Способ определения тепловых свойств материалов

Изобретение относится к измерительной технике, в частности к измерению тепловых свойств материалов, например образцов горных пород. Согласно заявленному способу определения тепловых свойств материалов исследуемый образец приводят в тепловой контакт с первым контрольным образцом в виде полубесконечного тела, подвергают тепловому воздействию поверхность исследуемого образца, сопрягаемую с первым контрольным образцом. Затем поверхность исследуемого образца, противоположную первому контрольному образцу, приводят в тепловой контакт со вторым контрольным образцом в виде полубесконечного тела, выполненным из того же материала, что и первый контрольный образец, и регистрируют изменение температуры второго контрольного образца. Определяют поправку к используемому при расчете расстоянию между поверхностью второго контрольного образца, контактирующей с исследуемым образцом, и точкой регистрации температуры. Новым является то, что датчик температуры размещен во втором контрольном образце вблизи его торца, сопрягаемого с исследуемым образцом на расстоянии 0,68 r0 от оси контактирующих тел, где r0 - радиус исследуемого образца. Тепловое воздействие на исследуемый образец в процессе определения его тепловых свойств является постоянным. Дополнительно определяют коэффициент теплопередачи с боковых поверхностей первого и второго контрольных образцов и вычисляют коэффициент теплопроводности λ2 и температуропроводности а2 исследуемого образца. Технический результат – повышение точности и упрощение методики определения тепловых свойств материалов. 4 ил.

 

Изобретение относится к измерительной технике, в частности, к измерению тепловых свойств материалов, например, образцов горных пород.

Известен способ определения теплофизических свойств материалов (а.с. СССР №1004844, G01N 25/18 от 04.11.1981), заключающийся в том, что исследуемый образец в виде пластины приводят в тепловой контакт с первым контрольным образцом в виде полубесконечного тела, подвергают тепловому воздействию поверхность исследуемого образца, сопрягаемую с первым контрольным образцом, затем поверхность исследуемого образца, противоположную первому контрольному образцу, приводят в тепловой контакт со вторым контрольным образцом, выполненным из того же материала, что и первый контрольный образец и регистрируют изменение температуры второго контрольного образца.

В известном способе определения теплофизических свойств материалов задают фиксированную частоту и амплитуду синусоидальных тепловых колебаний в нагревателе. Затем производят измерение амплитуды и сдвига фазы синусоидальных колебаний температуры в контрольном образце. По измеренным амплитуде и сдвигу фазы синусоидальных колебаний температуры определяют теплопроводность и температуропроводность исследуемого образца.

К недостаткам описанного аналога относится неучет теплообмена с боковых поверхностей контактирующих тел, что приводит к систематическим погрешностям измерений. Кроме того, проблемой эксперимента остается неопределенность заложенного в теории метода расстояния между поверхностью второго контрольного образца, контактирующей с исследуемым образцом и точкой регистрации температуры, что приводит к дополнительной погрешности измерений.

Наиболее близким по технической сущности к изобретению (прототипом) является способ определения теплофизических свойств материалов (а.с. СССР №1332210, G01N 25/18 от 23.08.1987), заключающийся в том, что измерения проводят на плоском образце, зажатом между двумя протяженными контрольными образцами. В одной плоскости контакта задают периодические колебания теплового потока, а в другой плоскости регистрируют изменение температуры. Измеряют термические сопротивления и теплоемкости контактных слоев, исходя из их геометрических размеров и физических характеристик. Тепловые сопротивления и теплоемкости контактных слоев используются для вычисления поправок к расчетному расстоянию между источником тепла и регистратором температуры. Введение этой поправки обеспечивает повышение точности.

Существенным недостатком прототипа является то, что в нем не учитывается реально существующий теплообмен с боковых поверхностей контактирующих тел, что приводит к систематическим погрешностям измерений.

К недостаткам метода периодического нагрева, применяемого в прототипе, можно также отнести сложность его технической реализации, обусловленной малым уровнем амплитуд гармонических колебаний, сопоставимых с уровнем шумов аппаратуры, а также трудоемкость математической обработки полученных первичных результатов измерений (выделение постоянной составляющей и гармонический анализ).

