Способ испытаний газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний газотурбинных двигателей (ГТД). При осуществлении предложенного способа ГТД выводят на максимальный режим работы. Для двигателя с нерегулируемым реактивным соплом до начала испытаний для не менее чем трех основных регулируемых параметров, характеризующих работу двигателя на максимальном режиме, устанавливают границу их максимального и минимального допустимых значений, исходя из его конструктивных особенностей; далее в ходе испытаний производят измерение каждого из выбранных основных регулируемых параметров на максимальном режиме, определяемом частотой вращения ротора, и не менее чем четырех близких к нему режимах; затем осуществляют приведение выбранных параметров и частоты вращения ротора с построением зависимости приведенных выбранных параметров от приведенной частоты вращения ротора, при этом на ось частоты вращения ротора наносят границы, определяемые максимальным и минимальным значениями из используемых режимов; для приведенных выбранных параметров двигателя также наносят границы их максимального и минимального допустимых значений, установленных ранее; далее определяют требуемую частоту вращения ротора, удовлетворяющую условию одновременного нахождения всех приведенных выбранных параметров, соответствующих данной требуемой частоте, в пределах своих границ допустимых значений; затем полученную требуемую частоту вращения ротора и соответствующие ей приведенные выбранные параметры заносят в регулятор двигателя; если частот, удовлетворяющих условию, несколько, то дополнительно строят зависимость удельного расхода топлива от приведенной частоты вращения ротора и выбирают ту частоту, при которой реализуется наименьший удельный расход топлива; если же частота вращения ротора, удовлетворяющая условию, отсутствует, то с двигателя демонтируют нерегулируемое реактивное сопло и устанавливают сопло с другими геометрическими характеристиками, после чего повторяют все этапы испытаний. Техническим результатом, достигаемым при использовании настоящего изобретения, является оптимизация тягово-экономических характеристик двигателя с нерегулируемым соплом и повышение точности определения параметров. 3 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к области авиадвигателестроения, а именно, к способам испытаний газотурбинных двигателей (ГТД).

Известен способ испытаний ГТД, у которого имеется возможность регулирования с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя, то есть изменением площади критического диаметра сопла Fкp (Ю.Н. Нечаев "Законы управления и характеристики авиационных силовых установок" - Москва, Машиностроение, 1995, стр. 239).

Из известных способов наиболее близким по технической сущности к предложенному является способ испытаний ГТД с изменяемой геометрией сопла, при котором предварительно при испытаниях двигателя на стенде выводят его на максимальный режим при постоянном значении диаметра критического сечения сопла, затем изменяют площадь критического сечения сопла, измеряют степень расширения на турбинах и вводят ее в регулятор двигателя в качестве программы поддержания заданной степени расширения на турбине на форсажных режимах работы двигателя (см. патент RU №2634506, опубл. 31.10.2017).

Для двигателей с нерегулируемым соплом площадь критического диаметра сопла постоянна, в связи с чем невозможно определить параметры двигателя, которые необходимо внести в программу управления для соответствия заданным техническим условиям.

Задачей изобретения является получение оптимальных тяговых и экономических характеристик двигателя с нерегулируемым реактивным соплом.

Поставленная задача решается тем, что в известном способе испытаний ГТД, при котором предварительно выводят его на максимальный режим работы, для двигателя с нерегулируемым реактивным соплом до начала испытаний для не менее, чем трех основных регулируемых параметров, характеризующих работу двигателя на максимальном режиме, устанавливают границу их максимального и минимального допустимых значений исходя из его конструктивных особенностей; далее в ходе испытаний производят измерение каждого из выбранных основных регулируемых параметров на максимальном режиме, определяемом частотой вращения ротора, и не менее чем четырех близких к нему режимах; затем осуществляют приведение выбранных параметров и частоты вращения ротора с построением зависимости приведенных выбранных параметров от приведенной частоты вращения ротора, при этом на ось частоты вращения ротора наносят границы, определяемые максимальным и минимальным значениями из используемых режимов; для приведенных выбранных параметров двигателя также наносят границы их максимального и минимального допустимого значений, установленных ранее; далее определяют требуемую частоту вращения ротора, удовлетворяющую условию одновременного нахождения всех приведенных выбранных параметров, соответствующих данной требуемой частоте, в пределах своих границ допустимых значений; затем полученную требуемую частоту вращения ротора и соответствующие ей приведенные выбранные параметры заносят в регулятор двигателя; если частот, удовлетворяющих условию, несколько, то дополнительно строят зависимость удельного расхода топлива от приведенной частоты вращения ротора и выбирают ту частоту, при которой реализуется наименьший удельный расход топлива; если же частота вращения ротора, удовлетворяющая условию, отсутствует, то с двигателя демонтируют нерегулируемое реактивное сопло и устанавливают сопло с другими геометрическими характеристиками, после чего повторяют все этапы испытаний.

