Способ определения деаэрирующих свойств масел и устройство для его осуществления

Изобретение предлагает устройство для определения деаэрирующих свойств масел, включающее прозрачный термостат с помещенным в него мерным стеклянным цилиндром объемом 250 мл, заполняемым маслом и снабженным фиксатором, внутри мерного стеклянного цилиндра находится датчик-аэратор, состоящий из диэлектрической измерительной ячейки, образованной двумя соосными металлическими пустотелыми цилиндрами, разделенными диэлектрическими прокладками и упорами, подсоединенной к прецизионному измерителю емкости непосредственно за трубку для подачи воздуха и контактный электрод, сферического металлокерамического газового диффузора, диаметр которого составляет около 25,4 мм, размер пор 5 мкм, размещенного в нижней части упомянутой трубки, используемой также для подачи воздуха, пеногасителя, размещенного в верхней части трубки. Также раскрывается способ определения деарирующих свойств масел с использованием указанного устройства, включающий изменение емкости воздушно-масляной эмульсии, определение постоянной времени Твр полученного переходного процесса, по которой оценивают общую характеристику деаэрирующих свойств испытуемых масел. Технический результат изобретений - повышение достоверности результатов испытаний, сокращение времени испытаний и автоматизация процесса измерений, направленных на оценку влияния деаэрирующих свойств масел на эксплуатационную надежность агрегатов. 2 н.п. ф-лы, 2 ил., 1 табл.

 

Настоящая группа изобретений относится к области анализа материалов, а именно к области исследования масел применительно к оценке их деаэрирующих свойств.

Известен способ определения деаэрирующих свойств турбинных масел и установка для определения времени деаэрации (РД 153-34.1-43.211-2000, Масла турбинные огнестойкие и минеральные, Метод определения деаэрирующих свойств, 2000). В известном способе используется установка для определения деаэрирующих свойств масел, включающая стеклянный сосуд с рубашкой, с присоединенной к нему на шлифе форсункой с двумя отводами, один из которых соединен с капилляром. Определяют массу специального погружного элемента в масле, подвешивая его на гидростатические весы. Для образования воздушно-масляной эмульсии через масло при постоянном давлении 20 кПа в течение 420 секунд пропускают прогретый до 50°С воздух. Взвешивая погружной элемент, после прекращения подачи воздуха измеряют плотность воздушно-масляной эмульсии, которая непрерывно изменяется. Деаэрирующие свойства масла оценивают временем, по истечении которого, после прекращения подачи воздуха, в масле остается 0,2% об. диспергированного воздуха. Недостатками данного способа являются сложность определения показателя плотности в динамических условиях, сложность конструкции, обеспечивающей подачу нагретого воздуха при постоянной температуре, а также длительность испытаний и значительный временной интервал между фиксируемыми значениями плотности от 15 с. Известная установка для определения времени деаэрации является наиболее близким техническим решением к предлагаемому устройству, принятым заявителем в качестве прототипа. Установка представляет собой сборную панель управления, в которую вмонтированы: нагреватель воздуха, тумблер для включения системы подачи и подогрева воздуха, манометр со шкалой от 0 до 50 кПа (от 0 до 500 мбар) с регулятором давления воздуха, шланг для подачи сжатого воздуха к форсунке стеклянного сосуда с рубашкой, хомут для крепления сосуда, сигнальная лампочка. Известное решение представляет собой сложную конструкцию, в которой испытания проходят с большими временными затратами и недостаточно высокой степенью достоверности результатов.

Наиболее близким техническим решением к предлагаемому способу является способ определения деаэрирующих свойств масел, (диссертация Калинина П.А. «Исследование деаэрирующих и деэмульгирующих свойств смазочных масел», 1990, Решение ГМК №23/1-94 от 21.03.1989). Согласно данному способу используется аппарат, включающий в себя гомогенизатор на основе мешалки с лопастной насадкой, прецизионный прибор для измерения емкости и измерительную ячейку, состоящую из конденсатора, образованного 12 вертикальными радиально-ориентированными металлическими пластинами, помещенную в стакан из нержавеющей стали, расположенный в термостате. Измерение объема воздуха в воздушно-масляной эмульсии проводят при температуре 50°С. Воздушно-масляную эмульсию создают вращением гомогенизатора с частотой 12000 мин-1 в течение 30 с. Деаэрирующие свойства оценивают по величине изменения диэлектрической проницаемости в процессе выделения воздуха из масла. Показателем деаэрирующих свойств масел являются объемная доля воздуха и время деаэрации. К недостаткам известного способа относятся невозможность контроля и своевременного отделения процесса пенообразования от процесса аэрации масла, что приводит к снижению достоверности получаемых результатов, а также нагрев масла при механическом перемешивании, ограничение области применения способа для масел, обладающих высокой кинематической вязкостью, высокий расход масла на испытание.