Необходимо также отметить, что в качестве исследуемых образцов в прототипе используются пластины, у которых толщина значительно меньше (в 3 раза), чем поперечные размеры (диаметр). В этом случае возможности известного способа ограничены и не позволяют определять тепловые свойства материалов, которые существенно неоднородны по структуре. Так, например, при исследовании тепловых характеристик горных пород размер их образцов в направлении измерения должен на порядок превышать размер их структурных неоднородностей (зерен или пор).

Целью изобретения является повышение точности и упрощение методики определения тепловых свойств материалов.

Поставленная цель достигается тем, что согласно способу определения тепловых свойств материалов, исследуемый образец приводят в тепловой контакт с первым контрольным образцом в виде полубесконечного тела, подвергают тепловому воздействию поверхность исследуемого образца, сопрягаемую с первым контрольным образцом, затем поверхность исследуемого образца, противоположную первому контрольному образцу, приводят в тепловой контакт со вторым контрольным образцом в виде полубесконечного тела, выполненным из того же материала, что и первый контрольный образец и регистрируют изменение температуры второго контрольного образца, при этом дополнительно определяют поправку к используемому при расчете расстоянию между поверхностью второго контрольного образца, контактирующей с исследуемым образцом и точкой регистрации температуры.

При этом в отличие от прототипа, датчик температуры размещен вблизи торца второго контрольного образца, сопрягаемого с исследуемым образцом, на расстоянии 0,68 r0 (где r0 - радиус исследуемого образца) от оси контактирующих тел. Тепловое воздействие на исследуемый образец в процессе определения его тепловых свойств остается постоянным, дополнительно определяют коэффициент теплопередачи α с боковых поверхностей первого и второго контрольных образцов, а вычисление коэффициентов теплопроводности λ2 и температуропроводности а2 исследуемого образца осуществляют по формулам:

полученным из решения уравнения, описывающего изменение температуры со временем во втором контрольном образце:

где

Здесь:

q0=No/S - характерная величина теплового потока;

P, S - периметр и площадь поперечного сечения контактирующих тел;

N0 - мощность нагревателя.

Используя известное соотношение Cv2/a2 находят объемную теплоемкость Cv.

Описанное размещение датчика температуры способствует устранению систематических погрешностей измерений тепловых свойств материалов, связанных с неполным соответствием физической установки математической модели теплопереноса в системе контактирующих тел.

В результате повышается точность измерения тепло-, температуропроводности и теплоемкости исследуемых образцов материалов.

Повышение точности измерения тепловых свойств в предложенном способе достигают также путем учета теплопередачи с боковых поверхностей системы контактирующих тел (исследуемого образца, первого и второго контрольных образцов).

Для этого дополнительно определяют коэффициент теплопередачи с боковых поверхностей первого и второго контрольных образцов путем замены исследуемого образца контрольным образцом, выполненным из того же материала, что первый и второй контрольные образцы.

Учет теплопередачи через боковые поверхности системы контактирующих тел, кроме того, позволяет исследовать образцы, продольные размеры которых, при том же диаметре, могут существенно превышать аналогичные размеры образца в прототипе, что является существенным преимуществом перед прототипом и расширяет функциональные возможности теплофизического эксперимента.

Использование в экспериментах режима постоянного нагрева упрощает методику определения тепловых свойств материалов. Так, для измерения температуры применяют стандартные приборы, предназначенные для работы с термопарами. Обработку экспериментальных данных осуществляют на основе решения уравнения (3).

На фиг. 1 показана схема, поясняющая способ определения тепловых свойств материалов.

На фиг. 2 представлен график экспериментальных кривых температур в безразмерной форме.

На фиг. 3 представлен график вспомогательной функции ψ, построенной по замерам температуры.

На фиг. 4 показано сравнение теоретической кривой с экспериментальной для случая одинаковых тепловых свойств контактирующих тел.

Схема содержит первый контрольный образец 1 и второй контрольный образец 3, которые имеют известные и равные тепловые свойства (например, выполненные из полиметилметакрилата или кварцевого стекла КВ), плоский источник нагрева 4, представляющий собой, например, спираль, изготовленную из нихромовой фольги, исследуемый образец 2 в виде цилиндра и датчик температуры 5.

Для обработки экспериментальных данных формулу (3) приводят к следующему виду:

где

При этом, если положение датчика температуры 5 определено достаточно точно, то анализируя экспериментальные данные можно найти θ, Θ, γ, а затем α, λ2, А2. Однако, достаточно точно положение датчика температуры 5 определить практически невозможно. Поэтому определение тепловых свойств проводят в два этапа.

