Ионизационная камера

Изобретение относится к электронной технике, точнее к детекторам излучения рентгеновских экспонометров и приборам дозиметрического контроля, которые используются как в промышленной, так и медицинской рентгенологии. Технический результат - расширение арсенала технических средств измерения физических параметров ионизированного излучения за счет обеспечения возможности синхронного измерения трех типов доз (кожная, доза на хрусталике и тканеэквивалентная). Ионизационная камера содержит полый корпус, заполненный газом, с входным рентгенопрозрачным окном, внутри которого находятся измерительные электроды, плоскость рабочей поверхности которых параллельна плоскости входного ока, и охранный электрод, состоит из трех секций, расположенных последовательно друг за другом вдоль геометрической оси корпуса камеры, при этом в каждой секции электроды выполнены в форме соосно расположенных центрального круга и внешней окружности, причем материалы электродов подобраны таким образом, что их потенциальные барьеры, образованные двойным электрическим слоем на границе соприкосновения поверхности материала электрода и газа, образуют собственное электрическое поле между этими электродами внутри измерительного объема камеры, а охранный электрод имеет форму полого цилиндра, которым является корпус камеры. 3 ил.

 

Предлагаемое изобретение относится к электронной технике, точнее к детекторам излучения рентгеновских экспонометров и приборам дозиметрического контроля, которые используются как в промышленной, так и медицинской рентгенологии.

Известна ионизационная камера, содержащая рабочую камеру, заполненную азотом с входным и выходным окнами закрытыми соответственно высоковольтным и собирающим электродами, подключенными к стабилизированному источнику электрического напряжения (Радиационная дозиметрия под редакцией Н.Г. Гусева и К.А. Труханова.- М.: Иностр. Литература, 1958. - С. 33).

Известна также ионизационная камера, содержащая полый корпус из диэлектрика с входным и выходным окнами, закрытыми соответственно высоковольтным и собирающим электродами, подключенными к стабилизированному источнику электрического напряжения, между которыми находится охранный электрод (Рентгенотехника Справочник, Том 1 под редакцией В.В. Клюева. - М.: Машиностроение, 1992. - С. 447).

Известна также ионизационная камера, состоящая из расположенных напротив и изолированных друг от друга собирающего и высоковольтного электродов, а также охранного электрода, представляющего собой металлический корпус камеры, причем собирающий электрод, расположенный первым по ходу пучка рентгеновского излучения, выполнен из рентгенопрозрачного изоляционного материала, на который нанесено металлическое покрытие, например, из Ni, Сu, Zn, а высоковольтный электрод выполнен из изоляционного материала с нанесенным на него тканеэквивалентным покрытием (С) (Патент RU 2125752 от 1999 г).

Основными недостатками вышеуказанных камер являются ограниченные возможности их использования из-за влияния металлического электрода на спектр проникающего излучения, проявляемого подложками высоковольтного и собирающего электродов, а также низкая помехозащищенность от электростатических и электромагнитных полей. Поэтому известные камеры применяются исключительно в нормальных условиях и позволяют измерять разные типы облучения (кожная доза, доза на хрусталике и тканеэквивалентную дозу) последовательно во времени, что при работе с не стабильными источниками излучения приведет к высоким погрешностям измерения.

Наиболее близким техническим решением к заявляемому объекту является ионизационная камера, состоящая из охранного, двух высоковольтных и собирающего электродов, при этом собирающий электрод размещен между высоковольтными электродами и разделяет камеру на две полости (А.с. СССР 113964, кл. Н01J 47/02, 1958), которая была выбрана нами в качестве прототипа.

Недостатками этого технического решения является меньший динамический диапазон в сравнении с предлагаемым решением и принципиальная невозможность проведения синхронных измерений доз (кожная доза, доза на хрусталике и тканеэквивалентнтная доза), что при работе с не стабильными источниками излучения приведет к высоким погрешностям измерения или потребует использования трех камер одновременно. Кроме того, в конструкции прототипа необходимо наличие высокостабилизированного электрического напряжения питания электродов камеры (не менее 0,02%) для обеспечения высокой точности измерения, так как нестабильность питающего напряжения (ее переменная составляющая накладывается на измеряемый сигнал) вызывает погрешности в измерениях. Поскольку высокую стабильность питающего напряжения технически обеспечить затруднительно, стоимость таких камер не всегда доступна для потребителя.

Целью настоящей работы является создание ионизационной камеры без внешнего источника питания, используя разность потенциалов между электродами за счет соответствующего подбора их материала, обеспечивающей новую функциональную возможность - синхронного измерения трех типов доз (кожная, доза на хрусталике и тканеэквивалентная).

