспотребнадзора) (RU)
Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук (НИОХ СО РАН) (RU)

Изобретение относится к новым соединениям общей формулы I а-с. Технический результат: получены новые соединения, которые могут использоваться в качестве ингибиторов репродукции ортопоксвирусов. 2 табл., 2 пр.

 

Изобретение относится к химии и медицине, а именно к лекарственным средствам, конкретно, к соединениям общей формулы I а-с (включая их пространственные изомеры, в том числе оптически активные формы):

где Х=CHCH3, n=1 Ia; Х=O, n=2 Ib; X=NCH3, n=2 Ic. Данные соединения I а-с могут использоваться в качестве ингибитора репродукции ортопоксвирусов и могут быть применены в медицине, вирусологии и фармакологии.

Благодаря программе глобальной ликвидации вирус натуральной оспы (ВНО) был элиминирован из окружающей среды. При этом в связи с прекратившейся с 1980 г. всеобщей вакцинацией против ВНО в настоящее время более половины населения Земли лишено противооспенного иммунитета. Вместе с тем, угроза возникновения оспы существует, поскольку невозможно исключить наличие нелегального хранения ВНО и преднамеренного использования против населения природных или рекомбинантных штаммов ВНО, а также распространения ВНО из мерзлотных грунтов с останками умерших от оспы. Кроме того, опасность для человека представляют и другие ортопоксвирусы, например, вирусы оспы обезьян и оспы коров, которые циркулируют в популяциях животных, эволюционируют, распространяются и периодически вызывают вспышки заболеваний среди людей.

В настоящее время в мире нет официально зарегистрированных химиопрепаратов для защиты людей от ВНО и других патогенных для человека ортопоксвирусов. В настоящее время проводятся клинические испытания на территории США два перорально биодоступных противооспенных препарата: ST-246 (Tecovirimat, ТРОХХ®, N-(6,8-диоксо-7-азатрицикло[3.3.2.02,4]дец9-ен-7-ил)-4-(трифторметил)бензамидметил) и СМХ001 (Brincidofovir, 3-(пентадецилокси)пропил((S)-1-(4-амино-2оксопиримидин-1(2Н)-ил)-3-гидроксипропан-2-илокси)метилфосфонат). Препарат СМХ001 представляет собой липофильный нуклеотидный аналог Цидофовира (Cidofovir CDV) (рисунок 1). CDV (Vistide®) является противовирусным препаратом, используемым для лечения цитомегаловирусного ретинита, и показал активность в летальных моделях поксвирусной инфекции с использованием мышей и обезьян. Хотя CDV является единственным противовирусным препаратом, который в настоящее время доступен для использования в случае вспышки оспы, он не зарегистрирован как препарат, разрешенный для лечения ортопоксвирусных инфекций. Кроме того, Cidofovir имеет низкую иероральную биодоступность и может быть токсичным для почек. ST-246 был разработан SIGA Technologies Inc. (США). Его механизм действия отличается от механизма CDV, который ингибирует репликацию вирусной ДНК. Мишенью ST-246 является высококонсервативный вирусный кодируемый белок р37, присутствующий во всех ортопоксвирусах.

Таким образом, наиболее близким к заявляемому соединению - прототипом, является цидофовир. Недостатком указанного препарата является не высокая активность в отношении вируса осповакцины.

Задачей изобретения является создание нового класса эффективных ингибиторов репродукции вирусов из рода Orthopoxvirus.

Технический результат: расширение ассортимента ингибиторов репродукции ортопоксвирусов.

Поставленная задача решается новыми соединениями общей формулы I а-с, обладающими выраженными свойствами ингибиторов репродукции вируса осповакцины.

где X=CHCH3, n=1 Ia; X=О, n=2 Ib; X=NCH3, n=2 Ic.

Соединения общей формулы I, после проведения углубленных фармакологических исследований, могут использоваться, как в чистом виде, так и в качестве компонента новых низкотоксичных высокоэффективных против вируса осповакцины лекарственных форм.

Цитотоксичность и противовирусную активность синтезированных производных в отношении VV оценивали с использованием адаптированного колориметрического метода в культуре клеток Vero (Селиванов Б.А., Тихонов А.Я., Веланов Е.Ф., Бормотов Н.И., Кабанов А.С., Мазурков О.Ю., Серова О.А., Шишкина Л.Н., Агафонов А.П., Сергеев А.Н. Синтез и противовирусная активность 1-арил-3-{3,5-диоксо-4-азатетрацикло-[5.3.2.02,6.08,10]додец-11-ен-4-ил}мочевин. Химико-фармацевтический журнал. 2017. Т. 51. №6. С. 13-17]. В качестве положительного контроля использовался коммерчески доступный препарат Cidofovir (Heritage Consumer Products, LLC, США).

