Депрессионно-репрессионная компоновка для заканчивания и ремонта скважины

Изобретение относится к области строительства и эксплуатации скважин, в частности бурения, очистки, промывки, обработки, гидроразрыва, освоения и исследования. Устройство содержит колонну труб, гидравлический двигатель с герметизированным шпинделем, выходным валом, наддолотным переводником и долотом, два пакера, взаимодействующих с полостью повышенного давления, струйный насос, питаемый активной средой поверхностным насосом и включающий соединенное с каналом подвода активной среды сопло, диффузор с выходом в надпакерную зону верхнего пакера и камеру смешения, соединенную с подпакерной зоной верхнего и нижнего пакера каналом подвода пассивной среды. Два пакера выполнены надувными. Гидравлический двигатель, установленный первым по ходу подвода активной среды, и струйный насос, установленный вторым, соединены между собой гидравлически последовательно с возможностью направления всей активной среды после забойного двигателя в сопло струйного насоса, уплотнитель шпинделя выполнен комбинированным в виде резинового кольца, установленного первым по ходу утечки активной среды, и двух надувных уплотнений, расположенных вторыми и взаимодействующих с полостью повышенного давления струйного насоса. Нижняя полая часть выходного вала содержит отверстие между двумя надувными уплотнениями, связанное каналом подвода пассивной среды с камерой смешения. Межпакерный порт для закачки технологической жидкости выполнен в шпинделе и связан с каналом подвода активной среды. Шпиндель содержит управляемую по гидравлической линии связи систему открытия-закрытия верхнего надувного пакера, канала подвода пассивной среды с подпакерной зоны верхнего и нижнего пакера и межпакерного порта для закачки технологической жидкости. Система выполнена в виде четырех электромагнитных клапанов, блока контроля, датчика давления и узла питания. Нижний пакер установлен на втулке, снабженной надувным уплотнением, которая надета на внешнюю гладкую сторону колонны труб. Втулка содержит систему открытия-закрытия нижнего надувного пакера, в виде масленого электронасоса, блока контроля, дифференциального датчика давления, узла питания и электромеханического замка с датчиком положения. Увеличивается величина депрессии на пласт, повышается надежность компоновки в различных скважинных условиях, обеспечивается возможность проведения поинтервального депрессионно-репрессионного воздействия на пласт. 5 ил.

 

Изобретение относится к области строительства и эксплуатации скважин, в частности бурения, очистки, промывки, обработки, гидроразрыва, освоения и исследования при их сооружении или ремонте преимущественно в сложных условиях аномально низких пластовых давлений.

Известна депрессионная компоновка для очистки (удаления технологических отложений), промывки и освоения скважины с низким пластовым давлением, содержащая связанный с колонной труб корпус, размещенные в его нижней части пакерную манжету и взаимодействующий с ней поршень, соединенный каналом подвода активной среды с полостью повышенного давления и управляющий открытием и закрытием пакера, установленный в верхней части корпуса над пакерной манжетой струйный насос, включающий соединенное с каналом подвода активной среды сопло, диффузор с выходным отверстием в надпакерную зону и камеру смешения, соединенную с подпакерной зоной каналом подвода пассивной среды, связанный с низом корпуса трубами и выполненный с возможностью продольного перемещения относительно них промывочно-разрушающий узел. Работа этого устройства происходит циклически с необходимостью прерывания режима депрессии и углубления инструмента в скважине. После удаления верхнего слоя песчаной пробки закачка промывочной активной среды прекращается, пакер закрывается, компоновка опускается ниже на необходимую глубину, промывка возобновляется и цикл повторятся [патент на изобретение RU 2213862 С1, 10.10.2003].

Недостатком этой компоновки является отрицательная цикличность в работе, низкая производительность процесса разрушения технологических отложений, удаление лишь слабосвязанных между собой включений, невозможность ее использования при заканчивании скважин, а именно при первичном вскрытии продуктивного пласта бурением на депрессии. Кроме того указанное устройство не позволяет совмещать работы на депрессии с работами на репрессии, например, проводить обработки пласта технологическими жидкостями (кислотой, растворителями, жидкостями разрыва и др.).

Известна депрессионно-репрессионная компоновка для ремонта скважины, содержащая смонтированные на колонне насосно-компрессорных труб (НКТ) сверху вниз струйный насос с проходным каналом, верхний и нижний пакер, межпакерный порт для закачки технологической жидкости (воздействия, обработки, гидроразрыва) и автономный прибор для регистрации температуры, давления и иных показателей. Данная компоновка используется для совместного депрессионно-репрессионного воздействия на пласт и позволяет проводить поинтервальные (селективные) обработки или гидроразрывы пласта на репрессии с одновременной последующей очисткой, промывкой, освоением и исследованием скважины на депрессии без дополнительной спускоподъемной операции (СПО) оборудования [патент на полезную модель RU 142704 U1 27.06.2014].

Недостатком этой компоновки является низкая производительность процесса разрушения технологических отложений, удаление лишь слабосвязанных между собой включений, невозможность ее использования в открытом стволе, например, при заканчивании скважин вскрытием продуктивного пласта бурением в режиме депрессии.

Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков является компоновка для углубления, очистки, промывки и освоения скважины с низким пластовым давлением, содержащая колонну труб, связанный с ней корпус, размещенный в нижней части корпуса пакер в виде манжеты, взаимодействующий через поршень и канал подвода активной среды с полостью повышенного давления, установленный в верхней части корпуса над пакером струйный насос, питаемый активной средой поверхностным насосом и включающий соединенное с каналом подвода активной среды сопло, диффузор с выходом в надпакерную зону и камеру смешения, соединенную с подпакерной зоной каналом подвода пассивной среды, связанный с низом корпуса и полостью повышенного давления трубами промывочно-разрушающий узел, при этом промывочно-разрушающий узел выполнен в виде подвижного в осевом направлении толкателя, гидравлического двигателя с герметизированным посредством уплотнителя шпинделем, выходным валом, наддолотным переводником и долотом, причем осевое перемещение толкателя ограничено размещенным внизу трубного корпуса переходником, а крутящий момент гидравлическому двигателю передается через сопрягаемые профильные поверхности силового штока и переходника, которые выполнены, например, в виде многогранника. Возможность совместного использования в этой компоновки струйного насоса, пакера и гидравлического двигателя позволяет разрушать не только прочные технологические отложения в эксплуатационной или лифтовой колонне, но и заканчивать скважину бурением в режиме депрессии на пласт. В этом случае создаваемая депрессия в процессе углубления скважины определяется величиной утечки активной среды и перевода ее в пассивную среду на пакере и гидравлическом двигателе, а также величиной притока (дебитом) пластового флюида. При прочих равных условиях создаваемая депрессия максимальна, когда утечка активной среды на пакере и гидравлическом двигателе отсутствует. Данная компоновка рассчитана на работу только в режиме депрессии и не позволяет одновременно в течение одной СПО оборудования работать также и в режиме репрессии на пласт [патент на изобретение RU 2364705 С1 20.08.2009].

Первым недостатком компоновки является невозможность создания глубокой депрессии на пласт, а следовательно, ухудшение эффективности и возможности ее использования в сложных скважинных условиях, особенно при аномально низком пластовом давлении. Это объясняется следующим образом. При углублении скважины указанной компоновкой часть активной среды расходуется гидравлическим двигателем и затем непосредственно подается в камеру смешения (переводится в пассивную среду и образует значительную утечку), что существенно снижает коэффициент эжекции струйного насоса и препятствует созданию большому перепаду давления на пакере, т.е. глубокой депрессии на пласт. Вторым недостатком компоновки является необходимость передачи крутящего момента гидравлического двигателя через профильную поверхность (многогранник) при подвижном в осевом направлении толкателе, что усложняет устройство, снижает его надежность и требует частой перезарядки - через каждые 6 м углубления скважины. Кроме того эта компоновки не позволяет работать в режиме репрессии на пласт технологическими жидкостями, многократно осуществлять поинтервальные депрессионно-репрессионные воздействия на пласт.

Задача изобретения - расширение функциональных возможностей устройства, повышение эффективности и надежности его работы в сложных геолого-технологических условиях.

Техническим результатом изобретения является увеличение величины депрессии на пласт при совместной работе струйного насоса и гидравлического двигателя, повышение надежности компоновки в различных скважинных условиях и обеспечение возможности проведения также поинтервального депрессионно-репрессионного воздействия на пласт.

Технический результат при осуществлении изобретения достигается тем, что в депрессионно-репрессионной компоновке для заканчивания и ремонта скважины, содержащей колонну труб, гидравлический двигатель с герметизированным посредством уплотнителя шпинделем, выходным валом, наддолотным переводником и долотом, два пакера - верхний и нижний, взаимодействующих с полостью повышенного давления, межпакерный порт для закачки технологической жидкости, струйный насос, питаемый активной средой поверхностным насосом и включающий соединенное с каналом подвода активной среды сопло, диффузор с выходом в надпакерную зону верхнего пакера и камеру смешения, соединенную с подпакерной зоной верхнего и нижнего пакера каналом подвода пассивной среды, при этом согласно изобретению два пакера - верхний и нижний выполнены надувными, гидравлический двигатель, установленный первым по ходу подвода активной среды и струйный насос, установленный вторым по ходу подвода активной среды соединены между собой гидравлически последовательно с возможностью направления всей активной среды после забойного двигателя в сопло струйного насоса, расположенного вместе с верхним надувным пакером в шпинделе, уплотнитель шпинделя выполнен комбинированным в виде резинового кольца, установленного первым по ходу утечки активной среды и двух надувных уплотнений, расположенных вторыми по ходу утечки активной среды и взаимодействующих с полостью повышенного давления струйного насоса, нижняя полая часть выходного вала содержит отверстие, установленное между двумя надувными уплотнениями и связанное каналом подвода пассивной среды с камерой смешения, межпакерный порт для закачки технологической жидкости выполнен в шпинделе и связан с каналом подвода активной среды, при этом шпиндель содержит управляемую по гидравлической линии связи систему открытия-закрытия верхнего надувного пакера, канала подвода пассивной среды с подпакерной зоны верхнего и нижнего пакера и межпакерного порта для закачки технологической жидкости, причем эта система выполнена в виде четырех электромагнитных клапанов, блока контроля, датчика давления и узла питания, при этом нижний надувной пакер установлен на втулке, снабженной надувным уплотнением, которая надета на внешнюю гладкую сторону колонны труб, введенной между выходным валом и наддолотным переводником с возможностью осевого перемещения с вращением относительно втулки, при этом втулка содержит управляемую по гидравлической линии связи систему открытия-закрытия нижнего надувного пакера в виде масленого электронасоса, блока контроля, дифференциального датчика давления, узла питания и электромеханического замка с датчиком положения, связанным с блоком контроля, причем выход масленого электронасоса гидравлически связан с внутренней полостью нижнего надувного пакера втулки и ее надувного уплотнения, а ответная часть электромеханического замка расположена в наддолотном переводнике.