Задача, решаемая предлагаемыми изобретениями, заключается в создании способа и устройства для определения деаэрирующих свойств масел, обеспечивающих высокую достоверность результатов испытаний.

Техническим результатом группы изобретений является повышение достоверности результатов испытаний, сокращение времени испытаний и автоматизация процесса измерений, направленного на оценку влияния деаэрирующих свойств масел на эксплуатационную надежность агрегатов.

Технический результат изобретения на устройство для определения деаэрирующих свойств масел достигается за счет того, что предлагаемое устройство включает прозрачный термостат с помещенным в него мерным стеклянным цилиндром объемом 250 мл, заполняемым маслом и снабженным фиксатором. Внутри мерного стеклянного цилиндра находится датчик-аэратор, состоящий из диэлектрической измерительной ячейки, образованной двумя соосными металлическими пустотелыми цилиндрами, разделенными диэлектрическими прокладками и упорами, подсоединенной к прецизионному измерителю емкости непосредственно за трубку для подачи воздуха и контактный электрод. Устройство содержит сферический металлокерамический газовый диффузор, диаметр которого составляет около 25,4 мм, размер пор 5 мкм, размещенный в нижней части упомянутой трубки, используемой также для подачи воздуха, и пеногаситель, размещенный в верхней части трубки.

Технический результат изобретения на способ определения деаэрирующих свойств масел достигается за счет того, что деаэрирующие свойства масел определяют по степени изменения диэлектрической проницаемости воздушно-масляной эмульсии во времени с использованием устройства для определения деаэрирующих свойств масел. Мерный стеклянный цилиндр наполняют маслом. Прозрачный термостат предварительно разогревают до 40°С. Для образования воздушно-масляной эмульсии осуществляют подачу воздуха через сферический металлокерамический газовый диффузор, поддерживая расход от 2,40 до 2,60 нл/час. При проведении испытаний обеспечивают визуальный контроль процесса аэрации масла, не допуская образования пены непосредственно в зоне диэлектрической измерительной ячейки. По истечении пяти минут подачу воздуха прекращают, и с этого момента фиксируют изменение емкости воздушно-масляной эмульсии с шагом по времени 0,5-2,0 с. Полученные результаты обрабатывают, определяя постоянную времени (Твр) переходного процесса,

где Δt - шаг изменения времени между соседними точками, с;

- нормированная емкость диэлектрической измерительной ячейки для оценки деаэрирующих свойств масел (i=1, 2…n),

Сн и Ск - емкость диэлектрической измерительной ячейки для оценки деаэрирующих свойств масел в начале и в конце переходного процесса, соответственно, пФ;

Ci - фактическая емкость диэлектрической измерительной ячейки для определения деаэрирующих свойств масел (i=1,2…n), пФ;

n - количество точек,

по постоянной времени переходного процесса Твр оценивают общую характеристику деаэрирующих свойств испытуемых масел.

Предлагаемая группа изобретений поясняется чертежами. На фиг. 1 приведена схема датчика-аэратора устройства для определения времени деаэрации, с помощью которого может быть реализован способ определения деаэрирующих свойств масел. На фиг. 2 представлены результаты испытаний, отражающие зависимости изменения нормированной емкости устройства для определения деаэрирующих свойств масел от времени проведения испытаний для трех различных образцов масел. Для проведения испытаний были использованы масла:

- турбинное Тп-22С Марка 1;

- авиационное МС-8П;

- синтетическое ВНИИ НП 50-1-4ф.

В таблице представлены результаты испытаний, отражающие зависимости изменения емкости устройства для определения деаэрирующих свойств масел от времени на заданном участке для указанных выше образцов масел.

