Пористая структура для костных имплантатов

Группа изобретений относится к медицине. Костный имплантат содержит тело, характеризующееся пористой структурой, и имеющий размер и форму, подобранные для подгонки к кости, предпочтительно в дефекте кости. Пористая структура состоит из регулярно расположенных элементарных ячеек, внутренние пространства которых образуют сообщающиеся поры. Элементарные ячейки образованы основными элементами, расположенными послойно. Основные элементы выполнены в форме тетраподов. Тетраподы в каждом слое расположены в параллельной ориентации и занимают в своем слое положения, повернутые по отношению к тетраподам соседнего слоя. Имплантат для эндопротезирования включает в себя тело, состоящее из сплошного материала, и контактирующую с костью часть, состоящую из пористой структуры. Пористая структура состоит из регулярно расположенных элементарных ячеек, внутренние пространства которых образуют сообщающиеся поры. Элементарные ячейки образованы основными элементами, расположенными послойно. Основные элементы выполнены в форме тетраподов. Тетраподы в каждом слое расположены в параллельной ориентации и занимают в своем слое положения, повернутые по отношению к тетраподам соседнего слоя. Способ изготовления костного имплантата, который содержит тело, характеризующееся пористой структурой, и имеет размер и форму, подобранные для подгонки к кости, предпочтительно в дефекте кости. Способ предусматривает изготовление костного имплантата с использованием технологии послойного нанесения для образования пористой структуры, что включает в себя образование чередующихся слоев основных элементов, выполненных в форме тетраподов; расположение тетраподов в каждом слое в по существу параллельной ориентации; поворот тетраподов в каждом следующем слое по отношению к тетраподам предшествующего слоя; образование регулярно расположенных элементарных ячеек, внутренние пространства которых образуют сообщающиеся поры, причем элементарные ячейки ограничены основными элементами, расположенными послойно. Изобретения обеспечивают улучшение характеристик несущей способности за счет пористой структуры имплантатов. 3 н. и 22 з.п. ф-лы, 14 ил.

 

Настоящее изобретение относится к имплантируемому устройству для наращивания кости, состоящему из пористого материала. Настоящее изобретение также относится к способу изготовления вышеупомянутых имплантируемых устройств для наращивания кости.

В хирургии, в частности, для имплантации искусственных суставов, проблема дефектов костей представляет собой достаточно часто встречающуюся ситуацию. Дефекты должны быть заполнены для возвращения дефектной кости ее исходных формы и размера. Для этой цели может быть использован материал аутотрансплантата или материал аллотрансплантата. Искусственно созданный материал аллотрансплантата имеет преимущество в отношении простоты применения и воспроизводимости. Кроме того, синтетически изготовленный материал имеет преимущество обеспечения более строгого контроля качества и отсутствия любого риска заболеваний.

Известны элементы для протезирования и костные имплантаты, имеющие подобную решетке пористую структуру. Пористая структура предпочтительно обладает правильной геометрией с целью обеспечения биологической фиксации к окружающей костной ткани. Пористый материал сконфигурирован таким образом, чтобы способствовать врастанию окружающей кости в поровые пространства пористого материала. Как правило, пористый материал и/или любое наносимое покрытие может содержать титановые сплавы, чистый титан, кобальтохромовый сплав, нержавеющую сталь, тантал, цирконий и другие биосовместимые материалы. Такие устройства для наращивания костей различных форм и размеров имеются в продаже. В частности, Zimmer Inc. производит и продает устройства для наращивания, изготовленные из металлического пеноматериала, имеющего высокую степень пористости (Trabecular Metal®).

Из уровня техники известно создание пористой структуры способами аддитивного производства, такими как селективное лазерное плавление (СЛП) или электронно-лучевое плавление (ЭЛП). Вышеупомянутые способы позволяют получать изделия, состоящие из металлического материала, путем создания слоев затвердевающего материала из порошка посредством процесса плавления. В результате этого требуемые структуры могут быть изготовлены с высокой точностью в широком ассортименте. Например, известно прикрепление пористой структуры к чашке эндопротеза вертлужной впадины (US 8,454,705 В2). Пористая структура получена способом ЭЛП и образует решетку, имеющую регулярное расположение открытых ячеек. Ячейки выполнены в алмазоподобной конфигурации, которая обеспечивает приоритет геометрических размеров гексагональной формы в различных плоскостях. Термины «алмазный» или «алмазоподобный» в контексте настоящего документа относятся к кубической кристаллической структуре, которая представляет собой гранецентрированную кубическую решетку Браве. Благодаря своей гексагональной форме, алмазоподобная структура имеет преимущество достаточно высокой жесткости. При этом в сочетании с достаточно прочными биосовместимыми материалами получаемая в результате общая жесткость может быть достаточно высокой.