В отличие от известного устройства, предлагаемое устройство основано на последовательной, а не на параллельной отработке активной среды сначала гидравлическим двигателем и затем струйным насосом. Это существенно повышает коэффициент эжекции устройства при совместной работе струйного насоса и гидравлического двигателя, а, следовательно, создает глубокую депрессию в движении при механическом углублении скважины или ее очистке. Вся активная среда после двигателя направляется в сопло без утечки и образования пассивной среды. Этому способствует использование надувного уплотнения в шпинделе, взаимодействующего с полостью повышенного давления струйного насоса, что исключает утечку активной среды на выходе гидравлического двигателя между его корпусом и выходным валом.

В движении депрессия компоновкой может создаваться с помощью одного из двух надувных пакеров в зависимости от тех или иных скважинных условий. Непрерывный депрессионный режим работы с верхним надувным пакером шпинделя используется при удалении технологических пробок большой длины в лифтовой колонне насосно-компрессорных труб (НКТ) или в ненарушенном интервале эксплуатационной колонны. Циклический депрессионный режим работы с нижним надувным пакером втулки используется в более сложных условиях, а именно в нарушенном интервале эксплуатационной колонны, например, интервале перфорации или в открытом стволе скважины при механическом бурении. Поинтервальное депрессионно-репрессионное воздействие на пласт создается неподвижной компоновкой с помощью двух одновременно задействованных надувных пакеров - верхнего пакера шпинделя и нижнего пакера втулки.

При возможности свободного непрерывного перемещения компоновки в скважине, например в ненарушенной эксплуатационной колонне, используется верхний надувной пакер шпинделя. В этом случае утечка на гидравлическом двигателе (прототип) заменяется меньшей утечкой между эксплуатационной колонной и движущимся в осевом направлении надувным верхним пакером шпинделя, взаимодействующим с полостью повышенного давления струйного насоса. Размещение струйного насоса вместе с верхним пакером в шпинделе решает проблему реактивного момента гидравлического двигателя, повышает надежность устройства и не требует его перезарядки.

При необходимости циклического перемещения компоновки, например в открытом стволе скважины (при бурении), используется нижний надувной пакер втулки. В этом случае утечка на гидравлическом двигателе (прототип) заменяется меньшей утечкой между надувным уплотнением втулки и движущейся в осевом направлении колонной труб с гладкой внешней поверхностью. При этом установка нижнего пакера втулки на гладкой колонне труб также решает проблему реактивного момента забойного двигателя, повышает надежность устройства и увеличивает интервал его перезарядки.

Размещение в шпинделе и пакерной втулке дистанционно управляемой системы открытия-закрытия пакеров, межпакерного порта для закачки технологической жидкости и канала подвода пассивной среды с различных герметизированных зон позволяет оптимизировать работу компоновки в различных скважинных условиях. Компоновка может применяться в вертикальных и горизонтальных скважинах, в движении и покое, без опоры на забой, осевого или кругового перемещения инструмента с возможностью многократно создания в любой последовательности режимов депрессии-репрессии при промывке и углублении скважины.

На фиг. 1 дана схема устройства, транспортное положение в скважине; на фиг. 2 - то же, при работе в эксплуатационной колонне с верхним надувным пакером шпинделя; на фиг. 3 - то же, при работе в открытом стволе с нижним надувным пакером втулки; на фиг. 4 - то же, при работе с двумя пакерами на репрессии; на фиг. 5 - то же, при работе с двумя пакерами на депрессии.