Устройство для определения деаэрирующих свойств масел может быть реализовано на базе датчика - аэратора (фиг. 1), который содержит контактный электрод (1), разделительные диэлектрические прокладки (2, 3), пеногаситель (4), трубку (5) для подачи воздуха, уплотнитель (6), упоры (7), два соосных металлических пустотелых цилиндра (8, 9), фиксатор (10), сферический диффузор (11), выполненный из металлокерамического материала. Причем трубка (5) для подачи воздуха, пустотелые цилиндры (8, 9), разделенные диэлектрическими прокладками (2, 3) и упорами (7), образуют диэлектрическую измерительную ячейку.

В предлагаемом устройстве целесообразно использование сферического металлокерамического диффузора (11), диаметром ∅ 25,4 мм с размером пор 5 мкм, размещенного в нижней части трубки (5), через которую подается воздух. В процессе работы диэлектрическую измерительную ячейку подсоединяют к прецизионному измерителю емкости (на фиг. 1 не показан) непосредственно за трубку (5) и контактный электрод (1). Пузырьки воздуха из металлокерамического диффузора (11) уплотнителем (6) направляются между поверхностями цилиндров (8, 9) и трубки (5). В верхней части трубки размещен пеногаситель (4) для недопущения избыточного объема пены. Серию испытаний проводят при следующих условиях. Датчик-аэратор помещают в мерный стеклянный цилиндр (ГОСТ 1770-74) объемом 250 мл, заполненный 220 мл масла, при этом пеногаситель (4) должен оставаться на воздухе. Глубина размещения датчика-аэратора регулируется фиксатором (10).

Цилиндр с датчиком-аэратором помещают в нагретый до 40°С прозрачный термостат и выдерживают в течение 30 мин.

Воздух подают через трубку (5) и металлокерамический диффузор (11), поддерживая расход 2,40-2,60 нл/час. При этом визуально контролируют отсутствие образования пены непосредственно в зоне диэлектрической оценки устройства для определения деаэрирующих свойств масел. Отсчет времени начинают с появлением первых пузырьков воздуха из металлокерамического диффузора (11). По истечении 5 минут подачу воздуха прекращают, и с этого момента фиксируют изменение емкости воздушно-масляной эмульсии с шагом по времени 0,5-2,0 с. Устройство для определения деаэрирующих свойств масел коммутируется через интерфейс RS-232 с компьютером, с помощью которого проводится обработка результатов измерений и определяется постоянная времени Твр.

При подаче воздуха диэлектрическая проницаемость воздушно-масляной эмульсии снижается по сравнению с исходной для чистого масла, после прекращения подачи воздуха пузырьки постепенно удаляются из масла и диэлектрическая проницаемость постепенно возвращается к исходному состоянию. После окончания переходного процесса и стабилизации значения емкости устройства для определения деаэрирующих свойств масел измерение прекращают. Испытание повторяют, по меньшей мере, 3 раза. По окончании испытаний датчик-аэратор с мерным цилиндром промывают несколькими порциями бензина до полного удаления масла и высушивают.

Измеренные данные сводят в таблицу и строят график зависимости нормированной емкости устройства для определения деаэрирующих свойств масел от времени проведения испытаний на заданном участке. Затем определяют постоянную времени Твр полученного переходного процесса, принимая допущение, что рассматриваемая система имеет передаточную функцию апериодического (инерционного) звена 1-го порядка. Постоянная времени Твр переходного процесса определяется методом площадей по формуле.

где Δt - шаг изменения времени между соседними точками, с;

- нормированная емкость устройства для определения деаэрирующих свойств масел (i=1, 2…n), Сн и Ск - емкость устройства в начале и в конце переходного процесса, соответственно, пФ;

Ci - фактическая емкость устройства для определения деаэрирующих свойств масел (i=1,2…n), пФ;

n - количество точек.

По постоянной времени переходного процесса Твр оценивают общую характеристику деаэрирующих свойств испытуемых масел.

Обработка полученных результатов заключается в определении постоянной времени (Твр) полученного переходного процесса, принимая допущение, что рассматриваемая система имеет передаточную функцию апериодического (инерционного) звена 1-го порядка. Постоянная времени (Твр) переходного процесса определяется методом площадей (И.М. Макаров, Б.М. Менский, Линейные автоматические системы, Москва, Машиностроение, 1982, стр. 71-75) по формуле, приведенной на стр. 4-7.