Синтез соединений I а-с по схеме 1. Взаимодействие изоборниламина 3, полученного из оксима камфоры 2, с соответствующим хлорангидридами 2-хлоруксуной и 3-хлорпропионовой кислоты привело к образованию ключевых промежуточных продуктов 3 и 4. Полученные амиды нуклеофильным замещением соответствующими гетероциклами были трансформированы в целевые продукты I а-с.

Схема 1. Реагенты и условия: (i) NH2OH⋅HCl, NaOAc, микроволновой нагрев; (ii) NiCl2, NaBH4, MeOH, -30°C; (iii) 2-хлорацетил/3-хлорпропаноил хлорид, CH2Cl2, Et3N, 25°C; (iv) соответствующий гетероцикл, CH2Cl2, Et3N, кипячение.

Спектральные исследования выполнены в Химическом Сервисном Центре коллективного пользования СО РАН. Величины удельного вращения определяли на спектрометре PolAAr 3005. Спектры ЯМР 1Н и 13С регистрировали на спектрометре Bruker AV-400 (1Н: 400.13 МГц, 13С: 100.61 МГц. В качестве внутреннего стандарта использовали остаточные сигналы растворителя - хлороформа (1Н 7.24, 13С 76.90 м.д.). Нумерация атомов в соединениях дана для отнесения сигналов в спектрах ЯМР и не совпадает с нумерацией атомов в номенклатурном названии. Масс-спектры высокого разрешения записывали на спектрометре DFS ThermoScientific в режиме полного сканирования в диапазоне m/z 0-500, ионизация электронным ударом 70 эВ при прямом вводе образца. Разделение продуктов реакций проводили с помощью колоночной хроматографии на силикагеле (60-200 μ, Masherey-Nagel). Хромато-масс-спектры записывали на газовом хроматографе Agilent 7890 А с квадрупольным масс-спектрометром Agilent 5975С в качестве детектора, кварцевая колонка HP-5MS 30000 0.25 мм, газ-носитель гелий. Удельное вращение выражено в (град⋅мл)⋅(г⋅дм)-1, концентрация раствора (г)⋅(100 мл)-1. Растворители перед использованием сушились и перегонялись. Изобретение иллюстрируется следующими примерами:

Пример 1. Синтез 2-Хлор-N-((1R,2R,4R)-1,7,7-триметилбицикло[2.2.1]гептан-2-ил)ацетамида 4.

К смеси амина 3 (0,012 моль), который был синтезирован по методике, описанной в работе [Sokolova AS, Pavlova A, Komarova NI, Ardashov OV, Shernyukov AV, Gatilov YV, Yarovaya OI, Tolstikova TG, Salakhutdinov NF. Synthesis and analgesic activity of new α-truxillic acid derivatives with monoterpenoid fragments. Med Chem Res 2016; 25:1608-1615] и Et3N (0,012 моль) в 20 мл сухого CH2Cl2 при 15-18°С в атмосфере Ar добавляли хлорацетилхлорид (0,017 моль), и смесь перемешивали при комнатной температуре в течение 24 часов. Органический слой промывали насыщенным раствором NaCl и экстрагировали CHCl3. Объединенную органическую фазу сушили над безводным Na2SO4 и растворитель удаляли. Полученный остаток использовали на следующей стадии без дополнительной очистки.

2-Хлор-N-((1R,2R,4R)-1,7,7-триметилбицикло[2.2.1]гептан-2-ил)ацетамид 4.

