Устройство определения электропроводимости магнитных отложений на поверхности труб вихретоковым методом

Использование: для неразрушающего контроля. Техническая целесообразность изобретения заключается в том, что устройство вихретокового контроля удельной электрической проводимости магнитных отложения на поверхности труб содержит генератор прямоугольных периодических импульсов тока с периодом Тв, выбираемым из условия Тв≥3Rвμ0нмσнмомσомμrм), где δнм и σнм - номинальные значения толщины и электропроводимости металла, δом, σом и μrм - максимальные значения толщины, удельной электрической проводимости и магнитной проницаемости отложений, μ0 - магнитная постоянная, вихретоковый датчик с возбуждающей катушкой, радиус Rв которой выбирают из условия 3(δмном)>Rв>1,0(δмнoм), где δмн и δом - номинальная и максимальная толщина стенки трубы и отложений соответственно, измеритель магнитного потока и измерительную катушку, выход генератора прямоугольных импульсов присоединен к возбуждающей катушке вихретокового датчика, измерительная катушка и измеритель магнитного потока через блоки усиления и АЦП подключены к микроконтроллеру, к выходам которого присоединены индикатор толщины отложений и индикатор относительной магнитной проницаемости отложений, также снабжено моделирующим устройством, двумя блоками нормировки сигналов измерительной катушки и моделирующего устройства, блоком сравнения значений этих сигналов и индикатором электропроводимости, при этом вход моделирующего устройства подключен к одному из выходов микроконтроллера, выход моделирующего устройства подсоединен к первому блоку нормировки, ко второму блоку нормировки подключен выход усилителя исследуемого сигнала, выходы первого и второго блоков нормировки подключены к блоку сравнения, выход которого соединен с индикатором электропроводимости. Технический результат: обеспечение возможности определения структуры отложений. 6 ил.

 

Изобретение относится к методам неразрушающего контроля и может быть использовано на тепловых и атомных энергоустановках, трубопроводах нефти и газа на химических и нефтехимических предприятиях.

Техническая целесообразность изобретения заключается в том, что наличие отложений ведет к нарушению протекания тепловых процессов в системе, а кроме того наличие отложений (особенно магнитных) существенно затрудняет процесс проведения вихретокового неразрушающего контроля, поэтому обнаружение отложений и определение значений их параметров представляет собой актуальную задачу.

Известны способ и устройство [1] для определения толщины и электропроводимости отложений на поверхности труб импульсным вихретоковым методом, но они применимы только для немагнитных отложений.

Наиболее близким к предлагаемому техническому решению является устройство для определения толщины и магнитных свойств отложений на поверхности труб импульсным вихретоковым методом [2]. Измерение реализуется накладным датчиком, радиус возбуждающей катушки которого выбирается в соответствии с конфигурацией объекта контроля, период возбуждающего импульсного тока определяется в зависимости от электрофизических параметров металла трубы и отложения.

К недостаткам данного устройства можно отнести невозможность контроля значения удельной электрической проводимости материала магнитных отложений, хотя этот параметр коррелирует с плотностью и тепловыми свойствами отложения, и поэтому представляет интерес для технологов-эксплуатационников.

Предлагаемое устройство позволяет определить, как значения (при необходимости) толщины стенки трубки и электрической проводимости ее материала, так и толщину слоя отложения и магнитных и электрических свойств его материала.

Кроме того, информация о магнитных свойствах и значении удельной электрической проводимости материала отложения в значительной степени упрощает его структурный анализ.

Задачей предлагаемого технического решения является определение значения удельной электрической проводимости материала магнитного отложения.

Прототипом предлагаемого устройства является устройство, использованное в [2].

