Способ и устройство для запуска газотурбинного двигателя

Изобретение относится к области авиастроения, в частности к устройствам, обеспечивающим запуск газотурбинного двигателя. Предлагается способ запуска газотурбинного двигателя посредством стартера. Вращают собственную турбину магнитоэлектрического генератора, приводя во вращение и сам магнитоэлектрический генератор. Мощность, вырабатываемую магнитоэлектрическим генератором, используют для питания электродвигателя, который выполняет функцию стартера, и раскручивают им вал газотурбинного двигателя до нужной частоты вращения. Тем самым обеспечивают необходимую для запуска газотурбинного двигателя длительность рабочего режима стартера, после чего производят запуск газотурбинного двигателя. Причем магнитоэлектрический генератор содержит статор, в котором концентрично расточке расположен ротор с постоянными магнитами, и обмотку. Статор выполнен с внутренними и внешними пазами, а обмотка выполнена тороидальной и расположена внутри внутренних и внешних пазов с возможностью отвода тепла за счет большой площади соприкосновения с основанием и боковыми гранями пазов статора, а также за счет открытой конструкции внешних пазов. Технический результат - значительное снижение массы системы запуска газотурбинного двигателя, а также повышение надежности электрозапуска в условиях предельно низких и предельно высоких температур, благодаря использованию высокоскоростного магнитоэлектрического генератора с собственной газовой турбиной, работающего в кратковременном режиме. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к области авиастроения, в частности к устройствам, обеспечивающим запуск газотурбинного двигателя (ГТД).

Известен способ запуска с помощью воздушного потока [Лозицкий Л.П., Ветров А.Н., Дорошко СМ., Иванов В.П., Коняев Е.А. Конструкция и прочность авиационных газотурбинных двигателей. М.: Воздушный транспорт, 1992, стр. 458], в котором используют дополнительную турбину, вращение которой обеспечивают за счет мощного потока сжатого воздуха. Вращение турбины с помощью редуктора и муфты передают на основной вал газотурбинного двигателя при достижении необходимой частоты вращения газотурбинным двигателем происходит его запуск. Воздух, необходимый для вращения дополнительной турбины подают от бортового или аэродромного генератора сжатого воздуха.

Недостатком данного способа является, большой расход воздуха, что практически исключает автономность запуска.

Известен способ запуска с помощью порохового заряда [Системы запуска авиационных двигателей: Метод, указания / Самара, гос. аэрокосм, ун-т; Сост. И.В. Таммекиви. Самара, 2002, стр. 13], суть способа заключается в том, что пороховой заряд помещают в взрывозащищенную камеру. В качестве порохового заряда обычно используют нитропорох с добавкой веществ-флегматизаторов, замедляющих скорость горения заряда. В качестве воспламенителя обычно применяют порох, поджигаемый электрической искрой. Газы, выделяющиеся при горении порохового заряда, направляют на лопатки ротора турбины. Мощность, развиваемая турбиной, передается через редуктор и муфту сцепления ротору газотурбинного двигателя.

Недостатками данного способа являются, необходимость дозирования порохового заряда для каждой отдельной системы и условий запуска, кроме того пороховые газы вызывают обильное нагарообразование на деталях системы, что способствует быстрому ухудшению его характеристик в процессе эксплуатации, также применение взрывчатых веществ в качестве энергоносителя связано с опасностью повреждения системы. С уменьшением температуры окружающего воздуха энергия порохового заряда уменьшается, что вызывает уменьшение мощности стартера, в то время как необходимая для запуска мощность возрастает, что усложняет эксплуатацию пороховых турбостартеров.

Известен способ эксплуатации парогазовой установки в маневренном режиме [патент РФ №2585156, F01K 23/06, 29.12.2014], суть способа заключается в том, что для запуска газотурбинного двигателя используют дополнительную турбину, вращение которой обеспечивают парогазом. Для формирования парогаза используют перекись водорода и катализаторы, которые подают в парогазогенератор из отдельно расположенного баллона. За счет химической реакции сопровождаемой горением, перегретый водяной пар в смеси с кислородом, под большим давлением разгоняет дополнительную турбину, которая с помощью редуктора и муфты сцепления передает вращение главному валу газотурбинного двигателя.

Недостатком данного способа является, невысокая надежность системы запуска из-за использования взрывоопасной перекиси водорода. Также недостатком является высокая температура замерзания перекиси водорода -10°С.

