Способ получения твердого электролита rbag4i5

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью и может быть использовано в электротехнической и электронной промышленности. Способ получения твердого электролита RbAg4I5 включает приготовление смеси иодидов рубидия и серебра в стехиометрическом соотношении, механообработку смеси иодидов в планетарной мельнице, постсинтетический отжиг материала в инертной атмосфере. Исходную смесь иодидов серебра и рубидия подвергают механообработке в планетарной мельнице в атмосфере инертного газа при защитном освещении в течение 200-400 часов. Изобретение позволяет улучшить проводимость электролита, а именно повысить ионную и понизить электронную проводимости при комнатной и при пониженных температурах твердого электролита RbAg4I5. 3 з.п. ф-лы.

 

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью и может быть использовано в электротехнической и электронной промышленности при изготовлении первичных и вторичных источников тока, работоспособных в широком интервале температур и применяемых для электропитания устройств различного назначения. Кроме того, изобретение может быть использовано при изготовлении суперконденсаторов высокой емкости - ионисторов.

Практическое применение твердого электролита RbAg4I5 для изготовления химических источников тока (ХИТ) и ионисторов требует, чтобы применяемый материал имел максимально высокую ионную проводимость с целью минимизации внутреннего электросопротивления ячейки, а также как можно более низкое значение электронной проводимости - для исключения саморазряда устройства при хранении.

Известен способ получения твердого электролита RbAg4I5 (см. патент US 3,519,404), согласно которому смесь иодидов рубидия и серебра, приготовленную в мольном стехиометрическом соотношении 1:4, расплавляют в инертной атмосфере, выдерживают расплав в течение часа, после чего его закаляют на термостойком стекле. Полученное таким образом вещество измельчают в фарфоровой ступке, компактируют прессованием в таблетку и отжигают в атмосфере аргона при 175°C в течение 40 часов. Согласно данным рентгенофазового анализа, продукт после отжига представляет собой RbAg4I5, содержащий небольшое количество исходных реагентов. Для получения однофазного материала его повторно измельчают, компактируют и проводят дополнительный отжиг при 165°C в течение ночи. Итоговый продукт, согласно рентгенографическим данным, не содержит примесных фаз и обладает ионной проводимостью 0,20 См/см и электронной проводимостью ≈ 10-8 См/см при комнатной температуре.

Известна модификация этой методики (см. Rossi М., Pistoia G., Scrosati В. А Reversible solid-state battery with RbAg4I5 as electrolyte // J. Electrochem. Soc. 1969. V.116. №12), заключающаяся в плавлении смеси исходных иодидов рубидия и серебра в вакууме вместо аргона. Последующая закалка расплава и отжиг при 165°C в течение 20 часов позволяют получить материал с ионной проводимостью 0,25 См/см при комнатной температуре.

К недостаткам данных способов следует отнести их малопригодность для получения значительных количеств твердого электролита. Прежде всего, при запаивании кварцевых сосудов перед плавлением смеси, а также перед проведением постсинтетических отжигов возможно частичное разложение как исходного иодида серебра, так и образовавшегося электролита под действием света с выделением металлического серебра и побочных фаз - Rb2AgI3 и AgI. Образование побочных фаз не всегда удается зафиксировать методом РФА, однако на кривых ДТА обнаруживаются пики, относящиеся к AgI и эвтектике RbAg4I5*Rb2AgI3. Кроме того, при быстром охлаждении всего объема расплава происходит перитектический распад электролита с образованием фаз AgI и Rb2AgI3, отрицательно влияющих на электропроводность материала.

Известны способы получения твердого электролита RbAg4I5 через растворы. В качестве растворителей могут быть использованы ацетон (см. Иванов В.Е., Данилов А.В., Алесковский В.Б. Получение и свойства твердого электролита RbAg4I5 // Неорг. материалы. 1974. №3; Butherus A.D., Scrosati В., Mount J.I. Crystallization of RbAg4I5 from organic solvents // J. Electrochem. Soc. 1971. V. 118. №8) и жидкий аммиак (см. Громов О.Г., Волъфсон B.C., Кузьмин А.П., Кузнецов В.П. Синтез твердого электролита RbAg4I5 в жидком аммиаке // Журнал прикладной химии. 1976. №5). Ввиду ограниченной растворимости AgI и RbI в ацетоне этот метод не позволяет получить однофазный продукт: из ацетонового раствора удается выделить только эвтектику состава 3RbAg4I5*Rb2AgI3, обладающую ионной проводимостью 0,18 См/см при комнатной температуре.

