Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров



Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров
Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров
Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров
B22F2304/10 - Порошковая металлургия; производство изделий из металлических порошков; изготовление металлических порошков (способы или устройства для гранулирования материалов вообще B01J 2/00; производство керамических масс уплотнением или спеканием C04B, например C04B 35/64; получение металлов C22; восстановление или разложение металлических составов вообще C22B; получение сплавов порошковой металлургией C22C; электролитическое получение металлических порошков C25C 5/00)

Владельцы патента RU 2688025:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU)

Изобретение относится к порошковым материалам для получения покрытий методом сверхзвукового холодного газодинамического напыления. Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров получен электроэрозионным диспергированием отходов алюминия в дистиллированной воде при ёмкости разрядных конденсаторов 55 мкФ, напряжении 100 В и частоте импульсов 140 Гц. Порошковый материал имеет средний размер частиц 20-25 мкм. Обеспечивается уменьшение пористости покрытий и увеличение твердости и адгезионной стойкости покрытий. 3 ил., 3 пр.

 

Изобретение относится к порошковой металлургии, в частности к способам получения износо-коррозионно-стойких порошковых наноматериалов для получения покрытий методом сверхзвукового холодного газодинамического напыления, применяемых для создания износо- и коррозионно-стойких беспористых покрытий. При напылении методом сверхзвукового холодного газодинамического напыления не происходит деградации структуры напыляемого материала, т.е. химический, структурный и фазовый состав покрытия полностью соответствует составу исходного порошкового материала разработанного сплава.

Известен порошковый материал для холодного газодинамического напыления, содержащий порошок алюминия, порошок олова, порошок цинка, (Al-Sn-Zn), отличающийся тем, что в состав порошкового материала введен электрокорунд (Al2O3) 5-10 мас. %, компоненты находятся в следующем соотношении, мас. %: олово (6,0-3,0); цинк (6,0-9,0); электрокорунд (Al2O3) (5,0-10,0); алюминий (остальное), (Заявка: 2009116908/02, 04.05.2009 опубл. 10.11.2010.).

Наиболее близким по технической сущности к заявляемому изобретению является порошковый материал А-20-11 (алюминий, цинк, корунд) выпускаемой фирмой ДИМЕТ применяемый для ремонта коррозионных и механических повреждений, сколов, пробоин, прогаров, заполнение трещин, промоин и других дефектов в алюминиевых, стальных и чугунных деталях. [URL.: http://dimet.info/catalog/poroshki/poroshok-a-20-11/] выбранный в качестве прототипа.

К недостаткам известных способов, в том числе и прототипа, относится высокая пористость агломерированных наноструктурных частиц, при напылении которых образуется высокое адгезивное функциональное покрытие, однако из-за высокой пористости (10-15%) существенно снижается когезионная прочность и коррозионная стойкость покрытия. Практика показывает, что для работы в экстремальных условиях эксплуатации исходные порошки и покрытия на их основе должны иметь пористость не более 3-5%, в противном случае имеет место либо механическое, либо коррозионное образование и раскрытие трещин, и разрушение покрытий. К недостаткам также можно отнести высокую стоимость и экологические проблемы, связанные с получением порошкового материала. В составе прототипа содержится порошок цинка, что оказывает негативное воздействие при восстановлении дефектной головки блока цилиндра (ГБЦ). Так как температура плавления цинка 419,5°C, а температура плавления алюминия 660,3°C, соответственно при воздействии высоких температур покрытие, полученное с использованием порошкового материала А-20-11 более подвержено воздействию температур и выше вероятность образования коробления поверхности.

В основу изобретения положена задача осуществить такое получение порошкового материала для газодинамического напыления, чтобы было обеспечено снижение затрат и повышение эффективности процесса нанесения покрытий, а также уменьшение пористости покрытий и увеличение твердости и адгезионной стойкости покрытий.

Поставленная задача решается тем, что порошковый материал для газодинамического напыления получается методом электроэрозионного диспергирования алюминиевых отходов в воде дистиллированной при следующих параметрах установки: емкость разрядных конденсаторов 55 мкФ, напряжение 100 В, частота импульсов 140 Гц. Средний размер частиц составляет 20-25 мкм.

Получаемые этим способом порошковые материалы, имеют в основном сферическую и эллиптическую форму частиц (это позволяет уменьшить пористость покрытий). Причем, изменяя электрические параметры процесса диспергирования (напряжение на электродах, емкость конденсаторов и частоту следования импульсов) можно управлять шириной и смещением интервала размера частиц, а также производительностью процесса.