Технический эффект, получаемый при решении данной задачи, и заключающийся в определении структуры отложений посредством анализа его толщины, удельной электрической проводимости и магнитной проницаемости, достигается тем, что в известном устройстве вихретокового контроля удельной электрической проводимости магнитных отложений на поверхности труб, содержащем генератор прямоугольных периодических импульсов тока, вихретоковый датчик с возбуждающей катушкой, радиус Rв которой выбирают из условия 3(δмном)>Rв>1,0(δмнoм), где δмн и δом, номинальная толщина стенки трубы и максимальная толщина отложений соответственно, измеритель магнитного потока и измерительную катушку, при этом выход генератора прямоугольных импульсов присоединен к возбуждающей катушке вихретокового датчика, измерительная катушка и измеритель магнитного потока через блоки усиления и АЦП подключены к микроконтроллеру, к выходам которого присоединены индикатор толщины отложений, и индикатор относительной магнитной проницаемости отложений, согласно изобретению, оно снабжено моделирующим устройством, двумя блоками нормировки сигналов измерительной катушки и моделирующего устройства, блоком сравнения значений этих сигналов и индикатором электропроводимости, при этом вход моделирующего устройства подключен к одному из выходов микроконтроллера, выход моделирующего устройства подсоединен к первому блоку нормировки, ко второму блоку нормировки подключен выход усилителя исследуемого сигнала, выходы первого и второго блоков нормировки подключены к блоку сравнения, выход которого соединен с индикатором электропроводимости.

На Фиг. 1 Показано взаимное расположение объекта контроля и вихретокового датчика, снабженного измерителем магнитного потока.

На Фиг. 2 Приведена временная диаграмма тока возбуждающей катушки.

На Фиг. 3 Приведены нормированные кривые разностного вносимого напряжения для различных значений параметров отложения

На Фиг. 4 Приведены начальные участки нормированных кривых, рассчитанных моделирующим устройством для различных значений электропроводимости отложения

На Фиг. 5 Приведено положение кривой нормированного разностного вносимого напряжение от исследуемого объекта на диаграмме (Фиг. 4) начальных участков семейства нормированных кривых

На Фиг. 6 Приведена блок-схема предлагаемого устройства.

Объект контроля (фиг. 6) состоит из слоя металла 1 и слоя отложения 2. Вихретоковый датчик (фиг. 1), возбуждающая катушка 3 которого подключена к генератору импульсов тока 4 (фиг. 2), расположен над объектом контроля. Измерительная катушка 9 через блоки усиления 10 и АЦП 11 соединена с микроконтроллером 8, выход которого соединен с индикаторами толщины отложения 12 и магнитной проницаемости отложения 13. Устройство функционирует следующим образом: Над поверхностью двухслойного объекта контроля (стенка трубы, плоская поверхность) со стороны слоя металла 1 (более удаленный - слой отложения 2) расположен вихретоковый датчик, возбуждающая катушка 3 которого питается от генератора 5 импульсным током iв (фиг. 2) с периодом Тв≥3Rвμ0нмσнмомσомμrм) (где σнм, σом - номинальное и максимальное значение электропроводимости слоев металла и отложения, δнм, δом - номинальное и максимальное значение толщины слоев металла и отложения, μrм - максимальное значение магнитной проницаемости отложения). Сигналы измерительной катушки и измерителя потока 5 через блоки усиления 6, 10 и АЦП 7 и 11 поступают в микроконтроллер 8, в котором происходит определение толщины и магнитной проницаемости отложений, что фиксируется индикаторами 12 и 13.

Устройство функционирует следующим образом. Над поверхностью двуслойного объекта контроля (стенка трубы, плоская поверхность) со стороны слоя металла 1 (более удаленный - слой отложения 2) расположен вихретоковый датчик, возбуждающая катушка 3 которого питается от генератора 5 импульсным током iв (фиг. 2) с периодом Тв≥3Rвμ0нмσнмомσомμrм), где σнм, σом - номинальное и максимальное значение электропроводности слоев металла и отложения, δнм, δом - номинальное и максимальное значение толщины слоев металла и отложения, μrм - максимальное значение магнитной проницаемости отложения). Сигналы измерительной катушки и измерителя потока 5 через блоки усиления 6,10 и АЦП 7 и 11 поступают в микроконтроллер 8, в котором происходит определение толщины и магнитной проницаемости отложений, что фиксируется индикаторами 12 и 13.

