Способ получения сложного литиевого танталата лантана и кальция

Изобретение относится к получению порошка сложного литиевого танталата лантана и кальция состава Li6CaLa2Ta2O12, используемого в качестве одного из основных компонентов литий-ионной батареи. Способ включает добавление пентоксида тантала к кислоте с последующим получением геля и добавлением нитратов соответствующих металлов и хелатирующего агента, просушивание при нагревании и отжиг полученного ксерогеля с промежуточным измельчением и прессованием. При этом пентоксид тантала добавляют к 40%-ной плавиковой кислоте, полученный раствор упаривают и добавляют в качестве хелатирующего агента 13%-ный раствор гидроксида аммония. Полученный продукт отмывают, затем растворяют в 30%-ной азотной кислоте с добавлением кристаллогидрата лимонной кислоты, после чего добавляют растворы нитратов лантана, лития и кальция и выдерживают при температуре 140-150°С при интенсивном перемешивании. Полученный ксерогель подвергают отжигу в три стадии. Способ обеспечивает получение однофазного продукта без примесных включений и уменьшение размерности частиц получаемого материала. 2 пр.

 

Изобретение относится к области химической промышленности и может быть использовано при получении порошка сложного литиевого танталата лантана и кальция состава Li6CaLa2Ta2O12, используемого в качестве твердотельного электролита - одного из основных компонентов литий-ионной батареи.

Известен способ получения порошка сложного литиевого танталата лантана и кальция состава Li6CaLa2Ta2O12, включающий твердофазное взаимодействие оксида тантала Ta2O5, нитрата лития LiNO3 (с 10% избытком), карбоната кальция CaCO3 и оксида лантана La2O3 (предварительно прокаленного при 900°C в течение 24 часов). Смесь исходных компонентов подвергают перетиранию в шаровой мельнице с циркониевыми шариками и изопропиловым спиртом в течение 12 часов. После просушки при комнатной температуре смесь отжигают при 700 °C в течение 12 часов, далее подвергают перетиранию в шаровой мельнице с циркониевыми шариками и изопропиловым спиртом в течение 12 часов. Далее, после просушки смесь прессуют в таблетки, покрывают таблетки исходным порошком и отжигают при 900–950 °C в течение 24 часов (R. Murugan, V. Thangadurai, W. Weppner, Lattice parameter and sintering temperature dependence of bulk and grain-boundary conduction of garnet-like solid Li-electrolytes, Journal of The Electrochemical Society, 2008, V. 155 (1), P. A90–A101).

Недостатками известного способа являются: длительность процесса и усложнение технологического процесса за счет использования дополнительного оборудования - шаровой мельницы с циркониевыми шариками.

Известен способ получения порошка сложного литиевого танталата лантана и кальция состава Li6CaLa2Ta2O12, включающий твердофазное взаимодействие оксида тантала Ta2O5, гидроксида лития LiOH (с 10% избытком, предварительно прокаленного при 300 °C в течение 24 часов), карбоната кальция CaCO3 и оксида лантана La2O3 (предварительно прокаленного при 900 °C в течение 24 часов). Смесь исходных компонентов прессуют в таблетки, покрывают таблетки исходным порошком, помещают в алундовый тигель и отжигают при 700 °C в течение 6 часов в муфельной печи, затем перешихтовывают и отжигают при 900 °C в течение 12 часов (W.G. Zeier, S. Zhou, B. Lopez-Bermudez, K. Page, B.C. Melot, Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li6MLa2Ta2O12, ACS Applied Materials & Interfaces, 2014, V. 6, P. 10900–10907).

Недостатками известного способа являются: необходимость предварительной длительной обработки прекурсоров; использование в качестве прекурсора гидроксида лития - гигроскопичного едкого вещества основного характера, при взаимодействии которого с CO2 происходит образование H2O и трудно удаляемого Li2CO3; низкая плотность получаемой керамики (не более 70% от теоретической).

