Способ упрочнения мало- и среднеуглеродистых сталей

Изобретение относится к области металлургии и касается способа повышения прочности сталей, в частности способа упрочнения мало- и среднеуглеродистых сталей, и может быть использовано при изготовлении деталей конструкций и машин. Для повышения эффективности упрочнения и упрощения технологии упрочнения осуществляют трехкратное термоциклирование стали путем нагрева со скоростью 1 мм/м, выдержки в печи и охлаждения, при этом температура печи 300°С, выдержка в печи после прогрева всего сечения составляет 3-5 мин, а охлаждение проводят на спокойном воздухе. 5 ил., 2 табл.

 

Изобретение относится к металлургии и касается способов повышения прочности сталей, и касается способов повышения прочности сталей, в частности способа упрочнения мало- и среднеуглеродистых сталей и может быть использовано при изготовлении деталей конструкций и машин.

Из уровня техники известен способ [Адаскин, A.M. Материаловедение в машиностроении [Текст] / A.M. Адаскин, Ю.Е. Седов, А.К. Онегина, В.Н Климов - М: Юрайт, 2013. - 535 с.] упрочнения мало- и среднеуглеродистых сталей, способ включает следующие стадии - цементацию, то есть насыщение поверхностных слоев углеродом, путем нагрева в среде активных карбюрезаторов до температуры 900-950°С не менее 10 часов, после окончания насыщения поверхностного слоя углеродом и медленного охлаждения до цеховой температуры, - закалку одинарную или двойную путем нагрева до температуры 820-850°С при одинарной закалке и до температуры 760-800°С при второй закалке, - охлаждение в масле и низкий отпуск путем нагрева до температуры 150-180°С и охлаждения на воздухе. Недостатком данного способа является значительные затраты, низкая производительность, сложность автоматизации процесса, при двойном нагреве для закалки обезуглероживание цементованного слоя вследствие чего снижается износостойкость поверхностного слоя, большие затраты на электроэнергию.

Наиболее близким к заявленному изобретению является способ упрочнения малоуглеродистых сталей [Получение повышенного комплекса механических свойств низкоуглеродистых сталей ступенчатой закалкой / В.М. Фарбер, О.В. Селиванова, В.П. Швейкин, В.П. Галимшина // Инновации в материаловедении и металлургии: материалы I междунар. интерактив. науч. - практ. конф. [13-19 дек. 2011 г., г. Екатеринбург]. - Екатеринбург: Изд-во Урал, ун-та, 2012. - Ч. 1. - С. 269-273] путем создания гетерофазной феррито-мартенситной структуры ступенчатой закалкой, включающий низкотемпературную аустенитизацию вблизи критической точки Ас3, соответствующей температуре, при которой сталь переходит в процессе нагрева в однофазное аустенитное состояние, переохлаждение до критической точки Ar1, соответствующей температуре превращения аустенита в перлит при охлаждении, оптимальную выдержку и последующую закалку в воду. Недостатками данного способа являются -зависимость результата от не всегда прогнозируемого количества и состава примесей, которые существенно сдвигают критические точки стали Ас3 и Ar1, большие затраты на электроэнергию, сложность технологической операции ступенчатой закалки.

Техническим результатом заявляемого способа является повышение эффективности упрочнения мало- и среднеуглеродистых сталей, снижение затрат на электроэнергию, упрощение технологии упрочнения, благодаря тому что температура нагрева ниже температур перехода мало- и низкоуглеродистых сталей в аустенитное состояние (в среднем в 2,5-3 раза) и не зависит положения критических точек Ас3 и Ar1 Способ включает следующие стадии: нагрев при температуре печи 300°С со скоростью 1 мм/мин до полного прогрева сечения, выдержка 3-5 мин после полного прогрева, охлаждение на спокойном воздухе. Нагрев, выдержку и охлаждение проводят циклично. Цикл повторяется 3 раза.

Изобретение может быть проиллюстрировано следующими примерами.

Пример 1. Для проведения эксперимента были сделаны специальные образцы из конструкционной качественной стали 25 (содержание углерода 0,22-0,30%). Порядок проведения эксперимента: образцы закладывались в печь с температурой 300°С, после прогрева всего сечения со скоростью 1 мм/мин проводилась выдержка при температуре печи 300°С в течение 3-5 мин и охлаждение на спокойном воздухе. Цикл повторялся. Было проведено термоциклирование образцов до 20 циклов. Измерялась коэрцитивная сила Нс (напряженность магнитного поля, необходимая для размагничивания намагниченного до насыщения ферромагнетика, А/м) и твердость HRB по шкале В Роквелла в условных единицах. Результаты эксперимента для стали 25 показаны в табл. 1 (графическая иллюстрация - зависимость коэрцитивной силы для всех исследуемых образцов и среднее значение от числа циклов нагрев-выдержка-охлаждение на спокойном воздухе - Фиг. 1) и табл. 2 (графическая иллюстрация - среднее значение зависимости твердости HRB от числа циклов - Фиг. 2). На Фиг. 1 -обозначения 1-5 относятся к номерам исследуемых образцов из табл. 1, 2. Очевидно, что на третьем цикле все 5 образцов из стали 25 показали резкое повышение твердости и коррелирующейся с ней коэрцитивной силы (среднее значение твердости возросло после третьего цикла термоциклирования практически в 2 раза). Затем с увеличением циклов температурной нагрузки 300°С происходит падение исследуемых величин.