Известен бесстартерный способ запуска [Системы запуска авиационных двигателей: Метод, указания / Самара, гос. аэрокосм, ун-т; Сост. И.В. Таммекиви. Самара, 2002, стр. 10], суть которого заключается в том, что для раскрутки газотурбинного двигателя используют его собственную турбину. В качестве рабочего тела применяют сжатый воздух, который подают на рабочие лопатки турбины.

Недостатком данного способа является низкий КПД турбины в начальный момент раскрутки, вследствие чего данная система запуска может применяться только на маломощных ГТД.

Наиболее близким по технической сущности и достигаемому результату является способ запуска с помощью электрического стартера [Лозицкий Л.П., Ветров А.Н., Дорошко С.М., Иванов В.П., Коняев Е.А. Конструкция и прочность авиационных газотурбинных двигателей. М.: Воздушный транспорт, 1992, стр. 455] реализуемый электродвигателем постоянного или переменного тока, работающего от бортовой или аэродромной аккумуляторной батареи. Обычно авиационные стартеры при пуске потребляют до 1-1,2 кА. Время их эксплуатации в стартерном режиме работы не превышает 40-60 секунд, после чего для повторной работы батареи необходимо на восстановление не менее 15 минут.

Недостатком данного способа является большой вес аккумуляторных батарей и падение их емкости с понижением температуры окружающего воздуха.

Наиболее близким по технической сущности и достигаемому результату является конструкция сверхвысокооборотного магнитоэлектрического генератора для микротурбинной установки [С. Zwyssig, J.W. Kolar, S.D. Round Mega-Speed Drive Systems: Pushing Beyond 1 Million RPM // Mechatronics, IEEE/ASME Transactions on, 2009, Vol. 14, No. 5, pp. 564-574], состоящая из безпазового статора в котором расположена обмотка из высокочастотного лицендрата, концентрично расточки статора расположен ротор, состоящий из кольцевого магнита, намагниченного радиально и вала, при этом вал сочленен с турбиной.

Недостатками данного устройства являются его значительные тепловыделения, обусловленные потерями в магнитопроводе статора, значительный шум, создаваемый подшипниковыми опорами, и невысокая жесткость ротора.

Задача изобретения - уменьшение массогабаритных характеристик и расширение функциональных возможностей системы запуска газотурбинного двигателя.

Технический результат - значительное снижение массы системы запуска газотурбинного двигателя, а также повышение надежности электрозапуска в условиях предельно низких и предельно высоких температур, благодаря использованию высокоскоростного магнитоэлектрического генератора с собственной газовой турбинной работающего в кратковременном режиме.

Поставленная задача решается, а технический результат достигается, способом запуска газотурбинного двигателя посредством стартера, по которому согласно изобретению, вращают собственную турбину магнитоэлектрического генератора, приводя во вращение и сам магнитоэлектрический генератор, а мощность, вырабатываемую магнитоэлектрическим генератором, используют для питания электродвигателя, который выполняет функцию стартера, и раскручивают им вал газотурбинного двигателя до нужной частоты вращения, тем самым обеспечивают необходимую для запуска газотурбинного двигателя длительность рабочего режима стартера, после чего производят запуск газотурбинного двигателя, причем магнитоэлектрический генератор, содержит статор, в котором концентрично расточке расположен ротор с постоянными магнитами, и обмотку; статор выполнен с внутренними и внешними пазами, а обмотка выполнена тороидальной и расположена внутри внутренних и внешних пазов с возможностью отвода тепла за счет большой площади соприкосновения с основанием и боковыми гранями пазов статора, а также за счет открытой конструкции внешних пазов

Поставленная задача решается, а технический результат достигается тем, что магнитоэлектрический генератор, согласно изобретению, используют в способе запуска газотурбинного двигателя.

Существо изобретения поясняется чертежами. На фиг. 1 изображен общий вид магнитоэлектрический генератора с газовой турбиной. На фиг. 2 изображен генератор в продольном разрезе!

Предложенное устройство содержит газовую турбину 1, на валу 2 которой установлен магнитоэлектрический генератор 3, статор 4, выполненный с внутренними пазами 5 и внешними пазами 6, на которые установлены тороидальные обмотки 7, постоянные магниты 8, расположены на роторе 9.