Выход 65%. ЯМР 1Н (400 МГц, CDCl3, δ, м.д.): 0.82 (6Н, с, Ме-8, Ме-10), 0,92 (3Н, с, Ме-9), 1.10-1.18 (1Н, м, Н-4эндо), 1.23-1.30 (1Н, м, Н-5эндо), 1.55-1.63 (2Н, м, Н-5экзо, Н-4экзо), 1.65-1.72 (1Н, м, Н-4экзо), 1.76 (1Н, т, J3,2экзо=J3,4экзо=4.3, Н-3), 1.85 (1Н, дд, J-9.0, 14.0, Н-2экзо), 3.86 (1Н, дт, J=4.9, 9.2, Н-1экзо), 4.02 (2Н, АВ-д, J=2.7, Н-11), 6.27 (1Н, N-H). ЯМР 13С (100 МГц, CDCl3, δ, м.д.): 164.73 с (С-11), 56.85 д (С-1), 48.42 с (С-6), 46.96 с (С-7), 44.73 д (C-3), 42.75 д (С-12), 38.74 т (С-2), 35.68 т (С-5), 26.84 т (С-4), 20.07 к, 19.93 к (Ме-8, Ме-9), 11.59 к (Me-10). (CHCl3, с=0.6). Найдено: m/z 229.1228 [М]+ C12H20O1N1C1. Вычислено: М=229.1225.

Пример 2. Синтез 3-Хлор-N-((1R,2R,4R)-1,7,7-триметилбицикло [2.2.11 гептан-2-ил)пропанамида 5.

К раствору 3-хлорпропановой кислоты в сухом CH2Cl2 добавели избыток оксалилхлорида и N,N-диметилформамид (одна капля). Смесь перемешивали при комнатной температуре в течение 4 ч в атмосфере Ar. Избыток оксалилхлорида удаляли на роторном испарителе. Полученный 3-хлорпропаноилхлорид использовали в следующей реакции без дополнительной очистки. К раствору амина 3 (15 ммоль) в CH2Cl2 добавили 3-хлорпропаноилхлорид (20 ммоль) в CH2Cl2 (5 мл) и Et3N (15 ммоль) при 0-5°С. Реакционную смесь перемешивали при комнатной температуре в течение 24 ч в атмосфере Ar. Органический слой промывали насыщенным раствором NaCl и экстрагировали CH2Cl2. Объединенную органическую фазу сушили над безводным Na2SO4, растворитель удаляли. Полученный остаток использовали на следующей стадии без дополнительной очистки.

3-Хлор-N-((1R,2R,4R)-1,7,7-триметилбицикло[2.2.1]гептан-2-ил)пронанамид 5.

Выход 62%. ЯМР 1Н (400 МГц, CDCl3, δ, м.д.): 0.80 (3Н, с, Ме-9), 0.82 (3Н, с, Me-10), 0.89 (3Н, с, Ме-8), 1.08-1.15 (1Н, м, Н-4эндо), 1.20-1.28 (1Н, м, Н-5эндо), 1.49-1.61 (2Н, м, Н-2эндо, Н-5экзо), 1.62-1.69 (1Н, м, Н-4экзо), 1.70-1.74 (1Н, м, Н-3), 1.83 (1Н, дд, J=9.0, 14.0, Н-2экзо), 2.81 (2Н, т, J=6.7, Н-12), 3.72 (2Н, т, J=6.7, H-13), 3.88 (1Н, дт, J=5.0, 9.2, Н-1экзо). ЯМР 13С (100 МГц, CDC13, δ, м.д.): 174.49 с (С-11), 57.01 д (С-1), 48.36 с (С-6), 46.93 с (С-7), 44.61 д (С-3), 40.38 т (С-13), 39.71 д (С-12), 38.72 т (С-2), 35.69 т (С-5), 26.77 т (С-4), 20.11 к, 20.05 к (Ме-8, Ме-9), 11.59 к (Ме-10). (CHCl3, с=0.7). Найдено: m/z 243.1384 [M]+ C13H22O1N1C1. Вычислено: М=243.1385.

Пример 3. Общая синтетическая методика для соединений I а-с.

Смесь ацетамида 6 или 7 (2 ммоль), соответствующего амина (2,2 ммоль), Et3N (2,2 ммоль) и 10 мл CH2Cl2 кипятили в течение 12 часов. После завершения реакции реакционную смесь промывали насыщенным раствором NaCl и дважды экстрагировали CHCl3. Объединенный органический слой сушили безводным Na2SO4 и упарили. Остаток хроматографировали на SiO2, используя в качестве элюента гексан/этилацетат (100:0→0:100) + метанол (1%).

