Поверхность управления

Изобретение может быть использовано при создании поверхностей управления летательных аппаратов в виде элеронов, рулей высоты и направления, а также в области кораблестроения. Поверхность управления содержит механизм ее поворота вокруг оси вращения и устройство снижения возникающего шарнирного момента, при этом устройство снижения возникающего шарнирного момента выполнено в виде проницаемого для среды участка с отверстиями или щелевидными вырезами, расположенного в диапазоне от 2% до 30% длины средней хорды поверхности управления от ее задней кромки, при этом площадь отверстий или щелевидных вырезов составляет от 30% до 90% площади проницаемого участка. Изобретение направлено на упрощение конструкции. 3 з.п. ф-лы, 10 ил.

 

Изобретение относится к авиационной технике и может быть использовано при создании летательных аппаратов с поверхностями управления в виде элеронов, рулей высоты и направления. Кроме этого, его можно использовать в кораблестроении и в механике для различных вращающихся и отклоняемых поверхностей.

Известен аэродинамический руль, патент №2593178, который состоит из переднего и заднего поворотных звеньев с максимальным углом поворота переднего звена, меньшим максимального угла поворота заднего звена относительно не отклоненного положения. Изобретение направлено на уменьшение суммарного шарнирного момента руля, уменьшение мощности силового привода и снижение веса механизма поворота руля. Недостатком данной схемы является то, что при повороте руля поверхность осевой компенсации может выходить в поток за обводы крыла и влиять на аэродинамические характеристики.

Кроме того, известна поверхность управления палубного пикирующего бомбардировщика-разведчика «Дуглас SBD Даунтлесс» (Wikipedia 20.07.2017). Для устранения бафтинга при пикировании раскрывающиеся закрылки - тормозные щитки были перфорированы круглыми отверстиями. Тормозные щитки были установлены по всей задней кромке крыла. Центральный и нижние секции консольных щитков отклонялись вниз на угол 42 градуса, а верхние - вверх на 37,5 градуса. Нижние секции, кроме того, работали на взлете и посадке как закрылки. По всему размаху тормозные щитки имели перфорацию - три ряда сквозных отверстий. Недостатками данного технического решения являются снижение подъемной силы и уменьшение площади поверхности управления, что приводит к снижению эффективности поверхности управления.

Наиболее близким, принятым за прототип, является изобретение «Орган управления», патент №2028251. Изобретение относится к аэродинамическим органам управления летательных аппаратов, в частности к элеронам, и содержит механизм его поворота вокруг оси вращения, пружинный сервокомпенсатор (устройство снижения шарнирного момента) и дополнительную жесткую кинематическую связь, предотвращающую самопроизвольное отклонение элеронов и сервокомпенсаторов по углу атаки при фиксированном положении рычага управления. Недостатками данного технического решения являются: увеличение сопротивления несущей поверхности вследствие находящихся в потоке элементов рычажной системы сервокомпенсатора, дополнительное сопротивление за счет образования отрывной зоны за отклоненным сервокомпенсатором, увеличение веса самолета за счет рычажной системы сервокомпенсатора и ее обтекателей. Несмотря на то, что общим для данного патента и предлагаемого изобретения является воздействие на величину шарнирного момента через изменение силы на концевой части руля, оно осуществляется разными средствами: в прототипе - механическим путем, что требует механизации и управления, а в предлагаемом изобретении - за счет проницаемости поверхности.

Техническим результатом изобретения является уменьшение шарнирного момента при несущественном изменении суммарных аэродинамических характеристик летательного аппарата.

Указанный технический результат достигается тем, что у поверхности управления, содержащей механизм ее поворота вокруг оси вращения и устройство снижения возникающего шарнирного момента, устройство снижения возникающего шарнирного момента выполнено в виде проницаемого для среды участка с отверстиями или щелевидными вырезами, расположенного в диапазоне от 2% до 30% длины средней хорды поверхности управления от ее задней кромки, при этом площадь отверстий или щелевидных вырезов составляет от 30% до 90% площади проницаемого участка.