Известен способ получения порошка сложного литиевого танталата лантана и кальция состава Li6CaLa2Ta2O12, включающий твердофазное взаимодействие оксида тантала Ta2O5, карбоната лития Li2CO3 (с 10% избытком), карбоната кальция CaCO3 и оксида лантана La2O3 (предварительно прокаленного при 900°C в течение 12 часов). Смесь исходных компонентов помещают в алундовый тигель и отжигают при 700°C в течение 6 часов в муфельной печи, перешихтовывают и отжигают при 950°C в течение 12 часов. Полученный порошок прессуют в таблетки при давлении в 0.2 ГПа и комнатной температуре, покрывают исходной смесью и отжигают при 1000°C в течение 4 часов. Средний размер кристаллитов составляет 5 мкм (J. Awaka, N. Kijima, Y. Takahashi, H. Hayakawa, J. Akimoto, Synthesis and crystallographic studies of garnet-related lithium-ion conductors Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12, Solid State Ionics, 2009, V. 180, P. 602–606).

Недостатками известного способа являются: получение кристаллитов больших размеров и, следовательно, невозможность получения высокоплотной керамики; высокая температура отжига.

Известен способ получения керамики на основе литиевого танталата лантана, в частности допированного барием, включающий получение смеси нитрата и ацетата, растворенных в спирте и кислоте, и суспензии оксида тантала в спирте с последующим испарением растворителей для получения стехиометрической смеси и ее отжиг с целью удаления органических компонентов, кальцинирование с целью удаления карбонатов и отжиг полученной порошковой смеси оксидов при высокой температуре для получения плотной керамики (плотность до 95% от теоретической)(патент US 9963394; МПК C04B 35/495, C04B 35/626, C04B 35/64; 2018 год).

Недостатком известного способа является высокая температура последней стадии отжига (выше 1000оС, в частности 1300оС), обусловленная использованием в качестве исходного реагента суспензии оксида тантала в спирте, что исключает возможность взаимодействия реагентов на молекулярном уровне.

Известен способ получения порошка сложного литиевого танталата лантана и кальция состава Li6CaLa2Ta2O12, включающий добавление пентоксида тантала к водному раствору щавелевой кислоты, последующее добавление к раствору нитратов или ацетатов соответствующих металлов и в качестве хелатирующего агента этилендиаминтетрауксусную кислоту (ЭДТА), перемешивание при температуре 60°С в течение часа с получением прозрачного золя, добавление к полученному золю водорастворимого полимера при перемешивании и температуре 90°С с получением геля, который сушат при температуре 100°С в течение 20 часов для получения ксерогеля, полученный ксерогель отжигают при температуре 700-775оС в течение 6 часов со скоростью нагрева 4оС/мин, после чего измельчают и прессуют, а затем отжигают при температуре 775-950оС в течение 5 часов. Получают, в частности литий-проводящую керамику состава Li6CaLa2Ta2O12 с размером частиц 2-10 мкм (патент CN 103594726; МПК H01M 10/0562, H01M 10/058; 2016 год)(прототип).

К недостаткам известного способа относится, во-первых, крупный размер получаемой литий-проводящей керамики, во-вторых, возможность загрязнения конечного продукта примесью оксидов тантала вследствие получения суспендированного раствора пентоксида тантала в щавелевой кислоте.

Таким образом, перед авторами стояла задача разработать способ получения литий-ионного проводящего материала состава Li6CaLa2Ta2O12, обеспечивающий уменьшение размерности частиц конечного продукта, а также высокую чистоту конечного продукта.

Поставленная задача решена в предлагаемом способе получения сложного литиевого танталата лантана и кальция, включающем добавление пентоксида тантала к кислоте с последующим получением геля и добавлением нитратов соответствующих металлов и хелатирующего агента, просушивание при нагревании и отжиг полученного ксерогеля не менее, чем в две стадии, с промежуточным измельчением и прессованием, в котором пентоксид тантала добавляют к 40%-ной плавиковой кислоте при мольном соотношении равном Ta2O5 : HF= 1:14 при перемешивании при температуре 140 – 150оС в течение 1,5 – 1,6 часа, полученный раствор упаривают при температуре 100°C в течение 6ч. и добавляют в качестве хелатирующего агента 6%-ный раствор гидроксида аммония при мольном соотношении NH4OH : Ta2O5 = 10:1, полученный продукт отмывают не менее 2-х раз путем центрифугирования и сушат при температуре 25°С в течение 10 ч, затем растворяют в 30%-ной азотной кислоте, взятой в количестве 0.15 моль/1моль Та+5, с добавлением кристаллогидрата лимонной кислоты, взятой в количестве 3моль/1моль Та+5, после чего добавляют растворы нитратов лантана, лития и кальция, приготовленные с избытком (0,05-0,15 моль) азотной кислоты, в стехиометрическом соотношении и выдерживают при температуре 140 - 150°С при интенсивном перемешивании в течение 5 ч, полученный ксерогель подвергают отжигу в три стадии: I стадия – при температуре 330 – 350°С в течение 2 – 3 часов; II стадия – при температуре 580 – 600°С в течение 4 – 5 часов; III стадия – при температуре 780 – 800°С в течение 4 – 5 часов.