Депрессионно-репрессионная компоновка для заканчивания и ремонта скважины (фиг. 1) содержит колонну 1 труб, гидравлический двигатель 2, его герметизированный посредством уплотнителя шпиндель 3, выходной вал 4, гладкую колонну 5 труб, наддолотный переводник 6, долото 7, струйный насос и два надувных пакера. Струйный насос включает сопло 8 с каналом 9 подвода активной среды, диффузор 10 с выходом в надпакерную зону 11 надувного верхнего пакера 12 и камеру смешения 13, соединенную с подпакерной зоной 14 надувного нижнего пакера 15 внутритрубным каналом 16 подвода пассивной среды. При этом подвод пассивной среды осуществляется через долото 7 и фильтр (не показано) наддолотного переводника 6. Параллельно камера смешения 13 соединена шпиндельным каналом 17 подвода пассивной среды также через фильтр (не показано) с подпакерной зоной 18 верхнего пакера 12 (межпакерной зоной). Надпакерная зона 11 и подпакерная зона 18 верхнего пакера 12, а также подпакерная зона 14 нижнего пакера 15 вместе образуют затрубное пространство скважины. Гидравлический двигатель 2, установленный первым по ходу движения активной среды и струйный насос, установленный вторым по ходу движения активной среды, соединены гидравлически между собой последовательно с возможностью подачи всей активной среды после двигателя 2 в сопло 8 струйного насоса. Струйный насос вместе с верхним надувным пакером 12 расположен в шпинделе 3. Для исключения утечки в гидравлическом двигателе 2 уплотнитель шпинделя 3 выполнен комбинированным в виде резинового кольца 19, установленного первым по ходу утечки и двух надувных уплотнений 20 и 21, расположенных вторыми по ходу утечки. Внутренние полости надувных уплотнений 20, 21 также как и внутренняя полость верхнего надувного пакера 12 взаимодействуют с каналом 9 подвода активной среды. При включении поверхностного силового насоса (не показано) перед соплом 8 в канале 9 подвода активной среды создается полость повышенного давления, которая открывает верхний надувной пакер 12 и надувные уплотнения 20, 21 (фиг. 2) с герметизацией соответствующих зон в скважине и устройстве. В полой части выходного вала 4 выполнено отверстие 22 установленное между двумя надувными уплотнениями 20, 21 и связанное шпиндельным 23 и внутритрубным 16 каналом подвода пассивной среды с камерой смешения 13 струйного насоса. Межпакерный порт 24 для закачки технологической жидкости выполнен в шпинделе 3 и связан с каналом 9 подвода активной среды. Шпиндель 3 содержит дистанционно управляемую по гидравлической линии связи систему открытия-закрытия верхнего пакера 12 через электромагнитный клапан 25 и шпиндельных каналов 17, 23 подвода пассивной среды с подпакерной зоны 18 верхнего пакера 12 через электромагнитный клапан 26 и подпакерной зоны 14 нижнего пакера 15 через электромагнитный клапан 27. Эта система также управляет открытием-закрытием межпакерного порта 24 через электромагнитный клапан 28. Четыре электромагнитных клапана 25, 26, 27 и 28 связаны электропроводом с узлом электропитания - аккумулятором (не показано) через блок контроля 29. Блок контроля 29 также связан с датчиком давления (не показано) в канале 9 подвода активной среды. Исходно электромагнитные клапаны 25, 27 открыты, а электромагнитные клапаны 26, 28 исходно закрыты. Нижний надувной пакер 15 жестко установлен на втулке 30, которая свободно надета на внешнюю гладкую сторону колонны 5 труб и при этом снабжена надувным уплотнением 31. Гладкая колонна 5 труб установлена между выходным валом 4 и наддолотным переводником 6 с возможностью осевого перемещения с вращением относительно втулки 30, которая может неподвижно закрепляться на стенке 32 открытого ствола скважины или эксплуатационной колонны при раскрытом состоянии пакера 15 (фиг. 3). Втулка 30 содержит дистанционно управляемую по гидравлической линии связи систему открытия-закрытия нижнего надувного пакера 15, выполненную в виде масленого электронасоса 33, электромеханического замка 34 и блока контроля 35 с аккумулятором и дифференциальным датчиком давления (не показано), измеряющим перепад давления на пакере 15. (Дифференциальный датчик давления может быть выполнен по разностной схеме в виде двух датчиков полного давления среды, установленных до и после пакера 15). Электромеханический замок 34 содержит индуктивный датчик положения (не показано), связанный с блоком контроля 35 и реагирующий на сближение-удаление ответной части 36 замка, расположенной в наддолотном переводнике 6. Гидравлический выход масленого электронасоса 33 связан с внутренними полостями нижнего надувного пакера 15 и надувного уплотнения 31. Управление работой электромагнитных клапанов 25, 26, 27, 28 и пакеров 12, 15 достигается соответствующей кодировкой передаваемых с устья импульсов давления по гидравлической линии связи. Основой блоков контроля 29, 35 являются программируемые контролеры. Длина гладкой колонны 5 труб берется порядка 20 м для удобной работы на устье. В качестве надувных пакеров 12, 15 и надувных уплотнений 20, 21 и 31 используются многоразовые гидравлические элементы с упругими свойствами материала, например, металлорезины. Вместо одного струйного насоса в шпинделе 3 могут располагаться несколько струйных насосов. В общем случае забой 37 скважины представлен технологическими отложениями или коренными породами, при этом компоновка может работать с одним из двух пакеров в движении на депрессии (фиг. 2, фиг. 3) или с двумя пакерами без движения на депрессии и репрессии (фиг. 4, фиг. 5).

Депрессионно-репрессионная компоновка для заканчивания и ремонта скважины работает следующим образом.