Дополнительный технический результат достигается, если проницаемый для среды участок расположен в диапазоне от 10% до 15% длины средней хорды поверхности управления от ее задней кромки.

Дополнительный технический результат достигается, если проницаемый для среды участок выполнен в виде щели, расположенной продольно относительно задней кромки поверхности управления.

Дополнительный технический результат достигается, если отверстия или щелевидные вырезы выполнены с увеличением площади поверхности проницания к задней кромке поверхности управления.

Предлагаемое изобретение поясняется следующими схемами и графиками.

На фигуре 1 изображена предлагаемая поверхность управления.

Фигура 2 показывает расчетное распределение коэффициента давления по поверхности управления.

На фигуре 3 представлены зависимости величин коэффициента шарнирного момента поверхности управления от угла атаки mш(α).

Фигура 4 показывает перетекание воздуха на верхнюю поверхность в среднем сечении поверхности управления плоскостью XOY (поле скоростей (м/с)).

На фигуре 5 изображены аэродинамические силы и их составляющие Fx, Fy, Fz, действующие на поверхность управления с конструктивной компенсацией.

Фигура 6 показывает зависимость величины коэффициента шарнирного момента mш(α) от положения проницаемой поверхности на хорде профиля при ее отклонении на δр=15°.

Фигура 7 показывает зависимость величины коэффициента шарнирного момента от площади проницаемой поверхности при α=10°, δp=15°.

На фигуре 8 показано отклонение струи воздуха в зависимости от размеров щели.

Фигура 9 показывает некоторые возможные формы отверстий в поверхности управления.

Фигура 10 показывает общий вид поверхности управления с проницаемой концевой частью для водной среды.

В предлагаемом изобретении введены следующие обозначения: основная часть крыла 1, поверхность управления 2, носовая часть поверхности управления 3, щель между основной частью крыла и поверхностью управления 4, ось вращения поверхности управления 5, хорда поверхности управления 6, хорда крыла 7, проницаемая часть поверхности управления 8, механизм поворота поверхности управления вокруг оси вращения 9 (фигура 1).

Поверхность управления работает следующим образом: через проницаемую часть поверхности управления 8 осуществляется перетекание воздуха (или другой среды), которое обеспечивает изменение распределения давления на поверхности управления в основном на концевой ее части и уменьшает силы, имеющие большое плечо относительно оси вращения 5, что приводит к уменьшению шарнирного момента.

Пример 1. В качестве примера приведено трехмерное численное исследование аэродинамических сил и моментов поверхности управления с конструктивной компенсацией по программе ANSYS FLUENT (лицензия №501024), основанной на численном решении осредненных по Рейнольд су уравнений Навье-Стокса. Исследование выполнено на прямом крыле с удлинением λ=2 при угле атаки α=10° с отклоненной на δp=10° поверхностью управления. Расчет показал, что наличие щели на конце поверхности управления осуществляет перетекание воздуха в противоположную сторону ее отклонения, в данном случае на верхнюю поверхность. Это движение воздуха показано на фигуре 4а через распределение скоростей V(м/c) и направление векторов скорости в среднем сечении поверхности управления на фигуре 4б. Это перетекание воздуха изменяет распределение давления, а также величину и направление суммарных сил, действующих на поверхность управления. На фигуре 5 видно, что щель уменьшила суммарную силу, действующую на поверхность управления по абсолютной величине, а также изменила ее направление, так как повлияла на ее составляющие: Fx, Fy и Fz. Силы, действующие на поверхность управления, получены из программы расчета и построены пропорционально их величинам в центре давления поверхности управления XD.