На первом этапе рассматривается ситуация, когда все три тела 1, 2 и 3 имеют одинаковые тепловые характеристики. В этом случае температура в выбранной точке сечения, положение которой определяют значениями координаты х, может быть найдена по более простому, чем (3) выражению:

Здесь

Формула (4) принимает следующий вид:

где

Поскольку формула (6) верна при то наиболее надежно из эксперимента находят величину θ. Используя выражение для θ, можно найти положение датчика температуры 5:

Так как формулы (5) и (6) определяют одну и ту же температуру, то подставляя (7) в (5) и минимизируя среднеквадратическое отклонение экспериментальных данных от значений температуры, вычисленных по формуле (5) с учетом (7), можно получить значение параметра β. Далее, используя связь параметра β с ν3, вычисляют коэффициент теплопередачи с боковой поверхности контактирующих тел 1, 2 и 3 и положение датчика температуры 5:

На втором этапе из анализа температурных замеров находят величины θ, Θ. Зная величины α, Xd, θ, Θ можно определить коэффициент теплопроводности исследуемого образца 2 λ2 по формуле (1) и коэффициент температуропроводности - по выражению (2).

Таким образом, способ определения тепловых свойств материалов осуществляют в два этапа.

На первом этапе в качестве исследуемого образца 2 используют образец -цилиндр, выполненный из того же материала, что и первый 1 и второй 3 контрольные образцы.

В начальный момент времени включают постоянный нагрев системы контактирующих тел 1, 2 и 3 с помощью плоского источника нагрева 4 и одновременно с помощью датчика температуры 5 проводят замеры температуры в контрольном образце 3, результаты которых записывают в файле File 1.

На основе полученных данных вычисляют коэффициент теплопередачи α с боковой поверхности контактирующих тел 1, 2 и 3, а также положение датчика температуры 5 xd по формулам (8) и (7).

На втором этапе в зазор между первым 1 и вторым контрольным образцом 3 заключают исследуемый образец 2. Аналогично первому этапу производят замеры температуры в контрольном образце 3, результаты которых записывают в новый файл (File_2).

По формулам (1) и (2) определяют коэффициенты теплопроводности λ2 и температуропроводности а2 исследуемого образца 2.

Приведем пример реализации предлагаемого способа определения тепловых свойств материалов.

На первом этапе, когда все три тела 1, 2 и 3 выполнены из одного и того же материала, проведены замеры температур и результаты записаны в файл File_l. Замеры проводились при следующих исходных данных:

U=1.6 v; - напряжение;

А=0.43 а; - ток;

L=0.00634; "м";- длина образца;

λ3=0.194;"Вт/м*град"; - теплопроводность эталона;

α3=1.15*10^-7; "м2/с"; - температуропроводность эталона;

r0=0.015; "м"; - радиус сечения;

t0=L23; "c"; - характерное время;

q0=U*А/(π*r0); - величина теплового потока;

θ*=L*q03=31.8085 С°; - характерная температура.

Построим вспомогательную функцию

Имея замеры температуры строят значения функции в точках (Фиг. 2).

Фиг. 3 иллюстрирует поведение функции ψ, построенной по экспериментальным данным. Для полученных замеров температур имеем следующие данные: n=10000, nт=2000, где:

n - номер последнего замера,

nT - номер замера, соответствующего времени Fo=T.

Выпишем функционал вида

где:

W=Ln(ψ0), n1 - определяют временем, начиная с которого справедлива формула (6),. n2=n-nT,.

Для функционала вида (10) находят значения параметров W и γ, при которых достигает минимума:

Здесь введены следующие обозначения:

Используя данные температурного замера (File_1) и формулы (11), получаем:

γ=0.161681, W=-1.44648

Зная γ, W, найдем следующие величины:

Вычисления по формулам (12) дают значения:

ψ0=0.235398, w0=0.390038

Далее путем минимизации функционала:

где - замеры температуры в заданном сечении (File_1),

находим температуру 0:

Для рассматриваемого эксперимента по формуле (14) находим: θ=0.673287.

Далее, в соответствии с формулой (5), можно составить функционал вида:

где

xd(β) - координата сечения расположения датчика температуры 5, определяемая формулой (7):

- функция параметра β, определяемая правой частью формулы (5), то есть

Путем минимизации функционала (15), находим параметр β и затем положение датчика температуры 5 по формуле (5):

β=0.434892, xd(β)=1.23041.