Производят спуск до забоя 37, например, технологических отложений (фиг. 1) в эксплуатационной колонне компоновки, содержащей колонну 1 труб, гидравлический двигатель 2 с герметизированным шпинделем 3, выходным валом 4, гладкую колонну 5 труб, наддолотный переводник 6, долото 7, струйный насос, пакеры 12 и 15. В транспортном положении пакеры 12, 15 и замок 34, 36 закрыты, втулка 30 относительно гладкой колонны 5 труб не перемещается, а вытесняемая из скважины жидкость движется в основном между спускаемой компоновкой и стенкой 32 эксплуатационной колонны. После спуска компоновки на забой 37 включают в рабочем режиме промывку скважины поверхностным силовым насосом через колонну 1 труб и последовательно запитывают сначала гидравлический двигатель 2, затем струйный насос активной промывочной средой. Гидравлический двигатель 2 начинает вращать выходной вал 4, гладкую колонну 5 труб с втулкой 30, наддолотным переводником 6 и долотом 7. При этом вся активная промывочная среда после гидравлического двигателя 2 направляется в сопло 8 струйного насоса без образования параллельного потока пассивной среды. В процессе промывки скважины давление перед соплом 8 в канале 9 подвода активной среды возрастает, однако, утечки среды между шпинделем 3 (корпусом гидравлического двигателя 2) и выходным валом 4 не происходит. Первое по ходу действия напора резиновое кольцо 19 воспринимает основной перепад давления. Оставшийся перепад давления сдерживают надувные уплотнения 20, 21 внутренняя полость которых взаимодействует с каналом 9 подвода активной среды (повышенного давления), что исключает утечку активной среды в шпинделе 3 на выходе гидравлического двигателя 2. Это ведет к повышению коэффициента эжекции устройства при совместной работе струйного насоса и гидравлического двигателя и созданию глубокой депрессии на пласт. Повышенное давление в канале 9 подвода активной среды одновременно передается во внутреннюю полость верхнего надувного пакера 12, приводит к его открытию (электромагнитный клапан 25 открыт) и перекрытию затрубного пространства скважины (фиг. 2). При открытом состоянии верхнего надувного пакера 12 компоновку подают в скважину и передают осевую нагрузку и крутящий момент долоту 7 непосредственно через колонну 1 труб, работающий гидравлический двигатель 2, выходной вал 4, гладкую колонну 5 труб и наддолотный переводник 6. Далее проводят неограниченное углубление забоя 37 без перезарядки компоновки в режиме глубокой депрессии. Нагнетаемый поверхностным насосом при рабочем давлении поток активной промывочной среды весь без утечки и превращения в пассивную среду после гидравлического двигателя 2 направляется в сопло 8 струйного насоса, затем через диффузор 10 выходит в надпакерную зону 11 верхнего пакера 12 и направляется к устью скважины. При этом образуется обратная промывка скважины с перепадом давления среды на верхнем надувном пакере 12, находящемся в открытом состоянии при своем осевом перемещении без вращения в эксплуатационной колонне. Перемещение компоновки и углубление забоя 37 проводят при допустимо малой утечке активной среды между сопрягаемыми поверхностями верхнего надувного пакера 12 и стенки эксплуатационной колонны 32. Утечка активной среды на верхнем надувном пакере 12 и поток флюида из пласта вместе образуют пассивную среду. Эта пассивная среда в режиме глубокой депрессии откачивается струйным насосом. Поток пассивной среды движется, подхватывая шлам через разбуриваемый забой 37, долото 7, шламовый фильтр наддолотного переводника 6, внутритрубный канал 16 подвода пассивной среды, отверстие 22 выходного вала 4, шпиндельный канал 23 подвода пассивной среды, камеру смешения 13, диффузор 10, надпакерную зону 11 верхнего пакера 12 и далее на устье скважины. При этом возможно простое с устья скважины управление утечкой активной среды (перепадом давления) на пакере 12, т.е. величиной создаваемой депрессии на пласт. Так на интервале посадок пакера 12, подачу компоновки прекращают, снижают давление нагнетания активной среды и проходят интервал посадок при меньшей раскрытости надувного пакера 12. Затем повышают давление нагнетания активной среды до рабочего значения и возобновляют углубление скважины в прежнем режиме глубокой депрессии на пласт.

При углублении скважины и подходе к нарушенному перфорацией интервалу эксплуатационной колонны или, например интервалу механического бурения (создания открытого ствола), верхний надувной пакер 12 закрывают и активизируют нижний надувной пакер 15. Переход с верхнего надувного пакера 12 на нижний надувной пакер 15 проводят оперативно и просто в различных скважинных условиях. Для этого по гидравлической линии связи с устья передают управляющие импульсы давления и на короткое время прекращают подачу компоновки и промывку скважины. Давление в канале 9 подвода активной среды падает, верхний надувной пакер 12 закрывается за счет упругих сил и переводится в транспортное положение (фиг. 1). Управляющие импульсы, принимаемые датчиком давления блока контроля 29, закрывают электромагнитный клапан 25 и оставляют верхний пакер 12 в закрытом состоянии (фиг. 3). В тоже время управляющие импульсы, принимаемые соответствующим датчиком давления блока контроля 35, открывают на втулке 30 электромеханический замок 34 и включают масленый электронасос 33, гидравлически связанный с нижним надувным пакером 15 и надувным уплотнением 31. Это приводит к заполнению жидкостью и раскрытию надувного нижнего пакера 15 и надувного уплотнения 31. При этом нижний надувной пакер 15 неподвижно закрепляется на стенке 32 открытого ствола скважины с полной герметизацией ее затрубного пространства. Включают промывку скважины в рабочем режиме нагнетания активной среды и последовательно запитывают сначала гидравлический двигатель 2, затем струйный насос. Верхний надувной пакер 12 заблокированный электромагнитным клапаном 25 остается в закрытом состоянии, а струйный насос и надувные уплотнения 20, 21 - в рабочем состоянии. Сквозь неподвижную втулку 30 при открытом состоянии нижнего надувного пакера 15 подают компоновку в скважину. Передают осевую нагрузку и крутящий момент долоту 7 непосредственно через колонну 1 труб, работающий забойный двигатель 2, выходной вал 4, гладкую колонну 5 труб и наддолотный переводник 6 и проводят углубление забоя 37 на 20 м в режиме глубокой депрессии на пласт. Весь поток активной среды после забойного двигателя 2 без утечки и превращения в пассивную среду направляется в сопло 8 и через диффузор 10 выходит в затрубное пространство и направляется к устью скважины. При этом образуется обратная промывка с перепадом давления среды на нижнем надувном пакере 15. Перемещение компоновки сквозь неподвижную втулку 30 и углубление забоя 37 проводят при допустимо малой утечке активной среды между сопрягаемыми поверхностями надувного уплотнения 31 и движущейся в осевом направлении с вращением гладкой частью колонны 5 труб. Утечка активной среды на надувном уплотнении 31 и поток флюида из пласта вместе образуют пассивную среду, которая в режиме глубокой депрессии откачивается струйным насосом. Поток пассивной среды движется, подхватывая шлам через разбуриваемый забой 37, долото 7, шламовый фильтр наддолотного переводника 6, внутритрубный канал 16 подвода пассивной среды, шпиндельный канал 23 подвода пассивной среды, камеру смешения 13, диффузор 10, затрубное пространство и устье скважины. При этом депрессия на пласт регулируется изменением величины утечки активной среды между надувным уплотнением 31 и движущейся в осевом направлении с вращением гладкой частью колонны 5 труб за счет подкачки жидкости масленым электронасосом 33 с использованием блока контроля 35 и его дифференциального датчика давления. После углубления скважины на длину гладкой колонны 5 труб (20 м), поднимают компоновку в прежнее относительно втулки 30 положение до взаимодействия электромеханического замка 34 с ответной частью 36 замка и передачи индуктивным датчиком положения электрических управляющих сигналов блоку контроля 35. Блок контроля 35 через свой аккумулятор и масленый электронасос 33 закрывает электромеханический замок 34, нижний надувной пакер 15, надувное уплотнение 31 и переводит устройство в транспортное положение (фиг. 1). Далее опускают компоновку до забоя 37, с устья по гидравлической линии связи передают управляющие импульсы давления, снова открывают нижний надувной пакер 15 и возобновляют бурение в отрытом стволе при глубокой депрессии на пласт в аналогичной последовательности (фиг. 3).