Расчетное распределение коэффициента давления в среднем сечении поверхности управления показано на фигуре 2, где Cp=(p-p)/q - распределение давления в сечении крыла (р - статическое давление, р - статическое давление и q - скоростной напор в набегающем потоке) на угле атаки α=10° на фигуре 2а - основной части сечения крыла 1 и фигуре 2б - отклоненной на δр=10° поверхности управления. На фигуре 2б видно, что проницаемый участок на поверхности управления влияет на коэффициенты распределения давления Ср в районе расположения проницаемого участка 8, на основной части крыла 1 значения Ср не изменяются (фигура 2а). Поскольку силы, действующие на участок длины Δх, равны произведению разности давлений на нижнюю и верхнюю поверхность ΔСр=(рнв) на Δх, то видно, что силы на концевой части поверхности управления с проницаемым участком меньше, чем без него. При вычислении шарнирного момента поверхности управления путем интегрирования моментов от сил по всей поверхности управления где х0 - координата оси вращения поверхности управления, силы на концевой части поверхности управления имеют большое плечо относительно оси вращения 5 и поэтому их вклад в величину шарнирного момента будет значительным.

Приведено численное исследование влияния проницаемой концевой части на величину шарнирных моментов поверхности управления с конструктивной компенсацией. Результат по уменьшению шарнирного момента на поверхности управления 2 (фигура 1) достигается тем, что проницаемая поверхность 8 при перетекании воздуха оказывает влияние на распределение давления на конце поверхности управления (фигура 2б), изменяет силы с наибольшим плечом относительно оси вращения 5 и приводит к уменьшению величины шарнирного момента (фигура 3). Фигура 4 показывает перетекание воздуха на верхнюю поверхность в среднем сечении поверхности управления плоскостью XOY (фигура 4а), через векторы скорости видно направление движения потока воздуха через щель на конце поверхности управления (фигура 4б).

Пример 2. Приведены результаты двумерного расчета поверхности управления, рассмотренной в примере 1, но при отклоненной поверхности управления на δр=15°. На фигуре 6 показаны величины коэффициента шарнирного момента mш(α) в зависимости от положения проницаемой поверхности (в данном примере щели), при отклонении поверхности управления на δp=15°. Площадь проницаемой поверхности составляет S'=6% от площади поверхности управления, а ее местоположение выражено в процентном отношении к хорде поверхности управления. На графиках видно, что наиболее эффективно уменьшает величину шарнирного момента щель, расположенная на ~15% от задней кромки поверхности управления. Важной особенностью проницаемого участка для получения нужной величины шарнирного момента является обеспечение необходимого перетекания, которое зависит от плотности среды. Фигура 7 показывает при отклоненной поверхности управления на δp=15° и угле атаки α=10° зависимости величины коэффициента шарнирного момента от площади проницаемой поверхности (S'), выраженной в процентном отношении к площади поверхности управления. На фигуре 8 показано распределение величин скоростей (м/с) и направление струи воздуха в зависимости от размеров щели, расположенной на 15% от задней кромки поверхности управления при отклоненной поверхности управления на δp=15° и угле атаки α=10°, Здесь фигура 7а - исходная поверхность управления, фигура 7б - площадь щели S'=6%, а фигура 7в - S'=12% от площади поверхности управления. Видно, что форма и размеры проницаемого участка оказывают влияние на перетекание потока, внося возмущения в отрывную зону за отклоненной поверхностью управления. Так, например, из узкой щели струя воздуха выдувается в вертикальном направлении, а при увеличении размеров щели она отклоняется в направлении основного потока воздуха. Таким образом, показано, что с целью уменьшения шарнирного момента целесообразно выполнять проницаемый участок на поверхности управления ближе к задней кромке. На фигуре 9 приведены некоторые примеры таких отверстий, которые могут быть расположены как вдоль всей задней кромки поверхности управления, так и частично занимать определенные участки поверхности в зависимости от нужной величины шарнирного момента.