Технический результат изобретения выражается в расширении технических средств измерения физических параметров ионизированного излучения. Он достигается тем, что ионизационная камера, содержащая полый корпус, заполненный газом, с входным рентгенопрозрачным окном, внутри которого находятся измерительные электроды, плоскость рабочей поверхности которых параллельна плоскости входного ока, и охранный электрод, состоит из трех секций, расположенных последовательно друг за другом вдоль геометрической оси корпуса камеры, при этом в каждой секции электроды выполнены в форме соосно расположенных центрального круга и внешней окружности, причем материалы электродов подобраны таким образом, что их потенциальные барьеры, образованные двойным электрическим слоем на границе соприкосновения поверхности материала электрода и газа, образуют собственное электрическое поле между этими электродами внутри измерительного объема камеры, а охранный электрод имеет форму металлического кольца, которым является корпус камеры.

Далее описание сопровождается рисунками и пояснениями к ним.

На фиг. 1 показана конструкция предложенной камеры (вид сбоку в разрезе), на фиг. 2 показано сечение А-А фиг. 1, а на фиг. 3 - электронная блок-схема камеры.

Ионизационная камера, имеет полый герметичный корпус 1, изготовленный из электропроводящего материала, например из алюминия, заполненный газом, например атмосферным воздухом. Корпус 1 камеры имеет входное рентгенопрозрачное окно 2, через которое в камеру проходит рентгеновское (или гамма) излучение γ. Внутри корпуса 1 камеры закреплены измерительные электроды, плоскость рабочей поверхности которых параллельна плоскости входного ока 2. Камера состоит из трех секций S1, S2, S3, расположенных последовательно друг за другом вдоль геометрической оси ii корпуса 1 камеры, при этом в каждой секции электроды выполнены в форме соосно расположенных центрального круга и внешней окружности. В секции S1 электроды 3а и 3b выполнены в виде слоя углерода, напыляемого на бериллиевую пластину 4. Электроды 3а и 3b разделены между собой канавкой 5. Площадь электрода 3а=1 см2, а площадь электрода 3b=10 см2. Электроды 6а и 6b выполнены в виде слоя алюминия, напыляемого на подложку 7 из рентгенопрозрачного диэлектрика, например лавсана. Электроды 6а и 6b разделены между собой канавкой 8. Аналогичные канавки выполнены между центральным и боковым электродами в других секциях. Размер межэлектродного зазора 9 составляет 3 мм. В секции S2 электроды 10а и 10b выполнены в виде слоя углерода, напыляемого на бериллиевую пластину 11. Электроды 12а и 12b выполнены в виде слоя алюминия, напыляемого на подложку 13 из рентгенопрозрачного диэлектрика, например лавсана. Размер межэлектродного зазора 14 составляет 10 мм. В секции S3 электроды 15а и 15b выполнены в виде слоя углерода, напыляемого на бериллиевую пластину 16. Электроды 17а и 17b выполнены в виде слоя алюминия, напыляемого на подложку 18. Размер межэлектродного зазора 19 составляет 20 мм. Размеры межэлектродных зазоров 9, 14, 19 выбрано в соответствии с рекомендациями по дозиметрии сильно проникающих излучений «Определение индивидуальных эффективных и эквивалентных доз и организация контроля профессионального облучения в контролируемых условиях обращения с источниками излучения. Общие требования. МУ 2.6.1.016-2000. М. Министерство РФ по атомной энергии, Министерство Здравоохранения РФ, Федеральное управление медико-биологических проблем, 2001».

Секции S1, S2, S3 предназначены для синхронного измерения трех типов доз (кожная (секция S1,), доза на хрусталике (секция S2,) и тканеэквивалентная (секция S3)).

В секции S1 измерительные электроды 3а, 6а и 3b, 6b соединены токопроводом попарно с электрическим разъемом, соответственно V1 и V2; в секции S2 измерительные электроды 10a, 12а и 10b, 12b соединены токопроводом попарно с электрическим разъемом, соответственно V3 и V4, а в секции S3 измерительные электроды 15а, 17а и 15b, 17b соединены токопроводом попарно с электрическим разъемом, соответственно V5 и V6. Все электрические разъемы V1 - V6 закреплены на корпусе 1 камеры и предназначены для подключения измерительных электродов к электронному блоку обработки электрических сигналов (фиг. 3).

В качестве охранного электрода используется токопроводящий корпус 1 камеры, представляющий собой электростатический экран.

Камера работает следующим образом.

Кванты рентгеновского или гамма-излучения γ, пронизывая камеру по ее оси, регистрируются ионизационной камерой за счет ионизации ее измерительного объема при взаимодействии квантов с молекулами воздуха и электронами, вышедшими из электродов. Ионизационный ток снимается с каждой пары измерительных электродов в каждой секции. Величина ионизационного тока секций пропорциональна интенсивности рентгеновского или гамма-излучения на входе каждой секции ионизационной камеры, по значению токов определяют дозу излучения или требуемую экспозицию.