Алгоритм обработки сигнала предусматривает (если это необходимо) определение толщины стенки и электропроводимости металла трубы. Периоды Тв импульсов тока генератора выбирают из условия Тв≥3Rвμ0нмσнмомσомμrм), где σнм и σом - номинальное и максимальное значение электропроводимости слоев металла и отложения, δнм, δом - номинальное и максимальное значение толщины слоев металла и отложения, μrм - максимальное значение магнитной проницаемости отложения, μ0 - магнитная постоянная, в микроконтроллере реализован алгоритм определения магнитной проницаемости и толщины магнитного отложения посредством фиксации в определенные моменты времени приращений вносимого напряжения измерительной катушки, зависящего от вихревых токов, и измерителя магнитного потока по отношению к их значениям для объекта без отложения и сравнению этих приращений с их значениями в узлах градуировочной, полученной экспериментально или моделированием, сетки, находящейся в памяти микроконтроллера.

По специальному алгоритму моделирующее устройство 14 генерирует сигналы, подобные сигналам измерительной катушки для полученных значений толщины отложения δо и величины магнитных свойств его материала и различных значений удельной электрической проводимости σо. Полученные сигналы нормируются (фиг. 4) в блоке нормировки 15 и на градуировочную сетку (фиг. 5), построенную по начальным участкам нормированных кривых, наносится аналогичный нормированный в блоке 16 сигнал от исследуемого объекта, после чего нормированные сигналы сравниваются (в блоке сравнения 17) для момента t=14 мкс (на интервале максимальной различимости и упорядоченности) и их совпадение определяет величину удельной электрической проводимости материала магнитного отложения, фиксируемую блоком 18.

Значения параметров, при которых проводилось моделирование:

δм=2÷2.3 мм, σм=10±1 МСм/м - параметры трубы

δо=0.5÷2 мм, σо=0.05÷0.15 МСм/м, - параметры отложения

Тв=2 мс, Rв=4 мм.

Предлагаемое устройство отличается тем, что после определения толщины отложения δo и величины магнитных свойств его материала моделирующее устройство (компьютер) по специальному алгоритму генерирует сигналы, подобные сигналам измерительной катушки для полученных значений δо и и различных значений удельной электрической проводимости в таком диапазоне, чтобы он, превосходил возможное ее значение. Полученные сигналы нормируются по их максимальному значению и начальные участки этих кривых образуют в какой-то фиксированный момент времени регулярную зависимость. Сравнивая полученные значения и нормированные значения исследуемого сигнала определяют значение электропроводимости σо исследуемого отложения.

Таким образом, благодаря совместному использованию вихретокового датчика, состоящего из возбуждающей и измерительной катушек и измерителя магнитного потока, микроконтроллера с его алгоритмом обработки сигналов, осуществляется измерение толщины магнитного отложения, количественная оценка магнитных свойств и удельной электрической проводимости материала отложения, что характеризует в значительной степени его структурное состояние.

Источники информации:

1. Патент 2487343 Р; опубл. 10.07.2013.

2. Пат. 143178, опубл. 20.07.2014.

Устройство вихретокового контроля удельной электрической проводимости магнитных отложений на поверхности труб, содержащее генератор прямоугольных периодических импульсов тока с периодом Тв, выбираемым из условия Тв≥3Rвμ0нмσнмомσомμrм), где δнм и σнм - номинальные значения толщины и электропроводимости металла, δом, σом и μrм - максимальные значения толщины, удельной электрической проводимости и магнитной проницаемости отложений, μ0 - магнитная постоянная, вихретоковый датчик с возбуждающей катушкой, радиус Rв которой выбирают из условия 3(δмном)>Rв>1,0(δмнoм), где δмн и δом - номинальная и максимальная толщина стенки трубы и отложений соответственно, измеритель магнитного потока и измерительную катушку, выход генератора прямоугольных импульсов присоединен к возбуждающей катушке вихретокового датчика, измерительная катушка и измеритель магнитного потока через блоки усиления и АЦП подключены к микроконтроллеру, к выходам которого присоединены индикатор толщины отложений и индикатор относительной магнитной проницаемости отложений, отличающееся тем, что оно снабжено моделирующим устройством, двумя блоками нормировки сигналов измерительной катушки и моделирующего устройства, блоком сравнения значений этих сигналов и индикатором электропроводимости, при этом вход моделирующего устройства подключен к одному из выходов микроконтроллера, выход моделирующего устройства подсоединен к первому блоку нормировки, ко второму блоку нормировки подключен выход усилителя исследуемого сигнала, выходы первого и второго блоков нормировки подключены к блоку сравнения, выход которого соединен с индикатором электропроводимости.