Порошковый материал получали в следующей последовательности.

На первом этапе производили сортировку отходов, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой - водой дистиллированной, отходы загружали в реактор. Монтировали электроды. Смонтированные электроды подключали к генератору. Устанавливали необходимые параметры процесса: частоту следования импульсов, напряжение на электродах, емкость конденсаторов.

На втором этапе - этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фигуре 1. Импульсное напряжение генератора 2 прикладывается к электродам 5 и далее к отходам 8 (в качестве электродов служит тот же материал, который диспергируют). Алюминиевые отходы загружаются в реакторе 3. При достижении напряжения определенной величины происходит электрический пробой рабочей среды 10, находящийся в межэлектродном пространстве, с образованием канала разряда. Благодаря высокой концентрации тепловой энергии, материал в точке разряда плавится и испаряется, рабочая среда испаряется и окружает канал разряда газообразными продуктами распада (газовым пузырем 9). В результате развивающихся в канале разряда и газовом пузыре значительных динамических сил, капли расплавленного материала выбрасываются за пределы зоны разряда в рабочую среду, окружающую электроды, и застывают в ней, образуя каплеобразные частицы порошка 7. Регулятор напряжения 1 предназначен для установки необходимых значений напряжения, а встряхиватель 4 передвигает один электрод, что обеспечивает непрерывное протекание процесса ЭЭД.

На третьем этапе проводится выгрузка рабочей жидкости с порошком из реактора.

На четвертом этапе происходит выпаривание раствора, сушка порошка, взвешивание, фасовка, упаковка и последующий анализ порошка.

Напыление порошкового материалы производили в следующей последовательности.

1. Вымыть ГБЦ горячим щелочным раствором для обнаружения трещины. В данном случае она находится между седлами выпускных клапанов.

2. Удлинить поврежденный участок. Трещину необходимо максимально глубоко расчистить использовать сверло и фрезу, чтобы полностью удалить следы трещины. Основными задачами подготовки поверхности перед напылением являются удаление следов износа, придание ей правильной геометрической формы и увеличение ее площади, что в последующем благоприятно сказывается на работоспособности и сцепляемостинапыленных покрытий.

3. Закрыть каналы защитными крышками, чтобы избежать попадания в них порошка.

Засыпать ПМ в бункеры питателей установки ДИМЕТ-404. В первый бункер засыпается ПМ корунда, а во второй ПМ алюминия.

Выбрать первый питатель на панели управления установки и произвести абразивную очистку установкой ДИМЕТ-404 с использованием ПМ корунда.

6. Выбрать второй питатель, напыление алюминиевого ПМ производится на расстоянии 10-15 мм, что обеспечивает высокую адгезию и однородность ПМ. Пистолет необходимо держать под углом 90- 45°. Экспериментально установлено, что напыление ПМ рекомендуется производить при следующих режимах установки: давление воздуха (по манометру на МПВ-К на стойке) - 0,5 МПа; температурный режим №3; расход порошка - 0,2 г/с.

7. Зачистить и произвести шлифовку поверхности ГВЦ. Шлифование производится на плоскошлифовальном станке 35722.

Техническим результатом является создание порошкового материала для нанесения покрытий методами газодинамического напыления, позволяющего получать покрытия с высокой адгезионной прочность и твердость, а также низкой пористостью (до 3%).

При этом достигается следующий технический результат: порошковый материал для нанесения покрытий методами газодинамического напыления, с частицами правильной сферической формы (средний размер частиц составляет 20-25 мкм) с невысокими энергетическими затратами и экологической чистотой процесса способом электроэрозионного диспергирования (ЭЭД). При этом значительно уменьшается пористость, а также увеличивается адгезионная прочность и твердость.

Способ позволяет получить порошки без использования химических реагентов, что существенно влияет на себестоимость порошкового материала и позволяет избежать загрязнения рабочей жидкости и окружающей среды химическими веществами.

Пример 1.

В качестве порошкового материала используют порошок фирмы ДИМЕТ марки А-20-11. Средний размер частиц составляет 40-60 мкм.

Напыление покрытий из предлагаемого электроэрозионного порошкового материала размерностью от 40 до 60 мкм производилось на установке ХГДН типа ДИМЕТ-404. Напыление порошкового материалапроизводилось при следующих режимах установки ДИМЕТ - 404:

- давление воздуха (по манометру на МПВ-К на стойке) - 5,0 кгс/см2;

- температурный режим №3 (положение переключателя «температурный режим»;

- расход порошка - 0,2 г/с.

С помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 200 3D», были получены спектры характеристического рентгеновского излучения в различных точках на поверхности образца. Установлено что основными элементами газодинамических покрытий образца являются Al, Zn, С и O (Фигура 2).

Пористость была исследована с помощью оптического инвертированного микроскопа «OLYMPUS GX51», оснащенного системой автоматизированного анализа изображений «SIMAGIS Photolab» и составила 17.4 %.

Для испытания образцов с целью определения адгезионной/когезионной прочности, стойкости к царапанью и определения механизма разрушения использовали скретч-тестер Revetest (CSM Instruments). Было установлено, что покрытие разрушается при воздействии 65,46 Н.При царапании, покрытие на образце со стандартным ПМ марки А-20-11 истирается до подложки, но не отслаивается, то есть разрушается по когезионному механизму, связанному с пластической деформацией и образованием усталостных трещин в материале покрытия

Испытания твердости образцов по поверхности проводили с помощью прибора для испытания на твердость по Бринеллю 3000 BLD (Instron) в соответствии с ГОСТом 9012-59 (Металлы. Метод измерения твердости по Бринеллю).Твердость покрытия составила 94,3 НВ.

Пример 2.

В качестве порошкового материала используют порошок, полученный методом электроэрозионного диспергирования алюминиевых отходов в воде дистиллированной при следующих параметрах установки: ёмкость разрядных конденсаторов 40 мкФ, напряжение 110 В, частота импульсов 120 Гц. Средний размер частиц составляет 35-40 мкм.

Напыление покрытий из предлагаемого электроэрозионного порошкового материала размерностью от 35 до 40 мкм производилось на установке ХГДН типа ДИМЕТ-404. Напыление порошкового материала производилось при следующих режимах установки ДИМЕТ - 404:

- давление воздуха (по манометру на МПВ-К на стойке) - 5,0 кгс/см2;

- температурный режим №3 (положение переключателя «температурный режим»;

- расход порошка - 0,2 г/с.

С помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 200 3D», были получены спектры характеристического рентгеновского излучения в различных точках на поверхности образца. Установлено что основными элементами газодинамических покрытий образца являются Al и O. Пористость была исследована с помощью оптического инвертированного микроскопа «OLYMPUS GX51», оснащенного системой автоматизированного анализа изображений «SIMAGIS Photolab» и составила 7.1 %.

Для испытания образцов с целью определения адгезионной/когезионной прочности, стойкости к царапанью и определения механизма разрушения использовали скретч-тестер Revetest (CSM Instruments). Было установлено, что покрытие разрушается при воздействии 72,24 Н, причем истирание покрытия до подложки не наблюдается.

Испытания твердости образцов по поверхности проводили с помощью прибора для испытания на твердость по Бринеллю 3000 BLD (Instron) в соответствии с ГОСТом 9012-59 (Металлы. Метод измерения твердости по Бринеллю).Твердость покрытия составила 98,9НВ.

Пример 3.

В качестве порошкового материала используют порошок, полученный методом электроэрозионного диспергирования алюминиевых отходов в воде дистиллированной при следующих параметрах установки: ёмкость разрядных конденсаторов 55 мкФ, напряжение 100 В, частота импульсов 140 Гц. Средний размер частиц составляет 20-25 мкм.

Напыление покрытий из предлагаемого электроэрозионного порошкового материала размерностью от 20 до 25 мкм производилось на установке ХГДН типа ДИМЕТ-404. Напыление порошкового материала производилось при следующих режимах установки ДИМЕТ - 404:

- давление воздуха (по манометру на МПВ-К на стойке) - 5,0 кгс/см2;

- температурный режим №3 (положение переключателя «температурный режим»;

- расход порошка - 0,2 г/с.

С помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп «QUANTA 200 3D», были получены спектры характеристического рентгеновского излучения в различных точках на поверхности образца. Установлено что основными элементами газодинамических покрытий образца являются Al и O (Фигура 3).

Пористость была исследована с помощью оптического инвертированного микроскопа «OLYMPUS GX51», оснащенного системой автоматизированного анализа изображений «SIMAGIS Photolab» и составила 2.8 %.

Для испытания образцов с целью определения адгезионной/когезионной прочности, стойкости к царапанью и определения механизма разрушения использовали скретч-тестер Revetest (CSM Instruments). Было установлено, что покрытие разрушается при воздействии 81,39Н, причем истирание покрытия до подложки не наблюдается.