2-(4-Метилпиперидин-1-ил)-N-((1R,2R,4R)-1,7,7-триметилбицикло[2.2.1]гептан-2-ил)ацетамид Ia

Выход 45%. ЯМР 1Н (400 МГц, CDCl3, δ, м.д.): 0.79 (3H, с, Ме-10), 0.82 (3H, с, Ме-8), 0,89 (3Н, д, J=6.3, Ме-18), 0.91 (3Н, с, Ме-9), 1.08-1.4 (5Н, м, Н-4эндо, Н-5эндо, Н-14а, Н-15, Н-16а), 1.49-1.67 (4Н, м, Н-5экзо, Н-4экзо, Н-14е, Н-16е), 1.72 (1Н, м, Н-3), 1.82 (1Н, дд, J=9.0, 14.0, Н-2экзо), 1.85-1.94 (2Н, Н-13е, Н-17е), 2.68-2.80 (2Н, м, Н-13е, Н-17е), 2.90 (2Н, АВ-д, Н-12), 3.84 (1Н, м, Н-1экзо), 7.49 (1Н, N-H). ЯМР 13С (100 МГц, CDCl3, δ, м.д.): 169.56 с (С-11), 61.61 т (С-12), 55.57 д (С-1), 54.24 т (С-13, С-17), 48.24 с (С-6), 46.89 с (С-7), 44.71 д (С-3), 39.06 т (С-2), 35.70 т (С-5), 34.60 т (С-14, С-16), 29.88 д (С-15), 26.88 т (С-4), 21.67 к (Ме-18), 20.08 к, 19.90 к (Ме-8, Me-9), 11.84 к (Ме-10). (CHCl3, с=1.1). Найдено: m/z 292.2514 [M]+ C18H32O1N2. Вычислено: М=292.2509.

3-Морфолино-N-((1R,2R,4R)-1,7,7-триметилбицикло[2.2.1]гептан-2-ил)пропанамид Ib.

Выход 43%. ЯМР 1Н (400 МГц, CDCl3, δ, м.д.): 0.80 (3H, с, Ме-10), 0.81 (3Н, с, Ме-8), 0.91 (3Н, с, Ме-9), 1.07-1.15 (1Н, м, Н-4эндо), 1.20-1.29 (1Н, м, Н-5эндо), 1.45-1.56 (2Н, м, Н-5экзо, Н-2эндо), 1.61-1.71 (2Н, м, Н-4экзо, Н-3), 1.82 (1Н, дд, J=9.0, 14.0, Н-2экзо), 2.33-2.37 (2Н, м, Н-12), 2.40-2.47 (4Н, уш. с, Н-14, Н-15), 2.50-2.57 (2Н, м, Н-13), 3.63-3.73 (4Н, м, Н-16, Н-17), 3.84 (1Н, дт, J=4.9, 9.2, Н-1экзо), 8.10 (1H, N-H). ЯМР 13С (100 МГц, CDCl3, δ, м.д.): 171.2 с (С-11), 66.37 т (С-16, С-17), 55.96 д (С-1), 54.78 т (С-13), 52.93 т (С-14, С-15), 48.10 с (С-6), 46.86 с (С-7), 44.68 д (С-3), 39.16 т (С-2), 35.81 т (С-5), 31.27 т (С-12), 26.83 т (С-4), 20.56 к, 20.03 к (Ме-8, Ме-9), 11.81 к (Ме-10). (CHCl3, с=0.6). Найдено: m/z 294.2300 [M]+ C17H30O2N2. Вычислено: М=294.2302.

2-(4-Метилпиперазин-1-ил)-N-((1R,2R,4R)-1,7,7-триметилбицикло|2.2.1]гептан-2-ил)ацетамид Ic

Выход 63%. ЯМР 1Н (400 МГц, CDCl3, δ, м.д.): 0.75 (3Н, с, Ме-10), 0.78 (3Н, с, Ме-8), 0.86 (3Н, с, Ме-9), 1.05-1.12 (1Н, м, Н-4эндо), 1.19-1.27 (1Н, м, Н-5эндо), 1.45-1.54 (2Н, м, Н-5экзо, Н-2эндо), 1.59-1.66 (1Н, м, Н-4экзо), 1.66-1.70 (1Н, м, Н-3), 1.78 (1Н, дд, J=9.0, 14.0, Н-2экзо), 2.21 (3Н, с, Ме-17), 2.29-2.55 (8Н, м, Н-13, Н-14, Н-15, Н-16), 2.91 (2Н, АВ-д, J=3.8, Н-12), 3.80 (1Н, дт, J=4.9, 9.2, Н-1экзо), 7.33 (1Н, N-H). ЯМР 13С (100 МГц, CDCl3, δ, м.д.): 168.89 с (С-11), 60.99 т (С-12), 55.58 д (С-1), 55.16 т (С-13, С-14), 53.19 т (С-16, С-15), 48.18 с (С-6), 46.86 с (С-7), 45.74 к (Me-17), 44.64 д (С-3), 39.01 т (С-2), 35.62 т (С-5), 26.80 т (С-4), 20.00 к, 19.98 к (Ме-8, Ме-9), 11.83 к (Ме-10). (CHCl3, с=0.9). Найдено: m/z 293.2460 [М]+ C17H31O1N3. Вычислено: М=293.2462.