Техническим результатом, достигаемым при использовании настоящего изобретения, является оптимизация тягово-экономических характеристик двигателя с нерегулируемым соплом и повышение точности определения параметров.

Пример осуществления способа.

Проводят испытания конкретного двигателя, с измерением не менее, чем на пяти режимах параметров, близких к максимальному режиму его работы. В таблице приведены результаты приведенных параметров на 6-ти измеренных режимах работы.

Затем строят зависимости приведенных параметров от приведенной частоты вращения ротора. На графике представлен пример зависимостей значений тяги Rпp, температуры газов перед турбиной Тг пр, температуры газа за турбиной t4 пр и удельного расхода топлива Сrпр от приведенной частоты вращения ротора nпр.

На ось приведенной частоты вращения наносят заданный диапазон частоты вращения для максимальных режимов работы двигателя, (обозначены на рисунке индексами nmin и nmax), на другой оси при том же диапазоне частоты вращения устанавливают допустимые границы максимальных и минимальных значений приведенных параметров двигателя: тяги, температуры газов, удельного расхода топлива и других параметров. На графике полученные границы обозначены индексами Тг max, t4 max, Rmax, Rmin, Crmax.

В полученных диапазонах приведенных параметров двигателя определяют приведенную частоту вращения ротора, обеспечивающую соответствие заданных значений параметров. На графике полученное значение частоты вращения обозначено индексом nреж (режимное значение). При этой частоте вращения по построенным зависимостям определяют конкретные параметры двигателя, а именно: значения температуры газов перед турбиной Тr реж, температуры газов за турбиной t4 реж и тяги Rреж, полученные при минимальном удельном расходе топлива Сr реж. Полученные значения частоты вращения и температуры газов за турбиной вносят в регулятор двигателя.

При несоответствии полученных параметров заданным настройкам на двигатель устанавливают сопло с другими геометрическими характеристиками и повторяют запуск с измерением параметров и последующим определением настроечных значений регуляторов частоты вращения и температуры газов за турбиной.

Для более точного построения зависимостей приведенных параметров двигателя от приведенной частоты вращения измерение параметров производят с шагом 1…2% по частоте вращения ротора.

При испытаниях двухвального ГТД измерение параметров и построение зависимостей производят по частоте вращения ротора низкого давления, а в качестве заданного параметра дополнительно используют частоту вращения ротора высокого давления.

При испытании двухвального ГТД возможен вариант, при котором частоту вращения ротора высокого давления дополнительно принимают в качестве настроечного значения в регуляторе двигателя.

Таким образом, предложенный способ испытаний ГТД с нерегулируемым соплом позволяет определить необходимые настройки регуляторов двигателя, соответствующие заданным в технических условиях параметрам.

1. Способ испытаний газотурбинного двигателя, при котором предварительно выводят его на максимальный режим работы, отличающийся тем, что для двигателя с нерегулируемым реактивным соплом до начала испытаний для не менее чем трех основных регулируемых параметров, характеризующих работу двигателя на максимальном режиме, устанавливают границу их максимального и минимального допустимых значений, исходя из его конструктивных особенностей; далее в ходе испытаний производят измерение каждого из выбранных основных регулируемых параметров на максимальном режиме, определяемом частотой вращения ротора, и не менее чем четырех близких к нему режимах; затем осуществляют приведение выбранных параметров и частоты вращения ротора с построением зависимости приведенных выбранных параметров от приведенной частоты вращения ротора, при этом на ось частоты вращения ротора наносят границы, определяемые максимальным и минимальным значениями из используемых режимов; для приведенных выбранных параметров двигателя также наносят границы их максимального и минимального допустимых значений, установленных ранее; далее определяют требуемую частоту вращения ротора, удовлетворяющую условию одновременного нахождения всех приведенных выбранных параметров, соответствующих данной требуемой частоте, в пределах своих границ допустимых значений; затем полученную требуемую частоту вращения ротора и соответствующие ей приведенные выбранные параметры заносят в регулятор двигателя; если частот, удовлетворяющих условию, несколько, то дополнительно строят зависимость удельного расхода топлива от приведенной частоты вращения ротора и выбирают ту частоту, при которой реализуется наименьший удельный расход топлива; если же частота вращения ротора, удовлетворяющая условию, отсутствует, то с двигателя демонтируют нерегулируемое реактивное сопло и устанавливают сопло с другими геометрическими характеристиками, после чего повторяют все этапы испытаний.