Представленные на фиг. 2 и в таблице результаты испытаний отражают зависимости изменения емкости устройства для определения деаэрирующих свойств масел от времени на заданном участке для трех образцов масел. Анализируя полученные данные, а также график, представленный на фиг. 2, можно видеть, что предложенный способ позволяет оценить деаэрирующие свойства масел. Наилучшими показателями деаэрирующих свойств из трех рассматриваемых образцов масел обладает синтетическое масло ВНИИ НП 50-1-4ф, а наихудшими - минеральное турбинное Тп-22С Марка 1.

Применение предлагаемых устройства и способа определения деаэрирующих свойств масел позволит получить более достоверные результаты исследований, позволяющие оценивать эксплуатационные свойства масел.

1. Устройство для определения деаэрирующих свойств масел, включающее прозрачный термостат с помещенным в него мерным стеклянным цилиндром объемом 250 мл, заполняемым маслом и снабженным фиксатором, внутри мерного стеклянного цилиндра находится датчик-аэратор, состоящий из диэлектрической измерительной ячейки, образованной двумя соосными металлическими пустотелыми цилиндрами, разделенными диэлектрическими прокладками и упорами, подсоединенной к прецизионному измерителю емкости непосредственно за трубку для подачи воздуха и контактный электрод, сферического металлокерамического газового диффузора, диаметр которого составляет около 25,4 мм, размер пор 5 мкм, размещенного в нижней части упомянутой трубки, используемой также для подачи воздуха, пеногасителя, размещенного в верхней части трубки.

2. Способ определения деаэрирующих свойств масел, заключающийся в том, что деаэрирующие свойства масел определяют по степени изменения диэлектрической проницаемости воздушно-масляной эмульсии во времени с использованием устройства по п. 1, в котором мерный стеклянный цилиндр наполняют маслом, прозрачный термостат предварительно разогревают до 40°С, для образования воздушно-масляной эмульсии осуществляют подачу воздуха через сферический металлокерамический газовый диффузор, поддерживая расход от 2,40 до 2,60 нл/час, обеспечивают визуальный контроль процесса аэрации масла, не допуская образования пены непосредственно в зоне диэлектрической измерительной ячейки, по истечении пяти минут подачу воздуха прекращают, и с этого момента фиксируют изменение емкости воздушно-масляной эмульсии с шагом по времени 0,5-2,0 с, обрабатывают полученные результаты, определяя постоянную времени (Твр) переходного процесса,

где Δt - шаг изменения времени между соседними точками, с;

- нормированная емкость диэлектрической измерительной ячейки для оценки деаэрирующих свойств масел (i=1,2 … n),

Сн и Ск - емкость диэлектрической измерительной ячейки для оценки деаэрирующих свойств масел в начале и в конце переходного процесса, соответственно, пФ;

Ci - фактическая емкость диэлектрической измерительной ячейки для определения деаэрирующих свойств масел (i=1,2 … n), пФ;

n - количество точек,

по постоянной времени переходного процесса Твр оценивают общую характеристику деаэрирующих свойств испытуемых масел.



 

Похожие патенты:

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения термоокислительной стабильности и температурной стойкости смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха при температурах ниже критической, выбранных в зависимости от базовой основы, назначения смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения температурной области работоспособности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянной массы, минимум, при трех температурах, выбранных в зависимости от базовой основы и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ прогнозирования показателей термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянной массы минимум при трех температурах, выбранных в зависимости от базовой основы, назначения и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления.

Изобретение относится к исследованию трибологических свойств смазочных материалов, используемых в машиностроении. Способ заключается в эксплуатации пары трения в присутствии смазки, пропускании через нее электрического тока при неподвижной паре трения и при установившемся режиме трения, при этом определяют электрическую емкость между верхней и нижней поверхностями пары трения палец-диск в присутствии слоя смазки и по полученным показаниям судят о диэлектрической проницаемости исследуемого материала и ориентации молекул в слое, при этом чем больше коэффициент упорядоченности молекул в ориентированном слое (ближе к единице), а вектор преимущественной ориентации молекул совпадает с вектором электрического поля, создаваемого вследствие измерения емкости, тем диэлектрическая проницаемость смазочного материала выше и выше смазочные свойства испытуемого образца; совместно с измерениями емкости производят измерение толщины пленки с помощью лазерного измерителя; результаты получают при неподвижной паре трения и при установившемся режиме трения, после чего судят об эффективности смазочного материала и о роли трибоактивных компонентов в составе смазочного материала путем сопоставления данных испытания с требуемыми параметрами.