Предложенное устройство работает следующим образом: газовая турбина 1 вращает магнитоэлектрический генератор 3 со скоростью 100000 об/мин. Вырабатываемая мощность генератором составляет 30 кВт. При подключении стартера к генератору, по обмоткам стартера протекают токи равные 1200 А, тем самым обеспечивая необходимые пусковые характеристики устройства.

Пример конкретной реализации способа

В камеру сгорания собственной турбины магнитоэлектрического генератора подают топливо и сжатый воздух, после чего данную смесь воспламеняют. В результате сгорания, горячий газ под большим давлением приводит во вращение вал турбины магнитоэлектрического генератора и раскручивает его до скорости равной 100000 об/мин. Мощность, вырабатываемая магнитоэлектрическим генератором при такой частоте вращения, составляет 30 кВт. Для запуска авиационного двигателя модели ГТД-350 требуется высокий пусковой момент равный 240 Нм, для этого используют пусковой стартер. Мощность, вырабатываемая магнитоэлектрическим генератором, достаточна для обеспечения рабочего режима пускового стартера, поэтому магнитоэлектрический стартер используют в качестве источника питания. Длительность рабочего режима стартера до запуска авиационного двигателя ГТД-350 составляет 60 секунд, что является допустимым временем работы для магнитоэлектрического генератора.

Итак, заявляемое изобретение позволяет осуществлять запуск авиационного газотурбинного двигателя, используя магнитоэлектрический генератор заявленной конструкции, работающий в кратковременном режиме с собственной газовой турбинной и позволяет заменить аккумуляторные батареи, тем самым обеспечить снижение массогабаритных параметров системы запуска ГТД, а также повысить надежность электрозапуска в сложных метеорологических условиях.

1. Способ запуска газотурбинного двигателя посредством стартера, отличающийся тем, что вращают собственную турбину магнитоэлектрического генератора, приводя во вращение и сам магнитоэлектрический генератор, а мощность, вырабатываемую магнитоэлектрическим генератором, используют для питания электродвигателя, который выполняет функцию стартера, и раскручивают им вал газотурбинного двигателя до нужной частоты вращения, тем самым обеспечивают необходимую для запуска газотурбинного двигателя длительность рабочего режима стартера, после чего производят запуск газотурбинного двигателя, причем магнитоэлектрический генератор содержит статор, в котором концентрично расточке расположен ротор с постоянными магнитами, и обмотку; статор выполнен с внутренними и внешними пазами, а обмотка выполнена тороидальной и расположена внутри внутренних и внешних пазов с возможностью отвода тепла за счет большой площади соприкосновения с основанием и боковыми гранями пазов статора, а также за счет открытой конструкции внешних пазов.

2. Магнитоэлектрический генератор, отличающийся тем, что его используют в способе запуска газотурбинного двигателя по п. 1.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно к системам охлаждения закрытых электрических машин с охлаждаемым жидкостью статором. Технический результат –повышение эффективности работы машины.

Изобретение относится к электротехнике. Технический результат состоит в повышении частоты вращения и ресурса ввиду отсутствия механической передачи, а также обеспечения возможности использования наружной поверхности ротора в качестве ступицы электромобиля, ротора гидрогенератора или ветрогенератора.

Изобретение относится к электротехнике и может быть использовано для обеспечения электроэнергией автономных объектов. Технический результат состоит в снижении физической заметности объектов, оснащенных данными сверхвысокооборотными микрогенераторами, благодаря снижению уровня шума, повышению магнитной индукции в их воздушном зазоре и минимизации их тепловыделений.

Изобретение относится к электротехнике, а именно к приводному устройству нестабильной электрогенерирующей системы. Приводное устройство (1) для приведения в действие вращающегося вала (21) включает в себя кольцевой корпус (11), узел (12) магнитного маятника, электромагнитный узел (13) и блок (14) управления.