В настоящее время из патентной и научно-технической литературы не известен способ получения литий-ионного проводящего материала состава Li6CaLa2Ta2O12 путем осуществления жидкофазного пиролизного процесса с использованием в качестве хелатирующего агента гидроксида аммония в присутствии смеси лимонной кислоты и азотной кислоты с последующей трехстадийной термообработкой полученного сухого осадка (ксерогеля) при температурах 330–350°C, 580–600°C и 780–800°C, соответственно.

Как показали исследования, проведенные авторами, взаимодействие в смеси водных нитратных растворов ионов тантала, предварительно обработанного гидроксидом аммония с получением активной формы Ta2O5∙nH2O, лантана, лития и кальция в присутствии смеси лимонной и азотной кислот способствует образованию металл-цитратных комплексов, которое устраняет разницу в поведении катионов в растворе, что, в свою очередь, приводит к более полному смешению компонентов и предотвращает выпадение осадков при испарении воды.

В ходе проведенных исследований авторами было установлено, что использование смеси азотной и лимонной кислот является предпочтительным, поскольку лимонная кислота образует растворимые интермедиантные комплексы с активной формой гелеобразного Ta2O5∙nH2O, полученного обработкой пентоксида тантала фтористоводородной кислотой и гидроксидом аммония, и, таким образом, способствуют повышению растворимости геля – танталового концентрата в растворах азотной кислоты. Лимонная кислота относится к гомологическому ряду трехосновных предельных карбоновых кислот и склонна к образованию хелатных комплексов. Кроме того, лимонная кислота легко окисляется, не вносит загрязнений в получаемый продукт, и также взаимодействует с ионами металлов в растворе, включая их в свою структуру.

Введение азотной кислоты менее 0,15 моль на 1 моль Ta(V) и лимонной кислоты менее 3 молей на 1 моль Ta(V) не обеспечивает полного прохождения реакции, поскольку конечный продукт – Li6CaLa2Ta2O12 по данным рентгенофазового анализа загрязнен примесями диоксида тантала Ta2O5. Введение азотной кислоты более 0,15 моль на 1 моль Ta(V) и лимонной кислоты более 3 молей на 1 моль Ta(V) нецелесообразно, поскольку их содержание должно соответствовать количеству тантала, содержащегося в геле Ta2O5∙nH2O. Азотная кислота, добавленная в избытке по отношению к стехиометрическому содержанию оксидов лантана, карбонатов кальция и лития, способствует переводу исходных соединений в нитраты и инициирует процесс пиролиза, являясь окислителем органических компонентов металл-цитратного комплекса. Использование растворов нитратов, содержащих избыток азотной кислоты менее 0.05 моля не обеспечивает полного окисления органических компонентов комплекса, и, как следствие, наблюдается загрязнение промежуточного продукта углеродом. При использовании растворов нитратов, содержащих избыток азотной кислоты более 0.15 моля наблюдается бурное выделение газов (NOх), что усложняет технологически проведение процесса синтеза. Осуществление выдержки при 140-150 °C c интенсивным перемешиванием препятствует вскипанию смеси растворов, обеспечивая их концентрирование.