Площадь, вид и положение проницаемого участка определяются в зависимости от конструкции поверхности управления и от плотности окружающей среды для обеспечения перетекания. Для получения нужной величины шарнирного момента площадь проницаемой поверхности и ее расположение можно варьировать. К уменьшению величины шарнирного момента приводит: увеличение площади проницаемости участка и смещение ее в сторону концевой части поверхности управления.

Таким образом, решение поставленной задачи достигнуто и найден путь по снижению шарнирного момента поверхности управления за счет формирования в концевой части поверхности проницаемого для среды участка. При этом суммарные аэродинамические характеристики практически не меняются, так как площадь проницаемого для среды участка мала по сравнению с суммарной площадью поверхности управления, тем более с характерной площадью летательного аппарата. Кроме использования этой модели в воздушной среде, ее можно использовать и в других средах, например, в воде (фигура 10).

Преимущество данной поверхности управления состоит в том, что она не требует вспомогательных устройств и рычагов для обеспечения работы, а ее конструкцию можно легко и малозатратно выполнить.

1. Поверхность управления, содержащая механизм ее поворота вокруг оси вращения и устройство снижения возникающего шарнирного момента, отличающаяся тем, что устройство снижения возникающего шарнирного момента выполнено в виде проницаемого для среды участка с отверстиями или щелевидными вырезами, расположенного в диапазоне от 2% до 30% длины средней хорды поверхности управления от ее задней кромки, при этом площадь отверстий или щелевидных вырезов составляет от 30% до 90% площади проницаемого участка.

2. Поверхность управления по п. 1, отличающаяся тем, что проницаемый для среды участок расположен в диапазоне от 10% до 15% длины средней хорды поверхности управления от ее задней кромки.

3. Поверхность управления по п. 1 или 2, отличающаяся тем, что проницаемый для среды участок выполнен в виде щели, расположенной продольно относительно задней кромки поверхности управления.

4. Поверхность управления по п. 1, отличающаяся тем, что отверстия или щелевидные вырезы выполнены с увеличением площади поверхности проницания к задней кромке поверхности управления.



 

Похожие патенты:

Изобретение относится к ракетной технике. Аэродинамический руль гиперзвукового летательного аппарата содержит лонжерон, обшивку и пластину из теплопроводного материала с температурой плавления ниже температуры плавления обшивки, которая подпружинена от лонжерона к передней кромке.

Группа изобретений относится к поверхностям, управляющим полетом. Эластомерная управляющая поверхность на основе технологии получения непрерывного обвода содержит первую управляющую поверхность (712), соединенную с гидрогазодинамическим корпусом (704); и первое эластомерное сопрягающее средство (702), соединенное с первой управляющей поверхностью (712) и гидрогазодинамическим корпусом (704) таким образом, что первый стыковой зазор (716), образованный при перемещении первой управляющей поверхности (712) относительно гидрогазодинамического корпуса (704), является заполненным.

Изобретение относится к области авиационно-космической техники. Способ определения аэродинамического нагрева натуры в опережающих летных исследованиях на модели включает определение высоты и скорости полета модели, теплопроводности, объемной теплоемкости и степени черноты материала ее теплозащиты, а также аэродинамического теплового потока на наружной поверхности натуры в сходственных с моделью точках из условия подобия в этих точках распределений температуры в материалах теплозащиты модели и натуры.

Изобретение относится к области авиационной техники. .

Изобретение относится к области авиации. Лопасть воздушного винта с управляемой геометрией профиля содержит аэродинамический профиль, имеющий переднюю часть и подвижный закрылок, соединенные между собой крепежным устройством.

Изобретение относится к способу функционального подавления беспилотного летательного аппарата (БПЛА). Для реализации способа определяют координаты местоположения БПЛА, доставляют при помощи пускового устройство в область расположения БПЛА контейнер с элементами функционального подавления, осуществляют генерацию серии сверхкоротких СВЧ радиоимпульсов для нарушения работоспособности радиоэлектронных элементов БПЛА, после полного разряда источника электропитания осуществляют подрыв заряда самоликвидации контейнера для образования облака красителя в целях образования непрозрачной пленки на поверхности элементов БПЛА и в целях образования поля поражающих элементов, которые приводят к физическому повреждению БПЛА.