Изобретение относится к исследованию трибологических свойств смазочных материалов, используемых в узлах трения. Способ основан на использовании верхнего и нижнего слоя поверхностей трения в присутствии исследуемого слоя смазки между ними, при этом формируют молекулярную модель пары трения с рандомизированным расположением молекул в смазочном слое с использованием ЭВМ и программы молекулярного моделирования, реализующей методы молекулярной механики, молекулярной динамики и квантовой химии, при этом после размещения двух параллельных слоев поверхностей трения с исследуемым слоем смазки между ними, проводят, используя процедуры минимизации энергии системы, оптимизацию положения молекул в смазочном слое, после чего находят межфазную поверхностную энергию, путем определения разницы энергий системы до взаимодействия смазочного слоя с поверхностью трения и после взаимодействия; затем осуществляют циклический сдвиг верхней поверхности трения относительно нижней, сохраняя параллельность заданное количество раз, повторяя процесс оптимизации положения молекул на каждом шаге сдвига, вследствие чего молекулы в смазочном слое принимают определенное геометрическое расположение в пространстве; после чего с учетом расположения молекул относительно поверхностей трения по известным зависимостям рассчитывают ориентационный коэффициент, а коэффициент упорядоченности молекул в смазочном слое рассчитывают из заданного соотношения, затем с помощью программы молекулярного моделирования рассчитывают потенциальную энергию системы, при этом ориентационный коэффициент, коэффициент упорядоченности молекул в смазочном слое и максимальное значение потенциальной энергии системы коррелируют с напряжением сдвига и, соответственно, силой трения; после чего по полученным данным определяют наиболее эффективное смазочное средство, которое обладает наименьшим напряжением сдвига при наименьшем значении потенциальной энергии системы и наибольших ориентационном коэффициенте и коэффициенте упорядоченности.

Изобретение относится к области автоматического измерения физико-химических параметров жидкостей. Устройство содержит блок регистрации и управления, состоящий из вычислителя с программным обеспечением, включающего в себя алгоритм вычисления численных значений степени засоленности ДЭГ, который соединен передающими кабелями с терминалом ввода и отображения информации, дискретного модуля для управления установкой абсорбционной осушки газа и аналогового модуля для преобразования сигнала, полученного от кондуктометрического датчика, соединенных с вычислителем и блоком питания, измерительный модуль, состоящий из преобразователя сигналов и кондуктометрического датчика, соединенный с преобразователем сигналов специальным кабелем.

Изобретение относится к области испытания материалов с помощью нагрева, в частности к технологии определения температуры вспышки смазочных масел без применения поджога паров, и может быть использовано при оценке эксплуатационных характеристик товарных и работающих смазочных масел.

Изобретение относится к технологии оценки качества жидких смазочных материалов. При осуществлении способа испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления.

Изобретение относится к области анализа материалов, преимущественно смазочных масел, в частности для оценки влияния масел на поверхности деталей цилиндропоршневой группы и коленчатого вала двигателей внутреннего сгорания в зонах высоких температур.

Изобретение относится к измерительной технике, в частности для определения качества нефтепродуктов, и может быть применено для контроля температурной стойкости и термоокислительной стабильности смазочных материалов.

Изобретение относится к исследованию низкотемпературных свойств нефтепродуктов путем пропускания через них ультразвуковых волн и может быть использовано для экспрессного контроля температуры застывания и текучести в аналитических лабораториях нефтехимических предприятий, университетов и научно-исследовательских центров.

Изобретение относится к исследованию низкотемпературных свойств нефтепродуктов путем пропускания через них ультразвуковых волн и может быть использовано для экспрессного контроля температуры застывания и текучести в аналитических лабораториях нефтехимических предприятий, университетов и научно-исследовательских центров.

Изобретение относится к области аналитической химии, а именно к способам определения подлинности (натуральности) и выявления фальсификации эфирных коричных масел с применением метода масс-спектрометрии изотопных соотношений.