Ступенчатый отжиг с выдержкой на каждом этапе благоприятен для равномерного разложения и выгорания металл-цитратного комплекса и позволяет избежать воспламенения содержимого тигля. Выдержка при температуре 330–350°C необходима для частичного разложения органической составляющей комплекса; при отсутствии выдержки в интервале 330–350°C резкое повышение температуры приводит к бурному выделению продуктов разложения и к частичной потере продукта за счет выброса из тигля. Отжиг в интервале температур 680–700°C обеспечивает полное удаление продуктов разложения металл-цитратного комплекса в виде газообразных оксидов (NOx, CO2), приводит к началу формирования основной фазы Li6CaLa2Ta2O12. Выдержка предварительно прессованных образцов при 780–800°C приводит к полному формированию основной фазы Li6CaLa2Ta2O12. Образец имеет белый цвет, и является высокодисперсным (0.5-1.5 мкм.). При температуре выше 800 °C наблюдается спекание образца с формированием более крупных агломератов.

Предлагаемый способ может быть осуществлен следующим образом. Берут : Li2CO3 (x.ч.), CaCO3 (x.ч.), La2O3 (ч.д.а) , Ta2O5 (ос.ч.), HF (ос.ч.), HNO3 (ос.ч.), NH4OH (ос.ч.), C6H8O7·2H2O (ч.д.а.). Гелеобразную гидратированную пятиокись тантала Ta2O5∙nH2O, где n = 45–47 (танталовый концентрат) получают растворением оксида тантала в HF при соотношении, равном Ta2O5 : HF= 1:14, при перемешивании при температуре 140-150оС в течение 1,5-1,6 часа , упариванием раствора при температуре 100оС в течение 6 часов до 1/4 первоначального объема, последующей обработкой фторидного раствора тантала раствором гидроокиси аммония (NH4OH) при соотношении, равном NH4OH : Ta2O5= 10 : 1 и дальнейшей многократной отмывкой от примесных ионов (NH4+, OH- ,F-) путем не менее, чем 2-х разовым центрифугированием и сушкой на воздухе. Затем навеску свежеприготовленного танталового концентрата Ta2O5∙(45-47)H2O растворяют в 30%-ной азотной кислоте HNO3, взятой в количестве 0,15 моль на 1 моль Та+5, добавляют кристаллогидрат C6H8O7·2H2O, взятой в количестве 3 моля на 1 моль Та+5. Затем в полученный раствор добавляют смесь нитратов La(NO3)3, LiNO3 и Ca(NO3)2, полученных растворением стехиометрического количества Li2CO3 (x.ч.), CaCO3 (x.ч.), La2O3 (ч.д.а) в 30% азотной кислоте, взятой с избытком (0,05-0,15 моль). Далее смешанный раствор в виде жидкой суспензии молочно-белого цвета выдерживают в термостойком стакане (V = 250 мл) при температуре 140-150°C и интенсивном перемешивании в течение 5 часов до уменьшения объема в три-четыре раза до образования пенистой смолоподобной массы кирпичного цвета, превращающейся при дальнейшем высушивании в темно-коричневый сухой остаток (ксерогель). Термообработку полученного ксерогеля проводят поэтапно в три стадии в интервалах температур: 330–350°C в течение 2-3 часов, 680–700°C в течение 4-5 часов, затем 780–800°C в течение 4-5 часов с измельчением и прессованием после второй стадии обработки.