2. Способ по п. 1, отличающийся тем, что измерение параметров производят с шагом 1…2% по частоте вращения ротора.

3. Способ по п. 1, отличающийся тем, что в качестве параметров, заданных в технических условиях, используют значения тяги, температуры газов перед и за турбиной и частоту вращения ротора.

4. Способ по п. 1, отличающийся тем, что для двухвального газотурбинного двигателя измерение параметров и построение зависимостей производят по частоте вращения ротора низкого давления, а в качестве заданного параметра дополнительно используют частоту вращения ротора высокого давления.



 

Похожие патенты:
Изобретение относится к измерительной технике и может быть использовано для тарировки индикаторных диаграмм. Технической задачей изобретения является обеспечение быстрого, точного и надежного способа тарировки индикаторной диаграммы при безразборной диагностике поршневых двигателей внутреннего сгорания по результатам косвенного индицирования в эксплуатационных условиях.

Изобретение относится к области испытания и технического диагностирования машин, в частности к встроенным контрольно-измерительным приборам машин, оснащенных двигателями внутреннего сгорания.

Группа изобретений относится к области диагностики двигателя внутреннего сгорания. Техническим результатом является повышение точности регулирования двигателя путем измерения влажности окружающей среды в процессе движения транспортного средства.

Изобретение относится к области эксплуатации машин и может быть использовано при испытаниях и калибровке датчиков массового расхода воздуха автомобилей, оборудованных микропроцессорной системой управления двигателем внутреннего сгорания.

Стенд для измерения стартовых параметров активно-реактивного выстрела или реактивного патрона содержит двигатель с платформой, закрепленный на станине с возможностью осевого перемещения и поджатый к силоизмерителю, и датчик давления, установленный в переднем дне двигателя.

Изобретение относится к области авиадвигателестроения, к авиационным двигателям типа газотурбинных, а именно к способам испытаний при их создании, экспериментальной доводке характеристик опытного и промышленного экземпляров и эксплуатации.

Изобретение относится к криогенной технике и предназначено для испытаний энергетических устройств на подогретой до линии насыщения жидкой фазе криогенного продукта.

Изобретение относится к машиностроению, а именно к обнаружению твердых частиц в выпускной системе двигателей. Система обнаружения твердых частиц в выпускном канале содержит трубу (202) с множеством впускных газовых отверстий (236) на расположенной выше по потоку поверхности (204), имеющую подковообразную форму с закругленным углублением (246) на расположенной ниже по потоку поверхности (206) и множество выходных газовых отверстий (240), расположенных вдоль закругленного углубления (246).

Изобретение относится к способу контроля и прогнозирования работы газотурбинной установки с использованием матрицы дефектов. Настоящее изобретение может найти применение при создании, эксплуатации, управлении и мониторинге систем различного назначения, включая сложные технические системы, в которых интегрированы газотурбинные установки, используемые в энергетике, машиностроении, коммунальном хозяйстве и других отраслях.