Зная эти величины, можно построить график функции по формуле (5), которая является точной для математической модели рассматриваемого процесса, когда тепловые свойства всех контактирующих тел 1, 2 и 3 одинаковые.

На фиг. 4 показано сравнение экспериментальной кривой с теоретической, построенной по полученным значениям величин β, и xd(β), где черная кривая - экспериментальная, синяя - теоретическая кривая, построенная по формуле (5).

Поскольку совпадение вполне удовлетворительное, то пользуясь первой формулой из системы (8), вычисляем коэффициент теплопередачи α:

α=7.89034.

Зная коэффициент теплопередачи α и положение датчика температуры 5, приступаем ко второму этапу эксперимента - определению тепловых свойств исследуемого образца 2.

На втором этапе проведен замер температуры для исследуемого образца 2 с помощью датчика температуры 5, расположенного в определенном месте сечения xd. Результаты записаны в новый файл (File_2). Далее, так же как и на первом этапе, по формулам (11), (12), (14), находят величины γ, θ∞, wo в следующем выражении, аппроксимирующем функцию θ3(Fo, X) (3):

Сравнивая (16) с (4), находим величину параметра Θ(Xd):

Для рассматриваемого случая получаем

Определив из эксперимента θ и Θ(Xd), по формулам (1), (2) находим теплопроводность и температуропроводность исследуемого образца 2. Для рассматриваемого эксперимента находим:

λ2=1; А2=0.922132 или в размерных переменных:

λ2=0.194 ВТ/м*град, а2=1.06045*10-7 м2

Для сравнения приведем данные ВНИИМ им. Д.И. Менделеева по тепловым характеристикам полиметилметакрилата: λ2=0.194 Вт/м*град,

α2=1.15*10-7 м2

Это сравнение показывает, что теплопроводность восстанавливается очень хорошо, а температуропроводность с относительной погрешностью в 7.8%. Физически это объясняется тем, что определение тепловых свойств проведено с помощью выражения для температуры второго контрольного образца 3, справедливого при больших значениях параметра Фурье. В такой ситуации температурное поле в большей степени определяется теплопроводностью и коэффициентом теплопередачи. Коэффициент температуропроводности играет существенную роль в формировании температурного поля при малых и средних значениях параметра Фурье. Используя этот факт, уточним значение коэффициента температуропроводности на основе известных коэффициентов теплопередачи и теплопроводности путем построения функции вида:

которая зависит только от безразмерной температуропроводности исследуемого образца 2. При этом в формуле (18) введены следующие обозначения:

na - номер замера, который можно принять за верхнюю границу временного диапазона, где существенное влияние на температурное поле оказывает коэффициент температуропроводности исследуемого образца 2 (для рассматриваемого примера

- температурные замеры из File_2, а - теоретическое значение температуры в моменты и в сечении Xd, когда безразмерная температуропроводность исследуемого образца 2 равна А2.

Для рассматриваемого исследуемого образца 2 было принято na=5500. Расчеты дали следующий результат А2=0.9937887 или

Таким образом, значение коэффициента температуропроводности существенно уточняется.

В результате повышается точность и упрощается методика определения тепловых свойств: тепло-, температуропроводности и теплоемкости исследуемых образцов материалов.

Способ определения тепловых свойств материалов, заключающийся в том, что исследуемый образец приводят в тепловой контакт с первым контрольным образцом в виде полубесконечного тела, подвергают тепловому воздействию поверхность исследуемого образца, сопрягаемую с первым контрольным образцом, затем поверхность исследуемого образца, противоположную первому контрольному образцу, приводят в тепловой контакт со вторым контрольным образцом в виде полубесконечного тела, выполненным из того же материала, что и первый контрольный образец, и регистрируют изменение температуры второго контрольного образца, при этом определяют поправку к использованному при расчете расстоянию между поверхностью второго контрольного образца, контактирующей с исследуемым образцом, и точкой регистрации температуры, отличающийся тем, что датчик температуры размещен во втором контрольном образце вблизи его торца, сопрягаемого с исследуемым образцом на расстоянии 0,68 r0 от оси контактирующих тел, где r0 - радиус исследуемого образца, причем тепловое воздействие на исследуемый образец в процессе определения его тепловых свойств является постоянным, затем определяют коэффициент теплопередачи α с боковых поверхностей первого и второго контрольных образцов, а вычисление коэффициентов λ2 теплопроводности и температуропроводности а2 исследуемого образца осуществляют по формулам:

полученным из решения уравнения, описывающего изменение температуры со временем во втором контрольном образце:

где

здесь:

q0=N0/S - характерная величина теплового потока;

P, S - периметр и площадь поперечного сечения контактирующих тел;

N0 - мощность нагревателя.