Полученный продукт по данным рентгенофазового, химического анализов является однофазным и соответствует формуле Li6CaLa2Ta2O12. Минимальный размер кристаллитов по данным сканирующей электронной микроскопии составляет 0.5-1.5 мкм.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 1.0279 гр. Li2CO3 (x.ч.) с избытком по литию 10 %, 0.4219 гр. CaCO3 (x.ч.), 1.3735 гр. La2O3 (ч.д.а), прокаленный при 900 °C в течение 3 ч.; (ч.д.а) , 6.8 г Ta2O5 (ос.ч.), 60 мл 40%-ной HF (ос.ч.), 30 мл 30%-ной HNO3 (ос.ч.), 200 мл 13%-ный NH4OH (ос.ч.), 7 г C6H8O7·2H2O (ч.д.а.). Гелеобразную гидратированную пятиокись тантала Ta2O5∙45H2O (танталовый концентрат) получают растворением 6,8 г оксида тантала в 60 мл 40%-ной HF при этом мольное соотношение равно Ta2O5 : HF= 1:14, при перемешивании при температуре 140°С в течение 1,6 часа , упариванием раствора при температуре 100°С в течение 6 часов до 1/4 первоначального объема, последующей обработкой фторидного раствора тантала 200 мл раствора 6%-ной гидроокиси аммония (NH4OH) при этом мольное соотношение равно NH4OH : Ta2O5= 10 : 1 и дальнейшей 2-х кратной отмывкой от примесных ионов (NH4+, OH- ,F-) центрифугированием и сушкой на воздухе в течение 10 часов. Затем 5.3079 г свежеприготовленного танталового концентрата Ta2O5∙45H2O растворяют в 20 мл 30%-ной азотной кислоте HNO3, что соответствует 0,15 моль HNO3 на 1 моль Та+5, добавляют 7 г кристаллогидрата C6H8O7·2H2O, что соответствует 3 моля C6H8O7·2H2O на 1 моль Та+5. Затем в полученный раствор вливают смесь нитратов лития, кальция, лантана, приготовленную растворением стехиометрической смеси Li2CO3, CaCO3 и La2O3 в 10 мл. 30% HNO3, взятой с избытком 0,15 моль. Далее смешанный раствор в виде жидкой суспензии молочно-белого цвета выдерживают в термостойком стакане (V = 250 мл) при температуре 140°C и интенсивном перемешивании в течение 5 часов до уменьшения объема в три-четыре раза до образования пенистой смолоподобной массы кирпичного цвета, превращающейся при дальнейшем высушивании в темно-коричневый сухой остаток (ксерогель). Термообработку полученного ксерогеля проводят поэтапно в три стадии: 330°C в течение 3 часов, 580°C в течение 5 часов, затем 780°C в течение 5 часов с измельчением и прессованием после второй стадии обработки. Полученный продукт по данным рентгенофазового, химического анализов является однофазным и соответствует формуле Li6CaLa2Ta2O12. Минимальный размер кристаллитов по данным сканирующей электронной микроскопии составляет 0.5-1.3 мкм.

Пример 2. Берут 1.1202 гр. Li2CO3 (x.ч.) с избытком по литию 10 %, 0.4598 гр. CaCO3 (x.ч.), 1.4968 гр. La2O3 (ч.д.а), прокаленный при 900 °C в течение 5 ч., 6,8 г Ta2O5 (ос.ч.), 60 мл 40%-ной HF (ос.ч.), 30 мл 30%-ной HNO3 (ос.ч.), 200 мл 13%-ный NH4OH (ос.ч.), 7.5 г C6H8O7·2H2O (ч.д.а.). Гелеобразную гидратированную пятиокись тантала Ta2O5∙45H2O (танталовый концентрат) получают растворением 6,8 г оксида тантала в 60 мл 40%-ной HF при этом мольное соотношение равно Ta2O5 : HF= 1:14, при перемешивании при температуре 150оС в течение 1,5 часа , упариванием раствора при температуре 100оС в течение 6 часов до 1/4 первоначального объема, последующей обработкой фторидного раствора тантала 200 мл раствора 13%-ной гидроокиси аммония (NH4OH) при этом мольное соотношение равно NH4OH : Ta2O5= 10 : 1 и дальнейшей 2-х кратной отмывкой от примесных ионов (NH4+, OH- ,F-) центрифугированием и сушкой на воздухе в течение 10 часов. Затем 6.2475 г свежеприготовленного танталового концентрата Ta2O5∙45H2O растворяют в 20 мл 30%-ной азотной кислоте HNO3, что соответствует 0,15 моль HNO3 на 1 моль Та+5, добавляют 7.5 г кристаллогидрата C6H8O7·2H2O, что соответствует 3 моля C6H8O7·2H2O на 1 моль Та+5. Затем в полученный раствор вливают смесь нитратов лития, кальция, лантана, приготовленную растворением стехиометрической смеси Li2CO3, CaCO3 и La2O3 в 10 мл. 30% HNO3, взятой с избытком 0,05 моль. Далее смешанный раствор в виде жидкой суспензии молочно-белого цвета выдерживают в термостойком стакане (V = 250 мл) при температуре 150 °C и интенсивном перемешивании в течение 5 часов до уменьшения объема в три-четыре раза до образования пенистой смолоподобной массы кирпичного цвета, превращающейся при дальнейшем высушивании в темно-коричневый сухой остаток (ксерогель). Термообработку полученного ксерогеля проводят поэтапно в три стадии: 350°C в течение 2 часов, 600°C в течение 4 часов, затем 800°C в течение 6 часов с измельчением и прессованием после второй стадии обработки. Полученный продукт по данным рентгенофазового, химического анализов является однофазным и соответствует формуле Li6CaLa2Ta2O12. Минимальный размер кристаллитов по данным сканирующей электронной микроскопии составляет 0.5-1.5 мкм.