Для поинтервального депрессионно-репрессионного воздействия на пласт поднимают гладкую колонну 5 труб относительно втулки 30, совмещают электромеханический замок 34 с ответной частью 36 замка до срабатывания индуктивного датчика положения и переводят компоновку в транспортное положение (фиг. 1). Располагают нижний надувной пакер 15 компоновки в подошве выбранного интервала разреза. При промывке скважины с устья по гидравлической линии связи передают управляющие импульсы давления, открывают электромагнитный клапан 28, межпакерный порт 24 и проводят закачку технологической жидкости, например жидкости гидроразрыва с пропантом до глубины исключающей засорение струйного насоса - глубины расположения шпинделя 3. При необходимости промывку скважины ведут с использованием также продавочной жидкости через колонну 1 труб, гидравлический двигатель 2, канал 9 подвода активной среды, электромагнитный клапан 28, межпакерный порт 24, затрубное пространство и устье скважины. В конце закачки технологической (и продавочной) жидкости требуемого объема с устья по гидравлической линии связи передают управляющие импульсы давления. При этом открывают электромеханический замок 34, нижний надувной пакер 15 и сквозь закрепленную в стенке 32 открытого ствола неподвижную втулку 30 подают компоновку в скважину до расположения верхнего надувного пакера 12 в кровле выбранного интервала разреза. При промывке с устья по гидравлической линии связи передают управляющие импульсы давления, открывают и закрывают электромагнитный клапан 25, открывают верхний надувной пакер 12 и оставляют его в открытом состоянии, при этом часть разреза герметизируется в подошве и кровле выбранного интервала (фиг. 4). Закрывают затрубное пространство скважины на устье (не показано), осуществляют продавку технологической жидкости через межпакерный порт 24 в межпакерную зону 18 и проводят воздействие в режиме репрессии, например гидроразрыв пласта. Открывают затрубное пространство скважины на устье. Включают промывку скважины в рабочем режиме нагнетания активной среды. С устья по гидравлической линии связи передают управляющие импульсы давления, закрывают электромагнитный клапан 28, открывают электромагнитный клапан 26 и шпиндельный канал 17 подвода пассивной среды с межпакерной зоны 18 и проводят интервальное воздействие глубокой депрессией с откачкой флюида струйным насосом и очищением ствола и пласта от остатков пропанта (фиг. 5). Операцию депрессионно-репрессионного воздействие на выбранный интервал разреза с использованием различных технологических жидкостей (растворителей, кислот, изоляционно-закрепляющих композиций и др.) при необходимости проводят многократно. Циркуляцию активной среды продолжают и с помощью струйного насоса проводят освоение и пробную эксплуатацию выбранного интервала разреза на различных режимах притока пластового флюида. С устья по гидравлической линии связи передают управляющие импульсы давления, открывают электромагнитный клапан 25, выключают промывку, закрывают верхний надувной пакер 12 и поднимают гладкую колонну 5 труб в прежнее относительно втулки 30 положение. Переводят компоновку в транспортное положение (фиг. 1), располагают нижний надувной пакер 15 в подошве следующего выбранного интервала разреза и проводят депрессионно-репрессионное воздействие на пласт в аналогичной последовательности.

Использование предлагаемой компоновки позволяет оперативно, многократно и в любой последовательности создавать глубокие депрессии и репрессии при промывке и бурении скважины в различных геолого-технологических условиях. Отличительными особенностями компоновки являются:

- создание максимально возможной депрессии углубляемой компоновкой (при совместной работе струйного насоса, гидравлического двигателя и пакера), в том числе в горизонтальных скважинах;

- вскрытие продуктивного интервала на дополнительной за счет струйного насоса и пакера глубокой депрессии, эффективное в условиях интенсивного поглощения жидкости разбуривание прочных технологических отложений, пробок, цементных мостов, портов МГРП и др.;

- возможность поинтервальных многоразовых обработок и гидроразрывов пласта на репрессии с последующей очисткой, промывкой, освоением и исследованием скважины на депрессии в течение одной СПО компоновки;

- простое управление компоновкой в различных скважинных условиях, как на замковой, так и колтюбинговой трубе, в движении и покое, без опоры на забой, осевого или кругового перемещения инструмента с возможностью многократного создания в любой последовательности режимов депрессии-репрессии при промывке и углублении скважины.