Согласно аммиачному методу, смесь иодидов рубидия и серебра в стехиометрическом соотношении растворяют в жидком аммиаке, после чего раствор выливают на разогретую керамическую подложку. Остаток представляет собой однофазный RbAg4I5 с ионной проводимостью 0,24 См/см и электронной 3*10-9 См/см. Недостатком этого способа является применение высокотоксичного растворителя - жидкого аммиака, а также недостаточно низкая электронная проводимость твердого электролита.

Известен метод получения твердого электролита RbAg4I5 из расплава стехиометрической смеси RbI - 4AgI путем направленной кристаллизации (см. Загороднев В.К, Личкова Н.В. Получение твердого электролита RbAg4I5 из расплава при направленной кристаллизации // Изв. АН СССР. Неорган, материалы. 1983. Т. 19. №6). Смесь иодидов рубидия и серебра помещают в кварцевую лодочку, затем в реактор и плавят в динамическом вакууме (р<0,1 Па), после чего проводят направленную кристаллизацию расплава. При скорости перемещения нагревателя 5 мм/ч получают слиток, значительная часть которого соответствует составу электролита с ионной проводимостью 0,33 См/см при комнатной температуре. Однако электронная проводимость материала, полученного таким способом, не снижается более, чем до 2*10-9 См/см.

В патенте RU 2407090, 20.12.2010 описан метод получения твердого электролита RbAg4I5, согласно которому получают расплав стехиометрического состава RbI - 4AgI в атмосфере азота или аргона при 300-320°C, который затем подвергают резкому охлаждению путем центробежного распыления в атмосфере азота или аргона. При этом образуются микрогранулы с крупностью частиц 100-500 мкм. Микрогранулы состоят из однофазного твердого электролита RbAg4I5 с ионной проводимостью 0,24-0,26 См/см при 25°C и электронной проводимостью 4*10-9 См/см. С целью дальнейшего снижения электронной проводимости материала проводят постсинтетический отжиг микрогранул при 180-190°C в инертной атмосфере в течение не менее 450 часов. Полученный электролит обладает электронной проводимостью 3-5*10-10 См/см при комнатной температуре при сохранении начальных значений ионной проводимости.

Однако применяемый метод закалки расплава исходных веществ не позволяет избежать появления примесных фаз в электролите, поскольку при остывании образующихся микрогранул имеет место перитектический распад RbAg4I5, о чем упоминается в самом патенте RU 2407090. Поэтому способ требует достаточно больших временных затрат, необходимых для полного избавления от примесных фаз и получения материала с максимально низкими значениями электронной проводимости.

Настоящее изобретение направлено на достижение технического результата, заключающегося в улучшении проводимости электролита, а именно, в повышении ионной и понижении электронной проводимости при комнатной, а также, что немаловажно, и при пониженных температурах твердого электролита RbAg4I5.

Для получения материала с максимально низким значением электронной проводимости, например, сокращают время постсинтетического отжига.

Технический результат достигается тем, что в способе получения твердого электролита RbAg4I5, включающем приготовление смеси иодидов рубидия и серебра в стехиометрическом соотношении, приготовление исходной смеси ведут при защитном освещении в инертной атмосфере, например, высокочистого аргона. Полученную смесь подвергают механообработке в планетарной мельнице, а затем термообработке.

При этом в планетарной мельнице полученную смесь подвергают механообработке в течение 1,5-4 часов, а термообработку (постсинтетический отжиг) проводят при 170-195°C в течение 200-400 ч., причем в качестве инертного газа для создания атмосферы при постсинтетическом отжиге, механообработке и приготовлении исходной стехиометрической смеси иодидов используется аргон, в частности высокочистый аргон, азот или гелий. В качестве материала для изготовления размольного стакана и размольных шаров планетарной мельницы используются агат, двуокись циркония, нитрид кремния (сиалон) или спеченный корунд и другие керамические материалы, химически инертные по отношению к исходным компонентам. Размольные шары предпочтительно берут в количестве 30-80 шт диаметром 5-10 мм.

Под защитным освещением понимается, например, неактиничное оранжево-красное освещение.

Приготовление исходной смеси в инертной атмосфере при защитном освещении необходимо, поскольку RbI и AgI способны частично окисляться кислородом воздуха, что отрицательно сказывается на электропроводности получаемого твердого электролита. Кроме того, иодид серебра способен разлагаться при воздействии дневного света с выделением металлического серебра, накопление которого в электролите вызывает рост электронной проводимости, а также способствует разложению образующегося электролита. Тщательная очистка аргона от следов влаги также предотвращает каталитический распад образующегося RbAg4I5.