 

Похожие патенты:

Группа изобретений относится к области выявления нарушения непрерывности материала в намагничиваемом изделии. Способ выявления нарушения непрерывности материала в намагничиваемом изделии содержит этапы, на которых осуществляют перемещение магнита вдоль изделия таким образом, чтобы линии магнитного потока, выходящие из активного магнитного поля магнита, образовывали петлю, проходили через изделие и создавали магнитное взаимодействие магнита с изделием; помещение датчика взаимодействия магнитного поля в фиксированной позиции относительно магнита и в активном магнитном поле магнита, причем датчик взаимодействия проходит вдоль изделия с магнитом для осуществления замера магнитного взаимодействия между магнитом и изделием; анализ измеренного магнитного взаимодействия в активном магнитном поле на предмет изменения магнитного взаимодействия в ходе перемещения магнита и использование изменения магнитного взаимодействия для выявления нарушения непрерывности в изделии.

Группа изобретений относится к способу проверки электропроводного композиционного материала и устройству для проверки электропроводного композиционного материала.

Изобретение относится к области теплоэнергетики. Прибор содержит процессорный блок (ПБ) 10 с узлом определения полного и остаточного ресурса (УОР) 17 и с клеммными разъемами (КР) 11, 12 для подключения выносного ферритометрического наконечника (ВФН) 20 и выносного ультразвукового толщиномера (ВУЗТ) 30, клавиатуру 40 для ввода необходимых дополнительных величин, а также данных необходимых измерений штатными измерительными средствами электростанции и дисплей 50 для визуализации выходных данных.

Изобретение относится преимущественно к области физической химии и биофизикии, может быть использовано в медицине, а также биологии и физиологии человека и животных.

Изобретение относится к области неразрушающего контроля в промышленности и на транспорте. Способ магнитного контроля протяженных изделий с симметричным поперечным сечением, изготовленных из однородного ферромагнитного материала, содержит этапы, на которых на контролируемом участке намагничивание изделия осуществляется путем пропускания вдоль длины изделия несинусоидального тока, при этом для каждого поперечного сечения в характерных точках, попарно симметричных относительно оси (осей) симметрии геометрической фигуры поперечного сечения на границах поперечного сечения изделия, измеряются и раскладываются в ряд Фурье индукция внешнего магнитного поля и электрическое напряжение, по результатам анализа которых определяются и оцениваются поперечные сечения с дефектами, структурными изменениями и изгибными напряжениями.

Изобретение относится к области металлургии. Для быстрого определения доли ферритной фазы в стальной полосе (2) в режиме онлайн способ содержит следующие этапы: измерение ширины w1 и температуры T1 стальной полосы (2), причем стальная полоса (2) во время измерений имеет долю ферритной фазы, нагрев или охлаждение стальной полосы (2), причем в стальной полосе (2) при нагреве по меньшей мере частично происходит фазовое превращение из ферритного состояния в аустенитное состояние и при охлаждении по меньшей мере частично происходит фазовое превращение из аустенитного состояния в ферритное состояние , измерение ширины w и температуры T по меньшей мере частично превращенной стальной полосы (2) и определение доли ферритной фазы по формуле (I), причем Т0 является эталонной температурой типично 20°С и и являются линейными коэффициентами теплового расширения феррита и аустенита.

Предлагается способ для проверки свойства поверхности, обеспечивающий проверку состояния обработки поверхности обработанного материала, подвергнутого обработке поверхности.