Таким образом, авторами предлагается способ получения сложного литиевого танталата лантана и кальция, обеспечивающий получение однофазного конечного продукта без каких-либо примесных включений и уменьшение размерности частиц получаемого материала.

Способ получения сложного литиевого танталата лантана и кальция, включающий добавление пентоксида тантала к кислоте с последующим получением геля и добавлением нитратов соответствующих металлов и хелатирующего агента, просушивание при нагревании и отжиг полученного ксерогеля не менее, чем в две стадии, с промежуточным измельчением и прессованием, отличающийся тем, что пентоксид тантала добавляют к 40%-ной плавиковой кислоте при мольном соотношении, равном Ta2O5 : HF= 1:14, при перемешивании при температуре 140–150°С в течение 1,5 – 1,6 часа, полученный раствор упаривают при температуре 100°C в течение 6 часов и добавляют в качестве хелатирующего агента 13%-ный раствор гидроксида аммония при мольном соотношении NH4OH : Ta2O5 = 10:1, полученный продукт отмывают не менее 2-х раз путем центрифугирования и сушат при температуре 25°С в течение 10 ч, затем растворяют в 30%-ной азотной кислоте, взятой в количестве 0,15 моль/1 моль Та+5, с добавлением кристаллогидрата лимонной кислоты, взятой в количестве 3 моль/1 моль Та+5, после чего добавляют растворы нитратов лантана, лития и кальция, приготовленные с избытком 0,05-0,15 моль азотной кислоты, в стехиометрическом соотношении и выдерживают при температуре 140-150°С при интенсивном перемешивании в течение 5 ч, полученный ксерогель подвергают отжигу в три стадии: I стадия – при температуре 330–350°С в течение 2 – 3 часов; II стадия – при температуре 580–600°С в течение 4–5 часов; III стадия – при температуре 780–800°С в течение 4–5 часов.



 

Похожие патенты:

Изобретение относится к области цветной металлургии и может быть использовано для извлечения молибдена и рения из сульфидных и смешанных молибденсодержащих концентратов.

Изобретение относится к горнодобывающей промышленности и может быть использовано при подземной разработке рудных месторождений со сложным распределением полезных компонентов.
Изобретение относится к комплексной безотходной технологии получения оксидов кремния, алюминия и железа из золошлаковых отходов (ЗШО). Способ включает нагрев смеси ЗШО с фторидом аммония, выщелачивание водой смеси при температуре 20-30°С, фильтрование, обработку раствора аммиачной водой для образования осадка SiO2.

Изобретение относится к области металлургии, в частности к переработке окисленной никель-кобальтовой латеритной руды. Осуществляют мокрый рассев руды с выделением крупной и мелкой фракций.

Изобретение относится к области гидрометаллургии благородных металлов. Подготовку водного раствора реагента для выщелачивания осуществляют насыщением водного раствора реагента электролизными газами в процессе электролиза с последующим переводом электролизных газов в реакционно-активную форму ультрафиолетовым облучением и диспергированием ультразвуковым воздействием в течение не менее 10 мин.

Изобретение относится к способу и установке для обработки, в частности к обработке шлака для извлечения из него одного или более полезных компонентов. Способ обработки материала, который представляет собой верхний слой из процесса плавки металла, причем указанный верхний слой представляет собой шлак и содержит одну или более солей и один или более металлов, включающий: а) подачу шлака в пресс для шлака и прессование шлака; б) подачу прессованного шлака на стадию измельчения, включающую стадию дробления; где стадии (а) и (б) осуществляют до того, как температура шлака, извлеченного из печи, понизится ниже 350°C; указанный способ также включает: в) подачу шлака на стадию выщелачивания; г) получение продукта выщелачивания со стадии выщелачивания; д) подачу продукта выщелачивания на стадию распылительной сушки; е) получение твердого вещества со стадии распылительной сушки.