Изобретение относится к области технического обслуживания и дистанционного диагностирования технического состояния систем двигателей внутреннего сгорания транспортных и технологических машин.
Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей. Способ ресурсных испытаний газотурбинного двигателя включает разбиение рабочей области частоты вращения ротора с рабочими лопатками на несколько диапазонов и наработку в каждом диапазоне времени нагружения Т, по прохождении которой при отсутствии повреждений на рабочих лопатках делают вывод о подтверждении ресурса. Для всех рабочих лопаток определяют частоту их собственных колебаний по первой изгибной форме f1, и по наименьшему значению собственной частоты колебаний f1min определяют время нагружения Т по зависимости: , где N - нормативная база нагружения, равная 20⋅106 циклов, затем рабочую область частоты вращения ротора для испытуемого двигателя разбивают на площадки шириной 0,4-0,5% от минимального значения частоты рабочей области, после чего на каждой площадке производят наработку по времени нагружения Т при средней частоте вращения ротора для данной площадки. Изобретение позволяет повысить достоверность подтверждения динамической прочности рабочих лопаток ротора. 1 ил.
Изобретение относится к установкам стендов полунатурного моделирования с замкнутой топливной системой для испытаний систем автоматического управления, в частности газотурбинного двигателя (ГТД), и может быть использовано для моделирования процессов заполнения или опорожнения топливных коллекторов при испытаниях топливорегулирующей аппаратуры. В имитатор топливного коллектора в известном стенде для испытания агрегатов дозирования топлива воздушно-реактивных двигателей, содержащий эквивалент-жиклер с пропускной способностью, эквивалентной пропускной способности форсунок топливного коллектора, размещенный в магистрали отвода топлива от агрегата топливной системы в линии слива топлива, по предложению, установлена емкость, объемом, эквивалентным объему топливного коллектора, соединенная с сообщенной с атмосферой линией слива топлива двумя трубопроводами из верхней и нижней ее частей, в каждом из которых установлен жиклер, с пропускной способностью, эквивалентной половине пропускной способности форсунок топливного коллектора, при этом трубопровод из нижней части емкости соединен с линией слива топлива в сечении ниже самой нижней точки емкости, а трубопровод из верхней части емкости соединен с линией слива топлива в сечении выше самой высокой точки емкости. Применение имитаторов топливных коллекторов позволяет моделировать процессы заполнения и опорожнения топливных коллекторов на стендах полунатурного моделирования испытаний САУ ГТД. 1 ил.
Изобретение относится к области эксплуатации газотурбинных двигателей (ГТД), а именно к контролю их технического состояния во время эксплуатации для принятия решения по их обслуживанию и дальнейшей эксплуатации. Способ контроля технического состояния ГТД во время его эксплуатации включает измерение температуры газа в потоке за турбиной низкого давления - Т4 термопарами не менее, чем в восьми точках, равномерно размещенных по окружности в характерном сечении, в начале и во время эксплуатации. При осуществлении способа периодически вычисляют разность ΔT4i между каждыми двумя соседними термопарами, фиксируют наработку ГТД в момент измерения времени τ, определяют зависимости ΔT4i=f(τ), при этом предварительно устанавливают предельно допустимую величину отклонения ΔT4i пред. от значений, определенных по измерению в начале эксплуатации, сравнивают ΔT4i=f(τ) с ΔT4i пред., и по выходу текущих значений ΔT4i за границу предельно допустимых отклонений ΔT4i пред. судят об изменении технического состояния двигателя. Технический результат от использования изобретения заключается в том, что по изменению разности между термопарами, измеряющими температуру газа в потоке за турбиной низкого давления - Т4, можно сделать выводы о техническом состоянии камеры сгорания газотурбинного двигателя, а также точно определить место, в котором происходит ухудшение технического состояния, благодаря чему можно предотвратить развитие дефекта и минимизировать затраты на ремонт двигателя путем принятия своевременного решения. 2 з.п. ф-лы, 1 ил., 2 табл.
Динамический метод контроля тяги двигателей летательного аппарата в полете заключающийся в том, что тяга двигателей летательного аппарата в полете определяется как произведение некоторой израсходованной массы топлива на отношение произведения горизонтального ускорения летательного аппарата с некоторой конкретной горизонтальной скорости летательного аппарата при конкретном режиме изменения работы двигателей при конкретном положении органов управления летательного аппарата, конкретных параметрах среды полета и высоты полета летательного аппарата на горизонтальное ускорение летательного аппарата с некоторой конкретной горизонтальной скорости летательного аппарата при конкретном режиме изменения работы двигателей при конкретном положении органов управления летательного аппарата, конкретных параметрах среды полета и высоты полета летательного аппарата без некоторой израсходованной массы топлива к разности горизонтального ускорения летательного аппарата с некоторой конкретной горизонтальной скорости летательного аппарата при конкретном режиме изменения работы двигателей при конкретном положении органов управления летательного аппарата, конкретных параметрах среды полета и высоты полета летательного аппарата без некоторой израсходованной массы топлива и горизонтального ускорения летательного аппарата с некоторой конкретной горизонтальной скорости летательного аппарата при конкретном режиме изменения работы двигателей при конкретном положении органов управления летательного аппарата, конкретных параметрах среды полета и высоты полета летательного аппарата. 1 ил.
Наверх