Изобретение относится к артиллерийским боеприпасам и может быть использовано при оценке ресурса стальных корпусов снарядов после длительных сроков хранения. Сущность: на всех корпусах снарядов, без их разборки, в непосредственной близости к ведущему пояску на корпусе, производят измерение коэрцитивной силы.

Изобретение относится к измерительной технике, а именно к средствам измерения относительных деформаций. Многоканальный регистратор деформаций, каждый канал которого содержит датчик деформаций в виде тензорезистора, входящего в состав мостовой схемы, аналого-цифровой преобразователь и внутренний источник питания, отличающийся тем, что в каждом канале тензорезистор включен в состав измерительной мостовой схемы Уитстона, дополнительно введен искрозащитный барьер по питанию мостовой схемы Уитстона, состоящий из последовательно соединенных предохранителя, ограничивающего и балластного резисторов, двух двунаправленных стабилитронов, первые выводы которых объединены и соединены со вторым выводом ограничительного резистора и первым выводом балластного резистора, а вторые выводы двунаправленных стабилитронов объединены и соединены с отрицательной клеммой внутреннего источника питания, к положительной клемме которого подключен первый вывод предохранителя, выходы искрозащитного барьера по питанию мостовой схемы Уитстона подключены к одной диагонали мостовой схемы Уитсона, другая диагональ которой подключена к соответствующим входам аналого-цифрового преобразователя, также в регистратор введены первый и второй искрозащитные барьеры, вход первого из которых соединен с выходом персонального компьютера, а выход соединен с соответствующими входами аналого-цифрового преобразователя каждого канала, вход второго искрозащитного барьера соединен с соответствующими выводами внешнего блока питания, а выход - с соответствующими входами внутреннего источника питания и соответствующими входами аналого-цифрового преобразователя каждого канала, причем первый и второй искрозащитный барьер включают в себя предохранитель, первый вывод которого подключен к положительной входной клемме барьера, второй вывод подключен к первому выводу резистора, второй вывод которого соединен с первыми выводами двух двунаправленных стабилитронов, вторые выводы которых объединены и соединены с отрицательной клеммой искрозащитного барьера.

Изобретение относится к способу электромагнитной дефектоскопии эксплуатационных колонн нефтяных и газовых скважин. Техническим результатом является упрощение технологии обнаружения и разделения дефектов, расположенных на внутренней и внешней стенках эксплуатационной колонны, обеспечение высокой точности обнаружения и разделения дефектов.

Использование: для неразрушающего контроля. Техническая целесообразность изобретения заключается в том, что устройство вихретокового контроля удельной электрической проводимости магнитных отложения на поверхности труб содержит генератор прямоугольных периодических импульсов тока с периодом Тв, выбираемым из условия Тв≥3Rвμ0, где δнм и σнм - номинальные значения толщины и электропроводимости металла, δом, σом и μrм - максимальные значения толщины, удельной электрической проводимости и магнитной проницаемости отложений, μ0 - магнитная постоянная, вихретоковый датчик с возбуждающей катушкой, радиус Rв которой выбирают из условия 3>Rв>1,0, где δмн и δом - номинальная и максимальная толщина стенки трубы и отложений соответственно, измеритель магнитного потока и измерительную катушку, выход генератора прямоугольных импульсов присоединен к возбуждающей катушке вихретокового датчика, измерительная катушка и измеритель магнитного потока через блоки усиления и АЦП подключены к микроконтроллеру, к выходам которого присоединены индикатор толщины отложений и индикатор относительной магнитной проницаемости отложений, также снабжено моделирующим устройством, двумя блоками нормировки сигналов измерительной катушки и моделирующего устройства, блоком сравнения значений этих сигналов и индикатором электропроводимости, при этом вход моделирующего устройства подключен к одному из выходов микроконтроллера, выход моделирующего устройства подсоединен к первому блоку нормировки, ко второму блоку нормировки подключен выход усилителя исследуемого сигнала, выходы первого и второго блоков нормировки подключены к блоку сравнения, выход которого соединен с индикатором электропроводимости. Технический результат: обеспечение возможности определения структуры отложений. 6 ил.

Наверх