Депрессионно-репрессионная компоновка для заканчивания и ремонта скважины, содержащая колонну труб, гидравлический двигатель с герметизированным посредством уплотнителя шпинделем, выходным валом, наддолотным переводником и долотом, два пакера - верхний и нижний, взаимодействующих с полостью повышенного давления, межпакерный порт для закачки технологической жидкости, струйный насос, питаемый активной средой поверхностным насосом и включающий соединенное с каналом подвода активной среды сопло, диффузор с выходом в надпакерную зону верхнего пакера и камеру смешения, соединенную с подпакерной зоной верхнего и нижнего пакера каналом подвода пассивной среды, отличающаяся тем, что два пакера - верхний и нижний выполнены надувными, гидравлический двигатель, установленный первым по ходу подвода активной среды, и струйный насос, установленный вторым по ходу подвода активной среды, соединены между собой гидравлически последовательно с возможностью направления всей активной среды после забойного двигателя в сопло струйного насоса, расположенного вместе с верхним надувным пакером в шпинделе, уплотнитель шпинделя выполнен комбинированным в виде резинового кольца, установленного первым по ходу утечки активной среды, и двух надувных уплотнений, расположенных вторыми по ходу утечки активной среды и взаимодействующих с полостью повышенного давления струйного насоса, нижняя полая часть выходного вала содержит отверстие, установленное между двумя надувными уплотнениями и связанное каналом подвода пассивной среды с камерой смешения, межпакерный порт для закачки технологической жидкости выполнен в шпинделе и связан с каналом подвода активной среды, при этом шпиндель содержит управляемую по гидравлической линии связи систему открытия-закрытия верхнего надувного пакера, канала подвода пассивной среды с подпакерной зоны верхнего и нижнего пакера и межпакерного порта для закачки технологической жидкости, причем эта система выполнена в виде четырех электромагнитных клапанов, блока контроля, датчика давления и узла питания, при этом нижний надувной пакер установлен на втулке, снабженной надувным уплотнением, которая надета на внешнюю гладкую сторону колонны труб, введенной между выходным валом и наддолотным переводником с возможностью осевого перемещения с вращением относительно втулки, при этом втулка содержит управляемую по гидравлической линии связи систему открытия-закрытия нижнего надувного пакера, выполненную в виде масленого электронасоса, блока контроля, дифференциального датчика давления, узла питания и электромеханического замка с датчиком положения, связанным с блоком контроля, причем выход масленого электронасоса гидравлически связан с внутренней полостью нижнего надувного пакера втулки и ее надувного уплотнения, а ответная часть электромеханического замка расположена в наддолотном переводнике.



 

Похожие патенты:

Изобретение относится к жидкостям для обработки скважин для применения в системах гидроразрыва подземного пласта. Жидкость для обработки скважины, содержащая мономеры акриламидного – АА полимера или сополимера, один или более сшивающих агентов – СА и одно или более железосодержащих соединений или композицию разжижителя, состоящую по существу из одного или более железосодержащих соединений - ЖСС, воды и/или одного или более соединений-усилителей, выбранных из мочевины, этилендиаминтетрауксусной кислоты - ЭДТА, солей ЭДТА, лимонной кислоты, аминотрикарбоновой - АТК кислоты и ее солей, полифосфонатных и полифосфатных соединений, борной кислоты и ее солей, карбонатных солей щелочных металлов - КСЩМ, диэтилентриаминпентауксусной кислоты - ДТПА, гуминовых кислот - ГК и лигносульфатов - ЛС.

Изобретение относится к области переработки вулканических газов и может быть использовано при выделении рассеянных и редких элементов из фумарольных газов вулканов.

Настоящее изобретение относится к жидкой композиции, содержащей нитевидные полимерные частицы, подходящей для применения при добычи нефти, конденсата или газа из подземных месторождений.

Группа изобретений относится к загущению растворов кислот и применению загушенных растворов кислот для гидравлического разрыва пласта. Технический результат – повышение эффективности переноса пропанта, повышение эффективности извлечения углеводородов из пласта, использование для обработки одной рабочей жидкости – кислотного геля, в случае необходимости содержащей пропант.

Изобретение относится к нефтедобывающей промышленности, в частности к способам освоения нефтедобывающих скважин. Технический результат - сохранение коллекторских свойств пласта, сохранение добывных возможностей скважины, полное удаление кислоты и ее продуктов реакции после окончания обработки призабойной зоны пласта, независимо от приемистости пласта и интервала зумпфа, сокращение временных и энергетических затрат на проведения процесса освоения нефтедобывающей скважины, минимизация коррозии внутрискважинного оборудования.

Изобретение относится к эмульгаторам инвертных эмульсий и может быть использовано в нефте- и газодобывающей промышленности. Предложенный эмульгатор инвертных эмульсий содержит маслорастворимое поверхностно-активное вещество и углеводородный растворитель, отличается тем, что в качестве маслорастворимого поверхностно-активного вещества он содержит смесь моно- и/или диалкиловых эфиров фосфорной кислоты - продукт взаимодействия пятиокиси фосфора и жирных спиртов, в качестве которых используют отдельные спирты или смесь спиртов с длиной углеводородного радикала С8-С20, при следующем соотношении компонентов, мас.%: маслорастворимое поверхностно-активное вещество 20-80; углеводородный растворитель 20-80.