Изобретение относится к электротехнике, а именно к электрическим машинам с обмоткой, не содержащей железа. Электродвигатель (1), включающий в себя, по меньшей мере, первичную часть (2а, 2b) с обмоткой (3), не содержащей железа, которая содержит, по меньшей мере, две фазы (6), при этом одна фаза (6) включает в себя, по меньшей мере, два жгута (4) обмотки и, по меньшей мере, один электрический соединительный элемент (5), и вторичную часть (7а, 7b) с четным количеством магнитных полюсов (8), которые с чередованием расположены на вторичной части (7а, 7b), при этом обмотка (3) расположена на первичной части (2а, 2b) в воздушном зазоре (9) между первичной частью (2а, 2b) и вторичной частью (7а, 7b) по отношению к оси (10а, 10b) таким образом, что соответствующие жгуты (4) обмотки фазы (6) расположены напротив соответствующего магнитного полюса (8), и все магнитные полюса (8) выполнены с возможностью одновременного использования для образования усилия.

Изобретение относится к области электротехники и может быть использовано в электрических приводах транспортных средств. Техническим результатом является обеспечение высокого отношения частот вращения при постоянной мощности.

Изобретение относится к электрическим машинам, а именно к бесконтактным синхронным генераторам индукторного типа. Технический результат - обеспечение возможности генерирования электрической энергии за счёт энергии торможения.

Изобретение относится к области электротехники. Технический результат: уменьшение массогабаритных характеристик, повышение надежности работы, повышение ресурса электромашины.

Изобретение относится к области электротехники, в частности к электромашиностроению. Технический результат: повышение ресурса электромашины, увеличение окружной скорости индуктора, уменьшение трения в подшипниках.

Изобретение относится к области электротехники и электромашиностроения, в частности к синхронным генераторам с возбуждением от постоянных магнитов. Технический результат: стабилизация выходного напряжения и активной мощности.

Газотурбинный двигатель содержит газогенератор, свободную турбину, стартер-генератор, неподвижно соединенный с промежуточным валом, и устройство спонтанного механического соединения газогенератора и свободной турбины.

Приводная система для приведения в действие по меньшей мере одного компрессора. Система содержит газотурбинный двигатель (101), выполненный и установленный с возможностью приведения в действие компрессора (103).

Система быстрой реактивации газотурбинного двигателя летательного аппарата содержит электрическую машину, питаемую постоянным током от бортовой сети электрического питания.

Изобретение относится к авиационному двигателестроению, в частности к малоразмерным газотурбинным двигателям летательных аппаратов. Газотурбинная силовая установка летательного аппарата содержит расположенные в корпусе воздухозаборный канал с полым центральным обтекателем, стойками и антиобледенительным устройством, двигатель с выходным валом, планетарный редуктор с механизмом переключения и стартер-генератор, расположенный в полости центрального обтекателя и выполненный в виде обратимой электрической машины, статор которой закреплен на корпусе, а ротор - через планетарный редуктор подключен к выходному валу двигателя.

Изобретение относится к авиационному двигателю, включающему в себя топливно-насосное устройство. Топливно-насосное устройство содержит топливный насос (26) высокого давления, имеющий вход, соединенный с топливной трубой (28) низкого давления, и выход, соединенный с основным контуром подачи топлива высокого давления.

Изобретение относится к авиационной технике и может быть использовано для запуска газотурбинных двигателей летательных аппаратов. .

Изобретение относится к области авиастроения, в частности к устройствам, обеспечивающим запуск газотурбинного двигателя. Предлагается способ запуска газотурбинного двигателя посредством стартера. Вращают собственную турбину магнитоэлектрического генератора, приводя во вращение и сам магнитоэлектрический генератор. Мощность, вырабатываемую магнитоэлектрическим генератором, используют для питания электродвигателя, который выполняет функцию стартера, и раскручивают им вал газотурбинного двигателя до нужной частоты вращения. Тем самым обеспечивают необходимую для запуска газотурбинного двигателя длительность рабочего режима стартера, после чего производят запуск газотурбинного двигателя. Причем магнитоэлектрический генератор содержит статор, в котором концентрично расточке расположен ротор с постоянными магнитами, и обмотку. Статор выполнен с внутренними и внешними пазами, а обмотка выполнена тороидальной и расположена внутри внутренних и внешних пазов с возможностью отвода тепла за счет большой площади соприкосновения с основанием и боковыми гранями пазов статора, а также за счет открытой конструкции внешних пазов. Технический результат - значительное снижение массы системы запуска газотурбинного двигателя, а также повышение надежности электрозапуска в условиях предельно низких и предельно высоких температур, благодаря использованию высокоскоростного магнитоэлектрического генератора с собственной газовой турбиной, работающего в кратковременном режиме. 2 н.п. ф-лы, 2 ил.

Наверх