Определение противовирусного действия соединений I а-с в отношении вирусов осповакцины (штамм Копенгаген) и оспы мышей (штамм К-1) в культуре клеток Vero

В работе были использованы типичные представители ортопоксвирусов - вирус осповакцины (штамм Копенгаген) и эктромелии (оспы мышей, штамм К-1), полученные из Государственной коллекции возбудителей вирусных инфекций и риккстсиозов ФБУН ГНЦ БВ «Вектор» Роспотребнадзора.

Вирусы нарабатывали в культуре клеток Vero. Концентрацию вирусов в культуральной жидкости определяли путем титрования методом бляшек в культуре клеток Vero, рассчитывали и выражали в десятичных логарифмах бляшко-образующих единиц в 1 мл (lg БОЕ/мл). Концентрация вирусов в использованных в работе образцах составляла от 5,6 до 6,1 lg БОЕ/мл. Наработанные и использованные в работе серии вирусов с указанным титром хранили при -70°С.

Оценку противовирусной эффективности препаратов проводили по адаптированной и модифицированной нами методике [Селиванов Б.А., Тихонов А.Я., Беланов Е.Ф., Бормотов Н.И., Кабанов А.С., Мазурков О.Ю., Серова О.А., Шишкина Л.Н., Агафонов А.П., Сергеев А.Н. Синтез и противовирусная активность 1-арил-3-{3,5-диоксо-4-азатетрацикло-[5.3.2.02,6.08,10|додец-11-ен-4-ил}мочевин // Химико-фармацевтический журнал. 2017. Т. 51. №6. С. 13-17]. В качестве препарата сравнения использовали коммерчески доступный препарат Цидофовир (Cidofovir, Vistide) производства Gilead Sciences Inc. (США).

В лунки 96-луночных планшетов, содержащих монослой клеток Vero в 100 мкл среды DMEM с 2% эмбриональной сыворотки, сначала вносили по 50 мкл серийных разведений исследуемых соединений, а потом по 50 мкл разведения ортопоксвируса в дозе 1000 БОЕ/лунку. Токсическая активность соединений определялась по гибели клеток под воздействием препарата в лунках планшета, в которые вирус не вносили. В качестве контролей использовали монослои клеток в лунках планшета, в которые вносили вирус без соединений (контроль вируса) и монослои клеток в лунках, в которые не вносили ни вирус, ни соединения (контроль культуры клеток). После инкубирования в течение 4 сут, монослой клеток окрашивали витальным красителем нейтральным красным в течение 2 ч. После удаления красителя и отмывки лунок от его несвязавшейся фракции добавляли лизирующий буфер.

Примечание:

ТС50 - токсическая концентрация препарата, при которой разрушается 50% клеток в неинфицированном монослое;

IC50 - ингибирующая концентрация препарата, при которой не разрушается 50% клеток в инфицированном монослое;

SI - индекс селективности препарата (TC50/IC50); данные представлены в виде М±I95, где М среднее значение; I95 - 95%-й доверительный интервал; n=3 количество повторов измерения ТС50 и IC50.

Количество красителя, адсорбированное живыми клетками монослоя, оценивали по оптической плотности (ОП), которая является показателем количества неразрушенных под влиянием вируса клеток в монослое. ОП измеряли на спектрофотометре Emax (Molecular Devices, США) при длине волны 490 нм. Учет результатов проводили с использованием планшетного спектрофотометра Emax и программы SoftMax 4.0 (Molecular Devices, США), которая автоматически рассчитывала 50% токсическую концентрацию (ТС50 в μМ) и 50% ингибирующую (эффективную) концентрацию (IC50 в μМ) препаратов. По соотношению 50% токсической и эффективной концентраций определяли индекс селективности (SI) препарата в отношении вируса: SI=TC50/IC50 (таблицы 1 и 2).