Изобретение относится к способу извлечения ванадия, титана и железа из концентрата на основе ванадия-титана-железа в одну стадию. Способ включает следующие стадии.

Изобретение относится к способу утилизации литийсодержащих отходов в виде батарей. Способ включает разрядку отработанных литиевых батарей с использованием разрядной установки.

Изобретение относится к способу извлечения золота из золотосодержащих сырьевых материалов, включающему (a) выщелачивание указанного золотосодержащего сырьевого материала в содержащем хлорид выщелачивающем растворе и имеющем общую концентрацию галогенид-ионов менее 120 г/л.

Изобретение относится к выщелачиванию металлов из руд и концентратов. Устройство содержит реактор из кислотостойкого и термостойкого материала, выполненный со штуцером для загрузки в него исходного сырья в виде пульпы, напорный бак для подачи в реактор реагента в виде раствора кислоты или раствора хлорида натрия и размещенные в реакторе ультразвуковой диспергатор и подключенный к источнику постоянного тока электродный блок.
Изобретение относится к области получения дейтеридов металлов для применения в качестве селективного восстановителя в органическом синтезе, для дейтерирования лекарственных препаратов с целью последующего использования в медицине и фармацевтике.

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров. В азотной кислоте растворяют карбонат щелочного металла, взятый в 50-100 %-ном избытке по сравнению со стехиометрическим, и оксид лантана.

Изобретение относится к области гидрометаллургии лития, в частности к способу извлечения лития из литийсодержащих хлоридных рассолов из природных рассолов, технологических растворов и сточных вод нефтегазодобывающих, химических, химико-металлургических и биохимических производств.

Изобретение относится к получению композита ортованадат лития/углерод Li3VO4/C в мелкодисперсном состоянии, который может быть использован в качестве эффективного анодного материала химических источников тока.
Предложен способ получения сульфидного твердого электролита, которым может быть повышена сохранность емкости в полностью твердотельной батарее. Способ включает аморфизацию материала для сульфидного твердого электролита посредством механического измельчения сырья для электролита, содержащего по меньшей мере Li2S и один или более сульфид(ов), выбранных из P2S3, P2S5, SiS2, GeS2, B2S3 и Al2S3.

Изобретение относится к области водоподготовки и может быть использовано для очистки природных вод из подземных источников от соединений лития при получении воды хозяйственно-питьевого назначения.

Изобретение может быть использовано в химической промышленности. Способ получения наноструктурированных порошков ферритов включает получение смеси соли азотной кислоты и по крайней мере одного оксидного соединения металла, ультразвуковую обработку, термообработку и фильтрацию.

Изобретение может быть использовано в химической промышленности. Способ получения гипохлорита кальция из пересыщенного природного поликомпонентного рассола хлоридного кальциево-магниевого типа включает выделение из рассола кристаллогидрата хлорида кальция и отделение маточного рассола, обогащенного литием и бромом.

Изобретение может быть использовано для получения катодных материалов литий-ионных аккумуляторов. Для получения сложного оксида лития и кобальта состава LiCoO2 нагревают исходный раствор, содержащий азотнокислый кобальт, соединение лития и гелирующий агент.
Изобретение относится к химической технологии получения катодных материалов для литий-ионных аккумуляторов. В способе получения литий-железо-фосфата, включающем смешивание в стехиометрических соотношениях соединения железа с водным раствором, содержащим литий- и фосфат-ионы и аскорбиновую кислоту в качестве углеродсодержащего восстановителя, активирование полученной смеси и последующую термическую обработку продукта взаимодействия, в качестве соединения железа используют порошок оксида железа со степенью окисления железа в диапазоне +2,03…+2,2 с размером частиц до 125 мкм, смешивая его с водным раствором дигидрофосфата лития концентрацией 30-57 вес.%, а активирование полученной смеси путем механического перемешивания осуществляют при температуре 15-30°C до образования геля.
Наверх