Пример 2. Образцы из стали 20 (содержание углерода 0,17-0,24%) подвергались упрочнению по заявляемому способу. Порядок проведения эксперимента такой же как в примере 1: образцы закладывались в печь с температурой 300°С, после прогрева всего сечения со скоростью 1 мм/мин проводилась выдержка при температуре печи 300°С в течение 3-5 мин и охлаждение на спокойном воздухе. Цикл повторялся. Было проведено термоциклирование образцов до 10 циклов. Измерялась твердость HRB. Осредненные результаты экспериментов по 5 образцам для стали 20 показаны на Фиг. 3.

Пример 3. Образцы из стали 40 (содержание углерода 0,37-0,45%) подвергались упрочнению по заявляемому способу. Порядок проведения эксперимента такой же как в примерах 1 и 2: образцы закладывались в печь с температурой 300°С, после прогрева всего сечения со скоростью 1 мм/мин проводилась выдержка при температуре печи 300°С в течение 3-5 мин и охлаждение на спокойном воздухе. Цикл повторяется. Было проведено термоциклирование образцов до 10 циклов. Измерялась твердость HRB. Осредненные результаты экспериментов по 5 образцам для стали 40 показаны на Фиг. 4. Однако термоциклирование указанных сталей при температурах выше 300°С (но ниже линии PSK диаграммы железо-цементит, где происходит аустенитное превращение при нагреве) не привело к результату, полученному при 300°С. Цементит является в системе железо-углерод метастабильной фазой. Температура 300°С близка к точке Кюри цементита, когда сталь очень чувствительна к внешним воздействиям различного рода, в том числе температурным. При достижении точки Кюри цементита, он испытывает фазовый переход II рода. Вблизи точки Кюри цементита наблюдается аномальное поведение его модуля упругости и рост диффузионной подвижности. На Фиг. 5 показаны фотографии микрошлифов стали 25 в исходном (отожженном состоянии) - а, после 3-х циклов - б, после 7 - в и после 20 циклов - г. Анализ шлифов показывает, что такое значительное увеличение твердости и магнитных характеристик можно лишь частично объяснить превращением перлита зернистого в пластинчатый после 3-его цикла. Основное объяснение возникновение температурных напряжений, которые при дальнейшем термоциклировании релаксируют.

Способ упрочнения мало- и среднеуглеродистых сталей, включающий нагрев детали со скоростью 1 мм/м, выдержку в печи и охлаждение, отличающийся тем, что нагрев, выдержку и охлаждение проводят циклично с повторением цикла 3 раза, при этом температура печи 300°C, выдержка в печи после прогрева всего сечения детали составляет 3-5 мин, а охлаждение проводят на спокойном воздухе.



 

Похожие патенты:

Изобретение относится к способу термической обработки металлов и может быть использовано для получения износостойких структур при изготовлении рабочих органов почвообрабатывающих орудий из высокопрочного чугуна ВЧ 50.

Изобретение относится к способу термической обработки металлов и может быть использовано для получения износостойких структур при изготовлении рабочих органов почвообрабатывающих орудий из высокопрочного чугуна ВЧ50.

Изобретение относится к способам термической обработки металлов и может быть использовано для получения износостойких структур при изготовлении режущих частей и лезвий рабочих органов почвообрабатывающих орудий из высокопрочного чугуна ВЧ50.

Изобретение относится к способам термической обработки металлов и может быть использовано для получения износостойких структур при изготовлении рабочих органов почвообрабатывающих орудий из высокопрочного чугуна ВЧ50.

Изобретение относится к способу переноса тепла между металлическим или неметаллическим изделием и жидким теплоносителем, содержащим жидкую среду, гидрофобные наночастицы, имеющие размер в поперечном измерении между 26 и 50 мкм, и диспергирующий агент, при этом соотношение по массе концентраций наночастиц и диспергирующего агента составляет между 3 и 18 и при этом наночастицы не содержат углеродных нанотрубок.