Примечание: см. примечание к таблице 1.

Таким образом, заявленные соединения обладают противовирусной активностью в отношении вирусов осповакцины и оспы мышей (эктромелии) типичных представителей ортопоксвирусов.

N-гетероциклические производные борниламина общей формулы Ia-с

где X=СНСН3, n=1 Ia; X=О, n=2 Ib; X=NCH3, n=2 Ic,

в качестве ингибиторов репродукции ортопоксвирусов.



 

Похожие патенты:

Изобретение относится к применению 3-N-замещенных борнилпропионатов формулы I: где R - -СН2-, -СНМе, в качестве ингибитора репродукции вируса Марбург. Технический результат: получено новое соединение, которое может быть использовано для подавления репродукции вируса Марбург.

Изобретение относится к способу получения соединения формулы (V), где R1 является C1-6 алкилом, арилом или бензилом, и Y является уходящей группой, который включает:a) взаимодействие соединения формулы (VI), с 2-хлорэтанолом в присутствии подходящего основания;иb) превращение продукта, полученного на стадии (а), в соединение формулы (V) с использованием реагента, выбранного из группы, состоящей из тионилхлорида, сульфонилгалогенидов, таких как сульфонилхлориды, сульфонильные ангидриды и галогениды фосфора.

Изобретение относится к новому производному N-ацилантраниловой кислоты, представленному следующей общей формулой 1, или к его фармацевтически приемлемой соли, в которой R1, R2, R3, Х1, X2, X3, X4 и А определены в формуле изобретения.

Изобретение относится к соединению формулы (I), включая любые его стереохимические изомерные формы, или его фармацевтически приемлемую соль, где А является фенилом или 6-членным ароматическим гетероциклом, содержащим 1 или 2 атома азота; где указанный фенил или 6-членный ароматический гетероцикл необязательно могут быть сконденсированы с фенилом; Z является CH2 или O; R1 является галогеном, гидроксилом, C1-4алкилом, C1-4алкилокси, или, если A является фенилом, два соседних заместителя R1 могут быть взяты вместе с получением радикала формулы: -O-CH2-O- (a-1) или -O-CH2-СН2-O- (a-2); R2 является водородом или C1-4алкилом; R3 и R4 каждый независимо является водородом, C1-6алкилом, C1-4алкилоксиC1-6алкилом или фенилC1-4алкилом; или R3 и R4, взятые вместе с атомом азота, к которому они присоединены, образуют радикал формулы (b-1) или (b-2) где X1 является CH2 или CHOH; и X2 является CH2, O или NR6; R5 является водородом, галогеном, C1-4алкилом или C1-4алкилокси; R6 является водородом, C1-4алкилом, C1-4алкилкарбонилом; n равно целому числу 0, 1 или 2; при условии, что соединение не является или его фармацевтически приемлемой солью.

Изобретение относится к области органической химии и может найти применение в аналитической химии и биологических исследованиях. .

Изобретение относится к аминосоединению формулы (I), его фармацевтически приемлемым аддитивным солям, гидратам или сольватам, обладающим иммунодепрессивным действием где R - Н или Р(=O)(ОН)2; Х - О или S; Y представляет собой -СН2СН2 - или -СН=СН-; Z представляет собой C1-5-алкилен, С2-5-алкенилен или C2-5-алкинилен; R 1 представляет собой СF3, R2 представляет собой С1-4алкил, замещенный ОН или галогеном; R 3 и R4 независимо представляют собой Н или C 1-4-алкил; А представляет собой необязательно замещенные С6-10-арил, гетероарил, содержащий 5-10 атомов в кольце, где 1 или 2 атома выбраны из N, О и S, С3-7-циклоалкил, необязательно конденсированный с необязательно замещенным бензолом, или гетероциклоалкил, содержащий 5-7 атомов в кольце, где 1 или 2 атома выбраны из N и О, где указанные заместители выбирают из С1-4-алкилтио, С1-4-алкилсульфинила, С1-4-алкидсульфонила, С2-5-алкилкарбонила, галогена, циано, нитро, С3-7-циклоалкила, С6-10 -арила, С7-14-аралкилокси, С6-10-арилокси, необязательно замещенных оксо или галогеном С2-3-алкиленокси, С3-4-алкилена или С1-2-алкилендиокси, необязательно замещенных галогеном C1-4-алкила или C1-4 -алкокси.