Испытания твердости образцов по поверхности проводили с помощью прибора для испытания на твердость по Бринеллю 3000 BLD (Instron) в соответствии с ГОСТом 9012-59 (Металлы. Метод измерения твердости по Бринеллю). Твердость покрытия составила 98,9НВ.

Применение предлагаемого способа получения порошкового материала для нанесения покрытий методами газодинамического напылений позволяет понизить пористость покрытий по сравнению с прототипом и обеспечить их высокие прочностные характеристики.

Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров, отличающийся тем, что он получен электроэрозионным диспергированием отходов алюминия в дистиллированной воде при ёмкости разрядных конденсаторов 55 мкФ, напряжении 100 В и частоте импульсов 140 Гц, причем средний размер частиц составляет 20-25 мкм.



 

Похожие патенты:

Изобретение относится к способу и установке для обработки, в частности к обработке шлака для извлечения из него одного или более полезных компонентов. Способ обработки материала, который представляет собой верхний слой из процесса плавки металла, причем указанный верхний слой представляет собой шлак и содержит одну или более солей и один или более металлов, включающий: а) подачу шлака в пресс для шлака и прессование шлака; б) подачу прессованного шлака на стадию измельчения, включающую стадию дробления; где стадии (а) и (б) осуществляют до того, как температура шлака, извлеченного из печи, понизится ниже 350°C; указанный способ также включает: в) подачу шлака на стадию выщелачивания; г) получение продукта выщелачивания со стадии выщелачивания; д) подачу продукта выщелачивания на стадию распылительной сушки; е) получение твердого вещества со стадии распылительной сушки.

Изобретение может быть использовано в металлургии. Для получения гранулята молибденсодержащего отработанные молибденсодержащие катализаторы загружают в прокалочную вращающуюся печь и при температуре 135-180°С проводят удаление серы и влаги.

Изобретение относится к обогащению полезных ископаемых, в частности к аппаратам для извлечения тонкого золота из глинистых золотосодержащих пород. Устройство для вакуумной дезинтеграции золотоносных глинистых пород содержит ресивер, вакуумный насос, подключенный к ресиверу, рабочую камеру, соединенную при помощи короткого трубопровода с быстродействующим клапаном с ресивером, и имеющую быстродействующий клапан напуска атмосферы.

Изобретение относится к переработке вторичного сырья с получением цветных металлов и может быть использовано для переработки кусковых отходов твердых сплавов на основе карбида вольфрама, титана, тантала с кобальтовой или никелевой связкой.

Изобретение относится к способу переработки угольной пены. Способ включает обратную флотацию угольной пены водой с разделением ее на хвосты флотации и флотационный криолит, который после сгущения и фильтрации возвращают на электролитическое производство, выщелачивание хвостов флотации с получением осадка и фторсодержащего раствора, при этом выщелачивание хвостов флотации ведут слабощелочным раствором каустической соды при температуре не более 80°С, в течение 2,0÷4,0 часов.
Изобретение относится к способам переработки нефти, в частности, к способам извлечения ванадия и никеля из нефтяного кокса. Способ включает измельчение нефтяного кокса до частиц, размер которых не превышает 0,05 мм, в присутствии 8-10 мас.

Изобретение относится к способу переработки огнеупорной части отработанной футеровки алюминиевых электролизеров. Способ включает измельчение футеровки в водной среде, выщелачивание, разделение жидкой и твердой фаз пульпы, обработку раствора с выделением фтористого продукта, пульпу обрабатывают раствором надшламовой воды при температуре не более 60°С в течение 2-4 часов, пульпу после выщелачивания направляют на сгущение, фильтрацию и сушку с получением шамотного концентрата.

Изобретение относится к получению порошка псевдосплава W-Ni-Fe из отходов. Проводят электроэрозионное диспергирование отходов псевдосплава W-Ni-Fe в виде стружки в дистилированной воде при частоте следования импульсов 156 Гц, напряжении на электродах 100 В и емкости разрядных конденсаторов 65,5 мкФ.

Изобретение относится к получению спеченных изделий из электроэрозионных вольфрамсодержащих нанокомпозиционных порошков. Ведут электроэрозионное диспергирование отходов стали Р6М5 и твердого сплава ВК8 в керосине осветительном.

Изобретение касается получения серебра и выделения концентрата металлов платиновой группы при аффинаже сплава драгоценных металлов (сплава Доре), полученного при переработке медеэлектролитных шламов.