Проведение процесса синтеза путем механообработки стехиометрической смеси иодидов рубидия и серебра при комнатной температуре позволяет избежать перитектического распада электролита согласно реакции:

Данный перитектический распад в той или иной степени неизбежно имеет место при расплавных методиках синтеза твердого электролита RbAg4I5. В процессе механообработки температура реакционной смеси не превышает 80°C.

Постсинтетический отжиг электролита, полученного в результате механообработки, необходим, поскольку, несмотря на однофазность полученного продукта по данным рентгенофазового анализа (РФА), в нем могут присутствовать следовые количества исходных реагентов, обнаруживаемые методом термического анализа. Проведение термообработки в интервале температур 170-195°C обеспечивает полноту протекания твердофазной реакции:

В то же время, температура отжига не должна повышаться выше 197°C (температура эвтектики), поскольку при этом образуется жидкая фаза. Проведение отжига в течение заданного времени (200-400 ч.) обусловлено необходимостью завершения протекания реакции (2) при заданном температурном интервале.

Сущность заявляемого изобретения и его преимущества могут быть пояснены следующими примерами.

Пример 1. Порошкообразную смесь сухих иодидов рубидия и серебра в количестве 15,00 гр AgI и 3.39 гр. RbI загружают в размольный стакан планетарной мельницы, изготовленный из агата и содержащий 70 шт. агатовых размольных шаров диаметром 5 мм и 10 шт размером 10 мм. Загрузку производят в инертной атмосфере (высокочистый аргон) при защитном освещении. Смесь подвергают механообработке в течение 2 часов при скорости вращения планетарного диска 380 об/мин. В результате механообработки образовался материал, согласно данным рентгенофазового анализа (РФА) и термического анализа представляющий собой твердый электролит RbAg4I5 с небольшой примесью исходных веществ. Ионная проводимость полученного электролита составила 0,24 См/см, электронная - 2*10-9 См/см. После отжига полученного электролита при 180°C в течение 350 часов в атмосфере высокочистого аргона ионная проводимость составила 0,25 См/см, а электронная -5* 10-10 См/см.

Пример 2. Порошкообразную смесь сухих иодидов рубидия и серебра в количестве 7,50 гр. AgI и 1,70 гр. RbI загружают в размольный стакан из диоксида циркония, содержащий 30 шт. размольных шаров диаметром 5 мм и 10 шт размольных шаров диаметром 10 мм из того же материала, что и размольный стакан. Загрузку смеси ведут в инертной атмосфере при защитном освещении. Смесь подвергают механообработке в течение 1,5 часов при скорости вращения планетарного диска 380 об/мин. В результате механообработки образовался твердый электролит RbAg4I5, содержащий 2 масс. % примеси исходных компонентов. Ионная проводимость полученного электролита составила 0,20 См/см, электронная - 3*10-9 См/см. Последующий отжиг электролита в атмосфере высокочистого аргона при 185°C в течение 400 часов привел к повышению ионной проводимости до 0,25 См/см и снижению электронной проводимости до 8*10-10 См/см.

Примеры показывают явное преимущество заявляемого способа по сравнению с известными.

Таким образом, заявленный способ действительно позволяет значительно улучшить проводимость электролита, а именно, повысить ионную и понизить электронную проводимости при комнатной и при пониженных температурах твердого электролита RbAg4I5. Кроме того, в предложенном способе сокращается время постсинтетического отжига.

1. Способ получения твердого электролита RbAg4I5, включающий приготовление смеси иодидов рубидия и серебра в стехиометрическом соотношении, механообработку смеси иодидов в планетарной мельнице, постсинтетический отжиг материала в инертной атмосфере, при этом исходную смесь иодидов серебра и рубидия подвергают механообработке в планетарной мельнице в атмосфере инертного газа при защитном освещении в течение 200-400 часов.

2. Способ по п. 1, отличающийся тем, что в качестве инертного газа для создания атмосферы при постсинтетическом отжиге, механообработке и приготовлении исходной стехиометрической смеси иодидов используют аргон, азот или гелий.

3. Способ по п. 1, отличающийся тем, что в качестве инертного газа для создания атмосферы при постсинтетическом отжиге, механообработке и приготовлении исходной стехиометрической смеси иодидов используют высокочистый аргон.

4. Способ по п. 1, отличающийся тем, что в качестве материала для изготовления размольного стакана и размольных шаров планетарной мельницы используют агат, двуокись циркония, нитрид кремния (сиалон) или спеченный корунд.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно к способу изготовления устройства накопления энергии, и может быть использовано при формировании устройства накопления энергии, содержащего тонкопленочные элементы с твердым электролитом.