Изобретение относится к новым соединениям формулы (I), обладающим свойствами антагониста мускаринового рецептора М3, пригодного для лечения или предотвращения заболевания или состояния, в (патологию) которого вовлечена активность мускаринового рецептора М3, таких как респираторные заболевания.

Изобретение относится к способу получения циклоалкиламинов общей формулы Alk-R, где , , , , , , , Способ осуществляют путем взаимодействия циклического кетона с производным амина и муравьиной кислотой в присутствии катализатора.

Изобретение относится к химии производных адамантана, а именно к новому способу получения 2-(2-алкил(диалкил)амино)адамантил-алкил(арил)кетонов общей формулы которые могут представлять интерес в качестве полупродуктов в синтезе некоторых биологически активных веществ.

Изобретение относится к медицине и химико-фармацевтической промышленности и касается нового иммуномодулирующего и противовирусного средства на основе гибридной молекулы производных тритерпеноида-кумарина, а именно (2-((кумарин-7-ил)окси)этил) 3-гидрокси 20(29)-лупен-28-оата.

Изобретение относится к медицине и фармации. Предложено анальгезирующее и противовирусное средство, включающее замещенную 2-[1-(1Н-бензимидазол-2-ил)-3-фенил-1H-1,2,4-триазол-5-ил]пропановую кислоту формулы (I) в качестве активного вещества.

Группа изобретений касается стабильных составов вакцин. Предложены: вакцина для предотвращения брюшного тифа, вызыванного Salmonella typhi, включающая частично де-О-ацетилированный капсулярный Vi-полисахарид (ViPs) Salmonella typhi, конъюгированный с белком-носителем с формированием конъюгированного вакцинального антигена, причем ViPs дериватизированы с линекером, представляющим собой дигидразид адипиновой кислоты (ADH), или без него, причем указанный антиген присутствует в концентрации от 5 до 25 мкг на дозу, предпочтительно 25 мкг на дозу; предложены способы её получения (варианты), способ профилактики брюшного тифа и комбинированный состав вакцины, содержащий антиген, представляющей собой конъюгат Vi-полисахарида S.

Группа изобретений относится к медицине, конкретно к соединениям и способам для лечения расстройств, ассоциированных с задержкой жидкости или солевой перегрузкой, таких как сердечная недостаточность, в частности застойная сердечная недостаточность, хроническое заболевание почек, поздняя стадия заболевания почек, болезнь печени и задержка жидкости, вызванная агонистом гамма-рецептора, активируемого пролифератором пероксисом (PPAR).
Изобретение относится к медицине, а именно к инфекционным болезням и может быть использовано для экстренной постэкспозиционной профилактики клещевого энцефалита.

Изобретение относится к производным индазола, имеющим структуру формулы I, или к его фармацевтически приемлемым солям, в которой R1 и R2 имеют значения, указанные в формуле изобретения.

Изобретение относится к медицине и может быть использовано для применения соединения формулы (Iq) для получения лекарственного средства для лечения ретровирусной инфекции и его фармацевтически приемлемой соли, где ретровирусная инфекция вызвана ретровирусом, который представляет собой вирус лейкоза человека HTLV1.

Изобретение относится к медицине, а именно к гастроэнтерологии, и может быть использовано для лечения хронического эрозивного гастрита, ассоциированного с Helicobacter pylori (HP) и вирусом Эпшейн-Барр (ВЭБ).
Изобретение относится к фармацевтической промышленности, а именно к способу профилактики клещевого энцефалита. Способ профилактики клещевого энцефалита путем введения в организм противовирусного препарата отличается тем, что после удаления клеща на место присасывания производят аппликацию трансдермального пластыря для введения лекарственной композиции иммуноглобулина человека против клещевого энцефалита с тизолем: иммуноглобулин с титром антител к ВКЭ 1:320 1 мл, тизоль до 5,0 г на сухую кожу ровным тонким слоем из расчета 0,2—0,5 г на 1 дм2 от 1 до 3 раз в сутки.

Группа изобретений относится к медицине, а именно к ветеринарии, и может быть использована для предотвращения инфекции, вызванной вирусом Hendra и/или Nipah, у лошади или свиньи.

Изобретение относится к применению 3-N-замещенных борнилпропионатов формулы I: где R - -СН2-, -СНМе, в качестве ингибитора репродукции вируса Марбург. Технический результат: получено новое соединение, которое может быть использовано для подавления репродукции вируса Марбург.
Наверх