Коммутатор измерительных каналов позволяет соответствующей командой с электронного блока (фиг. 3), переключать камеру в режим повышенной чувствительности, объединяя оба измерительных электрода каждой секции в единый, например 3а, 3b и 6а, 6b в секции S1, что расширяет динамический диапазон устройства в десять раз. На фиг. 3 арабскими цифрами обозначены следующие составляющие электронного блока: 20 - усилитель; 21 - аналого-цифровой преобразователь (АЦП); 22 - видеомонитор; 23 - пульт управления.

Ионизационная камера, содержащая полый корпус, заполненный газом, с входным рентгенопрозрачным окном, внутри которого находятся измерительные электроды, плоскость рабочей поверхности которых параллельна плоскости входного окна, и охранный электрод, отличающаяся тем, что камера состоит из трех секций, расположенных последовательно друг за другом вдоль геометрической оси корпуса камеры, при этом в каждой секции электроды выполнены в форме соосно расположенных центрального круга и внешней окружности, причем материалы электродов подобраны таким образом, что их потенциальные барьеры, образованные двойным электрическим слоем на границе соприкосновения поверхности материала электрода и газа, образуют собственное электрическое поле между этими электродами внутри измерительного объема камеры, при этом измерительные электроды в каждой секции попарно соединены с электрическим разъемом, закрепленным на корпусе камеры, а охранный электрод имеет форму полого цилиндра, которым является металлический корпус камеры.



 

Похожие патенты:

Изобретение относится к области определения состава газовых смесей, в том числе и углеродосодержащих, и позволяет производить качественный и количественный анализ примесей в основном газе.

Изобретение относится к области радиационного контроля окружающей среды. Узел радиационного обнаружения содержит ионизационную камеру для обнаружения излучения.

Изобретение относится к устройствам контроля ядерных реакторов, а именно к ионизационным камерам деления (ИКД) с электродами, на поверхности которых нанесен слой материала, делящегося при взаимодействии с нейтронами.

Изобретение относится к детекторам ионов на космических аппаратах и в области ускорительной атомной масс-спектрометрии - с улучшенными характеристиками по степени идентификации ионов.

Изобретение относится к детектору излучения, в частности электромагнитного излучения большой мощности. Детектор содержит секцию преобразования, включающую катод (3), для преобразования излучения (Р), падающего на секцию преобразования, в электроны (Е) с помощью фотоэлектрического эффекта.

Изобретение относится к области регистрации альфа-излучения и может использоваться для измерения энергий альфа-частиц в атомной, ядерной отраслям промышленности.

Изобретение относится к устройству контроля ядерных реакторов, которые осуществляют преобразование плотности потока тепловых нейтронов (ППТН) и потока гамма-квантов в выходные электрические сигналы на всех режимах работы реакторной установки.

Изобретение относится к области регистрации рентгеновского излучения и может быть использовано для визуализации внутренней структуры объектов в медицинской диагностике, в системах досмотра, дефектоскопии и т.п.

Изобретение относится к способам измерений интенсивности источников ВУФ-излучения и устройствам для их осуществления. В способе измерения интенсивности источников ВУФ-излучения через проточную ионизационную камеру, облучаемую источником ВУФ-излучения, пропускают поток ионизуемого вещества и измеряют ионизационный ток, а затем по величине ионизационного тока и квантового выхода рассчитывают поток ВУФ-излучения.

Изобретение относится к регистрации нейтронов и гамма-излучений, преимущественно регистрации нейтронов в системах управления и защиты (СУЗ) ядерных реакторов. .

Группа изобретений относится к медицине, а именно к слежению за объектом для медицинской системы и получению изображений для слежения за заданным подвижным объектом.
Изобретение относится к медицине, а именно к стоматологии, и предназначено для использования при эндодонтическом лечении. После обработки данных компьютерного исследования снимают слепок с челюсти.

Группа изобретений относятся к медицинской технике, а именно к средствам медицинской диагностики, реализуемым с помощью компьютеров. Способ ранжирования случаев заболеваний пациентов в соответствии с уровнями сложности диагностирования содержит: извлечение из базы данных визуализирующего исследования пациента, установление патологии на изображении, анализ демографических и клинических данных, расчет показателя компьютерной стратификации для каждого случая заболевания в зависимости от установленной патологии и демографических и клинических данных и выдачу ранжированного списка случаев заболеваний пациентов согласно соответствующим оценкам стратификации, присвоенным каждому случаю заболевания, хранение ранее диагностированных случаев заболеваний в базе данных, оценку точности ранее установленного диагноза, выполнение классификатора, который генерирует показатель точности, указывающий на точность диагноза, прием информации о типе каждого случая заболевания и генерацию показателя стратификации.

Изобретение относится к медицине, а именно к отоларингологии, и может быть использовано для прогнозирования риска перфорации крыши полости носа при эндоскопических эндоназальных хирургических вмешательствах.