Изобретение относится к способу и установке для обработки, в частности к обработке шлака для извлечения из него одного или более полезных компонентов. Способ обработки материала, который представляет собой верхний слой из процесса плавки металла, причем указанный верхний слой представляет собой шлак и содержит одну или более солей и один или более металлов, включающий: а) подачу шлака в пресс для шлака и прессование шлака; б) подачу прессованного шлака на стадию измельчения, включающую стадию дробления; где стадии (а) и (б) осуществляют до того, как температура шлака, извлеченного из печи, понизится ниже 350°C; указанный способ также включает: в) подачу шлака на стадию выщелачивания; г) получение продукта выщелачивания со стадии выщелачивания; д) подачу продукта выщелачивания на стадию распылительной сушки; е) получение твердого вещества со стадии распылительной сушки.

Изобретение относится к комплексу для переработки бокситов с получением из них глинозема. Комплекс содержит последовательно расположенные мельницу для размола боксита в оборотном растворе, сушилку, первую мешалку для выщелачивания, сгуститель, промыватель, вторую мешалку для обескремнивания, декомпозер, трубчатую печь, при этом после промывателя установлена третья мешалка для выщелачивания шлама в разбавленном сернокислом растворе, фильтровальное устройство, соединенное с третьей мешалкой подающим пульпопроводом, а также брикетирующий пресс для уплотнения высокожелезистого красного шлама, соединенный с фильтровальным устройством транспортером, и экстрактор для выделения солей РЗМ, соединенный с фильтровальным устройством отводящим трубопроводом.

Изобретение относится к переработке металлизированных упаковочных материалов, в частности - картонных коробок для напитков или блистерных упаковок. Металлизированный упаковочный материал подают в сепарационную систему, в которой удаляют растворимые в соляной кислоте и отличающиеся от алюминия металлы, представляющие собой железо или медь.

Изобретение относится к компоненту алюминиевого электролизера, содержащему от 0,01 до менее чем 0,5 вес.% добавок металлов, причем добавки металлов выбраны из группы, состоящей из Cr, Mn, Mo, Pt, Pd, Fe, Ni, Co и W и их комбинаций; остальным являются TiB2 и неизбежные примеси, причем неизбежные примеси составляют менее 2 вес.% компонента; при этом компонент имеет плотность от по меньшей мере 85% до не более чем 99% от его теоретической плотности.

Изобретение относится к способу и устройству для получения металлического алюминия. Способ включает предварительную двухстадийную непрерывную обработку бентонитовой глины в виде аэровзвеси, фракционный состав которой составляет от 0,001-0,05 мм с последующим ее активированием электростатическим полем напряженностью Е≈1000 В/м.
Изобретение относится к способу получения одного или нескольких металлов из красного шлама, боксита, карстового боксита, латеритного боксита, глины и т.п., в частности к способу получения элементарного алюминия электролизом AlCl3 в ячейке для электролиза.

Изобретение относится к получению алюминиевого нанопорошка из отходов электротехнической алюминиевой проволоки, содержащих не менее 99,5 % алюминия. Ведут электроэрозионное диспергирование отходов в дистиллированной воде при частоте следования импульсов 95 - 105 Гц, напряжении на электродах 90 - 10 В и емкости конденсаторов 65 мкФ с последующим центрифугированием раствора для отделения крупноразмерных частиц от нанопорошка.

Изобретение относится к cпособу переработки глиноземсодержащего сырья и может быть использовано в спекательной технологии получения глинозема и содопродуктов из нефелиновой руды.

Настоящее изобретение относится к усовершенствованиям в области химии, относящимся к получению оксида алюминия путем экстракции алюминия из материалов и/или оксида титана путем экстракции титана из материалов, содержащих титан.

Изобретения относятся к отделению ионов железа от ионов алюминия, содержащихся в кислотном составе. Данные способы включают взаимодействие кислотного состава с основным водным составом, имеющим pH по меньшей мере 10,5, для получения осадочного состава, поддерживая pH осадочного состава на уровне, превышающем 10,5, для выделение ионов железа.

Изобретение относится к электроэрозионной обработке отверстий полым электрод-инструментом. Устройство содержит блок коммутации с электромагнитными клапанами, электронно-вычислительную машину, датчики межэлектродного промежутка, гидравлическую магистраль низкого давления смазочно-охлаждающего технологического средства и пневматическую магистраль.
Наверх