Изобретение относится к профилированным материалам для компонентов скважинного инструмента и выполненным из него скважинным инструментам. Профилированный материал для компонента скважинного инструмента содержит магниевый сплав, включающий фазу, содержащую не менее 70 весовых % и не более 95 весовых % магния, в котором распределены не менее 0 весовых % и менее 0,3 весовых % редкоземельного металла, не менее 3 весовых % и не более 20 весовых % по меньшей мере одного металлического элемента, выбранного из группы, содержащей алюминий, цирконий, марганец и кремний, и не менее 0,1 весовых % и не более 20 весовых % стимулирующего разложение агента, причем профилированный материал имеет средний размер кристаллических зерен магниевого сплава не менее 0,1 мкм и не более 300 мкм, прочность при растяжении не менее 200 МПа и не более 500 МПа и скорость разложения в 2%-ном водном растворе хлорида калия при 93 °C не менее 20 мг/см2 и не более 20000 мг/см2 в день.

Группа изобретений относится к вариантам компонента и способу гидравлического разрыва пласта. Компонент содержит жидкость и множество трехмерных структур, перемешанных в жидкости.

Группа изобретений относится к области нефтедобывающей промышленности, в частности к способу добычи высоковязкой, тяжелой нефти или битумов. Комплекс оборудования включает в себя наземный генератор частот, совмещённый с блоком питания и управления и двух скважинных приборов.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для стимуляции нефтегазового пласта. Способ включает закачку композиции из сжиженных газов в призабойную зону пласта, для чего формируют композицию из трех потоков, включающую пропан-бутановую смесь, природный газ или попутный нефтяной газ и азот, которые смешивают перед закачкой.

Изобретение относится к нефтегазодобывающей отрасли, в частности к устройствам для очистки и промывки скважины. Устройство содержит переводник для соединения с колонной труб, выполненный с проходным отверстием.

Изобретение относится к нефтедобывающей промышленности и может быть применено для очистки скважинной жидкости от плавающего мусора, попавшего в скважину при различных технологических операциях, или шлама.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к ингибированию нежелательных отложений на скважинном оборудовании. Способ заключается в первоначальном воздействии на поток скважинного флюида, движущийся к насосному агрегату, ультразвуковым излучением в диапазоне частот от 15 кГц до 50 кГц, которым форсируют образование зародышей кристаллов и кристаллообразование в объеме флюида.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к устройствам для удаления металлических отходов из ствола скважины. Инструмент содержит магнитный элемент, средства генерирования вращения, блок удаления отходов и контейнер для отходов.

Группа изобретений относится к трубным изделиям, например компонентам бурильных колонны и ударной штанги, применяемых в работах на забое скважины. Технический результат – оптимизация очистки ствола, ускорение перемещения выбуренной породы и улучшение дисперсии выбуренной породы.

Изобретение относится к области нефтегазовой промышленности и может быть использовано для исследования и освоения пласта, а также для очистки призабойной части пласта и забоя скважины.

Изобретение относится к нефтедобывающей промышленности, а именно к конструкции стендов для моделирования процесса отложения солей и механических частиц на деталях погружных электроцентробежных насосов (ЭЦН) и может быть использовано для проведения сравнительных испытаний ЭЦН, предназначенных для работы в скважинах, осложненных высоким содержанием неорганических солей в пластовой жидкости Устройство содержит узел подвода углекислого газа, емкость для приготовления смеси, имитирующей скважинную жидкость, содержащую механические примеси, электродвигатель и многоступенчатый электроцентробежный насос.

Изобретение относится к нефтедобывающей промышленности и может найти применение при очистке фильтрационной зоны горизонтальной скважины с аномально низким пластовым давлением.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к ингибированию образования нежелательных отложений на скважинном оборудовании. Система содержит блок регулирующий, помещенный в скважине в зоне расположения насосного оборудования и соединенный через канал связи с первым входом/выходом блока управления, ко второму входу которого подключен выход блока идентификации состояния скважинного насосного оборудования, а третий вход/выход которого соединен с первым входом/выходом блока формирования эталонной модели воздействия, ко второму входу которого подключен выход блока идентификации состояния флюида.

Изобретение относится к нефтегазодобывающей отрасли, в частности к предотвращению выпадения парафинов в скважинах с аномально низкими температурами. Способ включает подачу движущей текучей среды из средств для хранения в эжекторное устройство, имеющее сужающуюся часть для подвода движущей текучей среды, расширяющуюся часть для отвода движущей текучей среды и узкую часть с отверстием, расположенную между сужающейся частью и расширяющейся частью; удаление воды и водяного пара из межтрубного пространства нефтяной скважины, имеющей пакеры, с помощью эжекторного устройства, где поток движущей текучей среды через сужающуюся часть и расширяющуюся часть эжекторного устройства создает падение давления и повышает скорость движущей текучей среды, что создает разрежение в узкой части, сопровождающееся откачиванием воды и пара из межтрубного пространства нефтяной скважины, с устранением, таким образом, выпадения парафинов в нефтяных скважинах, имеющих пакер.

Изобретение относится к области утилизации буровых шламов, а также к области переработки отходов в строительные материалы. Устройство включает фильтровальную колонну для обезвоживания шламовой пульпы, установленную на раме-основании для последующей загрузки в герметичные мешки-контейнеры или загрузки в самосвальный транспорт.
Наверх