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно к неразрушающему контролю, и может быть использовано для измерения тепловых параметров полупроводниковых приборов после изготовления и монтажа на радиатор охлаждения.

Изобретение относится к технике измерения тепловых параметров компонентов силовой электроники и может быть использовано для определения переходного теплового сопротивления кристалл-корпус ZThJC(t) и теплового сопротивления кристалл-корпус в состоянии теплового равновесия RThJC транзисторов с полевым управлением, в частности биполярных транзисторов с изолированным затвором (IGBT) и полевых транзисторов с изолированным затвором (MOSFET) для контроля их качества.

Изобретение относится к теплофизическим измерениям и направлено на определение коэффициента теплопередачи в конвективно охлаждаемых деталях, например в лопатках газовых турбин.

Изобретение относится к области измерительной техники и касается стенда для исследования параметров взаимодействия лазерного излучения (ЛИ) с конструкционными материалами (КМ).

Изобретение относится к пищевой промышленности. Предложен аппарат для онлайн мониторинга процесса коагуляции молока.

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины. Технический результат заключается в обеспечении возможности одновременного определения теплопроводности пород и радиуса скважины, используя результаты измерения температуры в скважине во время гидратации цемента.

Изобретение относится к строительству, в частности к способу определения приведенного термического сопротивления неоднородных ограждающих конструкций или их фрагментов в климатической камере.

Изобретение относится к тепловым испытаниям, а именно к устройствам для определения теплопроводности материалов, и может быть применено для определения теплотехнических свойств материалов, например, при проектировании режимов термообработки металлоизделий.

Изобретение относится к тепловым испытаниям, а именно к определению теплопроводности материалов. Предложен способ измерения теплопроводности твердых материалов, который включает изготовление образца из исследуемого материала в виде стержня постоянного сечения, создание заданного перепада температур на концах образца путем регулирования мощности нагревателей и определение искомой величины с использованием математической зависимости по результатам измерения разности температур на концах образца и мощности нагревателей по достижении стационарного режима теплопередачи.

Изобретение относится к способу количественного анализа состава газовой смеси, в частности атмосферы гермооболочки (4) ядерной установки. Согласно предложенному изобретению предусмотрено измерительное устройство (2), содержащее детектор (16) теплопроводности с первым измерительным мостом, детектор (14) тепловыделения реакции со вторым измерительным мостом и общий блок (26) обработки результатов.

Изобретение относится к измерительной технике, в частности к измерению тепловых свойств материалов, например образцов горных пород. Согласно заявленному способу определения тепловых свойств материалов исследуемый образец приводят в тепловой контакт с первым контрольным образцом в виде полубесконечного тела, подвергают тепловому воздействию поверхность исследуемого образца, сопрягаемую с первым контрольным образцом. Затем поверхность исследуемого образца, противоположную первому контрольному образцу, приводят в тепловой контакт со вторым контрольным образцом в виде полубесконечного тела, выполненным из того же материала, что и первый контрольный образец, и регистрируют изменение температуры второго контрольного образца. Определяют поправку к используемому при расчете расстоянию между поверхностью второго контрольного образца, контактирующей с исследуемым образцом, и точкой регистрации температуры. Новым является то, что датчик температуры размещен во втором контрольном образце вблизи его торца, сопрягаемого с исследуемым образцом на расстоянии 0,68 r0 от оси контактирующих тел, где r0 - радиус исследуемого образца. Тепловое воздействие на исследуемый образец в процессе определения его тепловых свойств является постоянным. Дополнительно определяют коэффициент теплопередачи с боковых поверхностей первого и второго контрольных образцов и вычисляют коэффициент теплопроводности λ2 и температуропроводности а2 исследуемого образца. Технический результат – повышение точности и упрощение методики определения тепловых свойств материалов. 4 ил.

Наверх