Изобретение относится к области металлургии. Для повышения качества и обеспечения твердости 60 HRC осуществляют закалку рабочей поверхности зуба шестерни при помощи лазерного излучателя, причем ведут поперечную подачу шестерни относительно лазерного луча и во время обработки луч лазера направлен по нормали к закаливаемой поверхности, а излучатель находится на одном расстоянии от нее.

Изобретение относится к упрочнению стали и может быть использовано в сельскохозяйственном машиностроении для повышения износостойкости лезвий почвообрабатывающих орудий.

Изобретение относится к области металлургии. Для обеспечения заданных структурных свойств малых по размеру локальных областей детали и управления ими способ (100) содержит шаги, на которых помещают (102) заготовку в печь (10) для нагревания (104) заготовки до температуры, равной или превышающей температуру аустенизации материала заготовки для перевода материала заготовки в аустенитную фазу, в установке инфракрасного (ИК) нагрева частично нагревают (106) посредством ИК излучения (24) по меньшей мере одну первую область (2а) заготовки, тем самым поддерживая материал указанной по меньшей мере одной первой области заготовки в аустенитной фазе, и помещают (108) заготовку в обрабатывающий блок (30) для формовки и закалки заготовки с целью получения горячештампованной детали.

Изобретение относится к области металлургии, в частности к производству листового проката толщиной 12-48 мм для изготовления труб магистральных трубопроводов диаметром до 1420 мм с обеспечением доли вязкой, составляющей в изломе образцов при испытаниях падающим грузом не менее 85% при температуре испытания -20°C, ударной вязкости (KCV) при температуре испытания -40°C не менее 250 Дж/см2, высоких значений равномерного удлинения при достижении прочностных свойств в трубах из данного проката на уровне К60-К80 (Х70-Х100).

Изобретение относится к области металлургии. Для улучшения сцепления покрытия со стальным листом осуществляют непрерывный отжиг в печи с атмосферой инертного газа и Н2, включающий предварительный нагрев до 200-350°С в атмосфере А1 с точкой росы ниже -20°С при давлении Р1, имеющей Н2 менее 3,0% об., последующий нагрев до 600-1000°С в атмосфере А2 с точкой росы ниже -40°С при давлении Р2 выше Р1, имеющей Н2 менее 0,5% об., выдержку в атмосфере А3, имеющей Н2 менее 3,0% об., охлаждение до 400-800°С в атмосфере А4 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., выравнивание температуры краев и центра листа в атмосфере А5 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., и перемещение листа с помощью устройства с горячими натяжными роликами в ванну металлического расплава для нанесения покрытия в атмосфере А5 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., при этом атмосферу А2 непрерывно удаляют в направлении секции печи предварительного нагрева и выдержки, а атмосферы А1, А3, А5 и А6 выпускают периодически или непрерывно через отверстия печи.

Изобретение относится к области металлургии. В способе, включающем выплавку и рафинирование для получения рафинированной расплавленной стали, непрерывное литье тонкой стальной полосы, низкий отжиг, нанесение покрытия горячим способом, согласно изобретению, на стадии непрерывного литья тонкой стальной полосы рафинированную расплавленную сталь заливают в двухвалковую литейную установку, при этом под охлаждающим действием валков литейной установки сталь остывает и затвердевает в виде заготовки стальной полосы, причем процесс литья заготовки осуществляют в среде смеси инертного и восстановительного газа, при этом на поверхности заготовки стальной полосы образуется пленка из окислов железа; на стадии низкого отжига отлитую заготовку направляют в печь низкого отжига, в которую также вводят смешанный газ, при этом происходит восстановление пленки окислов железа в железистый металл; на стадии нанесения покрытия горячим способом литую стальную полосу после охлаждения в защитной атмосфере направляют в ванну плакирования для нанесения покрытия цинком или другими сплавами, после чего стальную полосу охлаждают и наматывают. Создан способ изготовления горячеплакированных изделий из тонкой стальной полосы непосредственного из расплавленной стали без травления, позволяющий обеспечить массовое производство, за счет сокращения числа производственных стадий, обусловленного исключением операции травления и объединением изготовления тонкой стальной полосы способом непрерывного литья с нанесением покрытия горячим способом; металл извлекается, практически, до 100%. 15 з.п. ф-лы, 9 ил., 5 табл., 5 пр.

Изобретение относится к области металлургии и касается способа повышения прочности сталей, в частности способа упрочнения мало- и среднеуглеродистых сталей, и может быть использовано при изготовлении деталей конструкций и машин. Для повышения эффективности упрочнения и упрощения технологии упрочнения осуществляют трехкратное термоциклирование стали путем нагрева со скоростью 1 ммм, выдержки в печи и охлаждения, при этом температура печи 300°С, выдержка в печи после прогрева всего сечения составляет 3-5 мин, а охлаждение проводят на спокойном воздухе. 5 ил., 2 табл.

Наверх