Группа изобретений относится к медицинской технике, а именно к средствам отображения медицинских изображений, полученных от мишени с использованием рентгеновского излучения.
Изобретение относится к медицине, а именно к кардиологии, и может быть использовано для определения пациентов, которым показано проведение сердечной ресинхронизирующей терапии.

Группа изобретений относится к медицинской технике, а именно к средствам контроля доставки лучевой терапии к субъекту с использованием проекционной визуализации. Осуществляемый компьютером способ контроля адаптивной системы доставки лучевой терапии содержит прием информации об опорной визуализации, создание двумерного (2D) проекционного изображения с использованием информации о визуализации, полученной с помощью ядерной магнитно-резонансной (MR) проекционной визуализации, причем 2D проекционное изображение соответствует заданному проекционному направлению, включающему в себя траекторию, пересекающую по меньшей мере участок визуализируемого субъекта, определение изменения между созданным 2D проекционным изображением и информацией об опорной визуализации для прогнозирования местоположения мишени для лучевой терапии на основании прогнозирующей модели, и создание обновленного протокола для терапии для доставки лучевой терапии по меньшей мере с частичным использованием определенного изменения между полученным 2D проекционным изображением и информацией об опорной визуализации.

Изобретение относится к области обработки цифровых изображений в медицине и предназначено для автоматизированного выполнения флюорографических снимков грудной клетки пациента на предмет наличия изменений или патологий в области легких.

Группа изобретений относится к медицинской технике, а именно к средствам для обучения и/или прогнозирования данных при разработке плана лечения лучевой терапии. Система лучевой терапии для лечения целевого пациента, с помощью устройства лучевой терапии, выполненного с возможностью осуществлять лучевую терапию в соответствии с планом лечения, содержит устройство обработки данных для создания плана лечения, включающее память, в которой хранятся исполнимые компьютером инструкции, и процессорное устройство, коммуникативно соединенное с памятью, при этом исполняемые компьютером инструкции, при выполнении процессорным устройством, побуждают процессорное устройство осуществлять операции, включающие в себя получение обучающих данных, соотнесенных с прошлыми планами лечения, применяемыми для лечения выборочных пациентов, причем обучающие данные включают в себя наблюдения, соотнесённые с состоянием выборочных пациентов, полученные из медицинских данных изображений, и по меньшей мере один результат плана, указывающий результат, полученный из прошлого плана лечения, или параметр плана, указывающий расчетный параметр прошлого плана лечения, определение совместной плотности вероятности, указывающей вероятность того, что как по меньшей мере одно конкретное наблюдение, так и по меньшей мере один конкретный результат плана или параметр плана присутствуют в обучающих данных, вычисление условной вероятности на основании определенной совместной плотности вероятности, причем условная вероятность указывает вероятность того, что конкретный результат плана или параметр плана присутствует в обучающих данных, получение специфичных для пациента тестовых данных, соотнесенных с целевым пациентом, включающих в себя по меньшей мере одно специфичное для пациента наблюдение, соотнесенное с целевым пациентом и полученное из медицинских данных изображений, прогнозирование вероятности специфичного для пациента результата плана или параметра плана на основании условной вероятности и специфичного для пациента наблюдения, создание плана лечения, основанного на прогнозировании, и предписывание устройству лучевой терапии осуществлять лучевую терапию в соответствии с созданным планом лечения.

Изобретение относится к медицинской технике, а именно к способам формирования слоистых фантомов кровеносных сосудов, и может быть использовано в медицине и ветеринарии для обучения персонала проведению диагностических измерений на эндоскопических оптических когерентных томографах.

Изобретение относится к медицине, а именно к медицинской визуализации и лечению, и может быть использовано для автоматического построения контуров на медицинском изображении. Система для осуществления способа, содержащая: процессор; память, оперативно соединенную с процессором и хранящую инструкции, которые, будучи исполняемыми процессором, заставляют процессор осуществлять способ, содержащий: прием изображения, содержащего область исследования; определение первого контура области исследования с использованием детектора границ; уточнение первого контура на основании справочника форм для генерирования второго контура области исследования; и обновление по меньшей мере одного из детектора границ или справочника форм на основании второго контура. Изобретение также может быть использовано для обучения детектора границ на основании множества медицинских изображений, содержащих область исследования. Способ включает в себя: выбор с помощью процессора точек изображения, расположенных на границах области исследования, из упомянутого множества медицинских изображений; извлечение с помощью процессора инвариантных относительно вращения признаков из выбранных точек изображения; определение с помощью процессора вектора признаков на основании извлеченных инвариантных относительно вращения признаков; и генерирование с помощью процессора детектора границ на основании вектора признаков. 3 н. и 17 з.п. ф-лы, 6 ил.
Наверх