Изобретение относится к области контроля качества топлив и может быть использовано для определения температуры помутнения дизельных топлив. Способ заключается в том, что анализируемый образец вводят в измерительную ячейку, размещают ее в криостатированную камеру, в которой образец предварительно нагревают, а затем подвергают не менее пяти циклам «охлаждение-нагрев», поддерживая в каждом цикле разную скорость изменения температуры и записывая для каждого цикла «охлаждение-нагрев» кривую зависимости, показывающую изменение удельного теплового потока, поступающего из образца при его охлаждении и получаемого образцом при его нагревании, как функцию температуры, на каждой из которых фиксируют температуру начала кристаллизации (ТнкVi) анализируемого образца, температуру застывания (ТзVi) и температуру окончания плавления твердой фазы (ТопVi).

Изобретение относится к области контроля качества топлив и может быть использовано для определения температуры помутнения дизельных топлив. Способ заключается в том, что анализируемый образец вводят в измерительную ячейку, размещают ее в криостатированную камеру, в которой образец предварительно нагревают, а затем подвергают не менее пяти циклам «охлаждение-нагрев», поддерживая в каждом цикле разную скорость изменения температуры и записывая для каждого цикла «охлаждение-нагрев» кривую зависимости, показывающую изменение удельного теплового потока, поступающего из образца при его охлаждении и получаемого образцом при его нагревании, как функцию температуры, на каждой из которых фиксируют температуру начала кристаллизации (ТнкVi) анализируемого образца, температуру застывания (ТзVi) и температуру окончания плавления твердой фазы (ТопVi).

Изобретение относится к области гидродинамики жидкостей, в частности к способам оценки эффективности гидродинамического сопротивления углеводородных жидкостей, и может быть использовано при создании гидродинамических стендов для изучения углеводородных жидкостей и испытания присадок к ним, снижающих гидродинамическое сопротивление.

Изобретение относится к области гидродинамики жидкостей, в частности к способам оценки эффективности гидродинамического сопротивления углеводородных жидкостей, и может быть использовано при создании гидродинамических стендов для изучения углеводородных жидкостей и испытания присадок к ним, снижающих гидродинамическое сопротивление.

Изобретение относится к нефтяной промышленности и может быть использовано для проведения исследований по оценке влияния химического реагента на свойства продукции скважин.

Изобретение относится к нефтяной промышленности и может быть использовано для проведения исследований по оценке влияния химического реагента на свойства продукции скважин.
Изобретение относится к способам определения содержания (концентрации) воды в нефтесодержащих эмульсиях и отложениях, в отработанных нефтепродуктах и других нефтесодержащих отходах (нефтешламах), а также в почвах и грунтах с мест розлива нефтепродуктов или территорий с высоким уровнем загрязнения углеводородами по другой причине.

Изобретение относится к области биотехнологии. Предложен способ герметизации вещества в выполненном на субстрате множестве ячеек.

Изобретение предлагает устройство для определения деаэрирующих свойств масел, включающее прозрачный термостат с помещенным в него мерным стеклянным цилиндром объемом 250 мл, заполняемым маслом и снабженным фиксатором, внутри мерного стеклянного цилиндра находится датчик-аэратор, состоящий из диэлектрической измерительной ячейки, образованной двумя соосными металлическими пустотелыми цилиндрами, разделенными диэлектрическими прокладками и упорами, подсоединенной к прецизионному измерителю емкости непосредственно за трубку для подачи воздуха и контактный электрод, сферического металлокерамического газового диффузора, диаметр которого составляет около 25,4 мм, размер пор 5 мкм, размещенного в нижней части упомянутой трубки, используемой также для подачи воздуха, пеногасителя, размещенного в верхней части трубки. Также раскрывается способ определения деарирующих свойств масел с использованием указанного устройства, включающий изменение емкости воздушно-масляной эмульсии, определение постоянной времени Твр полученного переходного процесса, по которой оценивают общую характеристику деаэрирующих свойств испытуемых масел. Технический результат изобретений - повышение достоверности результатов испытаний, сокращение времени испытаний и автоматизация процесса измерений, направленных на оценку влияния деаэрирующих свойств масел на эксплуатационную надежность агрегатов. 2 н.п. ф-лы, 2 ил., 1 табл.

Наверх