Изобретение относится к способу функционального подавления беспилотных летательных аппаратов. Для реализации способа обнаруживают беспилотный летательный аппарат, в область на расстоянии 50-100 метров от него при помощи пускового устройства доставляют патрон, выполненный с возможностью генерации серии сверхкоротких сверхвысокочастотных радиоимпульсов в определенном диапазоне частот, производят генерацию этих импульсов в сторону беспилотного летательного аппарата до полного разряда источника электропитания, после этого выполняют самоуничтожение патрона путем его подрыва для создания поля поражающих элементов для физического повреждения беспилотного летательного аппарата и его уничтожения.

Беспилотный летательный аппарат содержит несимметричный корпус, носовой радиопрозрачный обтекатель, двигательную установку и систему управления полетом с плоской активной фазированной антенной решеткой, максимальная апертура которой обеспечивается благодаря углу наклона излучающей поверхности к продольной оси корпуса, обеспечивающему ее направление в сторону верхней части поверхности носового радиопрозрачного обтекателя.
Изобретение относится к кордовым моделям самолета. Кордовая модель самолета с дистанционным управлением по тангажу включает привод рулевых поверхностей, оснащена электродвигателем, который вместе с приемником дистанционного управления и приводом питается от источника тока.

Способ управления полетом беспилотного летательного аппарата, который снабжен несимметричным корпусом с носовым радиопрозрачным обтекателем, верхняя и нижняя части поверхности которого образуют его ширину, при этом верхняя часть выполнена выпуклой, а нижняя часть уплощенной, полезной нагрузкой, двигательной установкой и системой управления полетом, включающей рулевые элементы и головку самонаведения с активной фазированной антенной решеткой, закрепленной под носовым радиопрозрачным обтекателем с расположением ее излучающей поверхности параллельно поперечной оси корпуса и наклоном к его продольной оси, основанный на введении координат траектории полета в систему управления полетом и управлении рулевыми элементами в полете для обеспечения траектории полета.

Изобретение относится к области авиации. Крыло с управляемой закруткой характеризуется тем, что состоит из трех секций по размаху.

Летательный аппарат включает в себя фюзеляж, имеющий продольную ось, узел крыла и механизм позиционирования фюзеляжа, функционально соединяющий фюзеляж с узлом крыла.

Изобретение относится к области авиации, в частности к системам запуска летательных аппаратов (ЛА) самолетной схемы. Способ старта и подъема летательного аппарата самолетного типа включает размещение ЛА и фиксацию в стартовой конфигурации со сложенным крылом внутри ракетной стартово-разгонной ступени (СРС), после старта связку СРС-ЛА выводят на высоту 0,5…25,0 км начала целевого функционирования ЛА.

Изобретение относится к области авиастроения. Кессон фюзеляжа состоит из П-образных верхней и нижней панелей, изготовленных из несущих слоев полимерного композиционного материала и заполнителя.

Изобретение может быть использовано при создании поверхностей управления летательных аппаратов в виде элеронов, рулей высоты и направления, а также в области кораблестроения. Поверхность управления содержит механизм ее поворота вокруг оси вращения и устройство снижения возникающего шарнирного момента, при этом устройство снижения возникающего шарнирного момента выполнено в виде проницаемого для среды участка с отверстиями или щелевидными вырезами, расположенного в диапазоне от 2 до 30 длины средней хорды поверхности управления от ее задней кромки, при этом площадь отверстий или щелевидных вырезов составляет от 30 до 90 площади проницаемого участка. Изобретение направлено на упрощение конструкции. 3 з.п. ф-лы, 10 ил.

Наверх