Изобретение относится к способам получения керамических твердых электролитов с высокой проводимостью по иону лития и может быть использовано в электротехнической промышленности, в частности, при изготовлении твердофазных литий-ионных аккумуляторов для питания портативной электроники.
Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к технологии получения полимерных композитов с высокой диэлектрической проницаемостью, и может быть использовано при создании различных приборов и устройств твердотельной электроники, в том числе конденсаторов, суперконденсаторов, оптоэлектронных преобразователей, топливных элементов и др.

Изобретение относится к области производства материалов для электрохимического и электрофизического приборостроения, а именно к технологии получения полимерных протонпроводящих композитов с высокой диэлектрической проницаемостью, и может быть использовано при создании различных электрохимических приборов и устройств, в том числе суперконденсаторов, электрохромных приборов и оптоэлектронных преобразователей, топливных элементов и др.
Настоящее изобретение относится к полимерным протонпроводящим композиционным материалам. Описан полимерный протонпроводящий композиционный материал, включающий полимерную линейную матрицу, представляющую собой водный 2-9% раствор поливинилового спирта, содержащий наночастицы серебра размером 20-100 нм в концентрации 40-100 мг/л и диспергированный в ней протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты и пластификатора в виде глицерина при следующем соотношении компонентов, мас.%: водный раствор поливинилового спирта 38-69, фосфорно-вольфрамовая кислота 19-50, глицерин остальное.
Изобретение относится к способу получения частиц твердого электролита Li1+xAlxTi2-x(PO4)3 (0,1≤x≤0,5), включающему смешивание первого раствора, содержащего азотную кислоту, воду, азотнокислый литий, азотнокислый алюминий, фосфорнокислый аммоний NH4H2PO4 или фосфорную кислоту, и второго раствора, содержащего соединение титана и растворитель, с образованием азотнокислого коллективного раствора, нагревание коллективного раствора с получением прекурсора и его прокалку.

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью при комнатной температуре и может быть использовано в электронной промышленности, в частности, при изготовлении миниатюрных суперконденсаторов высокой емкости - варисторов, которые находят различное применение, в том числе в качестве источника энергии кардиостимуляторов.

Изобретение относится к электролитическим конденсаторам. .

Изобретение относится к электролитическому конденсатору, содержащему слой способного к оксидированию металла, слой оксида этого металла, твердый электролит и контакты, причем в качестве твердого электролита используются политиофены с повторяющимися структурными единицами общей формулы (I) Также описан электропроводящий слой с удельной электропроводностью, по меньшей мере, 150 См/см, используемый, например, в качестве антистатического покрытия, прозрачного нагревательного элемента, твердого электролита электролитических конденсаторов, а также для металлизации сквозных отверстий печатных плат и т.п.

Изобретение может быть использовано в производстве печатных плат. Для регенерации солянокислого медно-хлоридного раствора травления меди ионы двухвалентной меди восстанавливают гидразином до ионов одновалентной меди в одной из двух заранее рассчитанных частей общего объема раствора травления меди.

Изобретение может быть использовано для получения катализаторов органического синтеза, промежуточных соединений при синтезе высокочистого галлия, для химических методов синтеза полупроводниковых соединений A3B5.

Изобретение может быть использовано в газо- и нефтедобывающей промышленности для попутного извлечения йод-сырца из бедных по его содержанию подземных напорных вод.

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью при комнатной температуре и может быть использовано в электронной промышленности, в частности, при изготовлении миниатюрных суперконденсаторов высокой емкости - варисторов, которые находят различное применение, в том числе в качестве источника энергии кардиостимуляторов.

Изобретение относится к технологии подготовки сыпучих солей галогенидов металлов и может быть использовано в химической промышленности, в частности при подготовке исходных солей йодидов натрия или цезия для выращивания монокристаллов на их основе - NaI(Tl), CsI, CsI(Tl), CsI(Na).

Изобретение относится к способу получения иодида и иодата калия, которые находят применение в фармацевтической промышленности в качестве компонентов лекарственных препаратов, в пищевой промышленности, в производстве фотоматериалов и реактивов и др.

Изобретение относится к технологии получения йодидов легких металлов, которые находят применение в йодометрическом анализе, различных отраслях промышленности, в медицине, и может быть использовано в производстве минеральных солей.

Изобретение относится к способам получения иодида и сульфата бария. .
Наверх