Целью настоящего изобретения является обеспечение улучшения характеристик несущей способности за счет пористой структуры имплантатов.

Решение согласно настоящему изобретению охарактеризовано признаками, изложенными в независимых пунктах формулы изобретения. Предпочтительные варианты осуществления раскрыты в зависимых пунктах формулы изобретения.

Согласно настоящему изобретению костный имплантат, содержащий тело, характеризующееся пористой структурой, и имеющий размер и форму, подобранные для подгонки к кости, предпочтительно в дефекте кости, характеризуется тем, что пористая структура состоит из регулярно расположенных элементарных ячеек, внутренние пространства которых образуют сообщающиеся поры, и элементарные ячейки образованы основными элементами, расположенными послойно, при этом основные элементы выполнены в форме тетраподов, причем тетраподы в каждом слое расположены в параллельной ориентации и занимают в своем слое положения, повернутые по отношению к тетраподам соседнего слоя.

Предварительно могут быть разъяснены некоторые термины.

«Тетрапод» известен специалисту в данной области техники как элемент, имеющий четыре луча, выходящие из общего центра и идущие в четырех различных направлениях таким образом, что свободные концы лучей образуют тетраэдр. Во многих случаях лучи имеют одинаковую или близкую длину, хотя это не является обязательным. Наличие лучей различной длины обеспечивает преимущество образования различных углов между лучами. Когда все лучи имеют одинаковую длину, углы между ними всегда являются одинаковыми, а именно представляют собой так называемый тетраэдрический угол, который определен как arccos(-1/3), что составляет приблизительно 109,47°. Когда лучи имеют различную длину, получаются различные углы, так что некоторые из вышеупомянутых углов являются меньше тетраэдрического угла и предпочтительно даже меньше 100°. Неожиданно было обнаружено, что наличие таких малых углов в элементах, которые определяют структуру элементарных ячеек, обеспечивает улучшенное врастание костной ткани, что представляет собой огромное преимущество предлагаемого устройства для наращивания кости.

Контактная поверхность представляет собой поверхность имплантируемого устройства для наращивания кости, которая выполнена с возможностью приведения в контакт с поверхностью кости в имплантированном состоянии устройства для наращивания кости.

Узловая точка представляет собой точку, в которой соединяются друг с другом различные элементы, в частности, точку, где один тетрапод присоединен дальним концом одного из своих лучей, по меньшей мере, к одному дальнему концу одного из лучей другого тетрапода.

Расположение со сдвигом между слоями означает, что рассматриваемые слои сдвинуты по отношению друг к другу вдоль плоскости, определяемой слоями. Сдвиг может быть трансляционным и/или ротационным.

Термин «соседний слой» означает непосредственно прилегающий слой.

Продолженная центральная линия представляет собой воображаемую линию вдоль медианы продолговатого элемента, в частности, луча тетраподов, которая выходит за физические пределы вышеупомянутого продолговатого элемента.

Термин «непосредственно нижележащий» означает расположенный вдоль центральной линии четвертого луча тетрапода, причем центральная линия выходит из центра данного тетрапода.

В основе настоящего изобретения лежит идея расположения элементарных ячеек в различных слоях, при этом элементарные ячейки образованы соединенными друг с другом тетраподами, и слои поочередно сдвинуты таким образом, что тетраподы одного слоя повернуты по отношению к соседнему нижнему слою.

Неожиданно обнаружено, что пористой структуре, имеющей вышеупомянутую конфигурацию, присущи улучшенные механические характеристики, причем модуль упругости в одном пространственном направлении отличается от модуля упругости в другом направлении. Наличие различных модулей упругости в различных направлениях имеет огромное преимущество для биосовместимости. Это объясняется тем, что жесткость природной кости обычно зависит от направления; этим отличаются, в частности, несущие высокую нагрузку кости, такие бедренная кость и большеберцовая кость ноги человека (и, соответственно, плечевая кость, а также малоберцовая кость ноги человека) и вертлужная впадина для тазобедренных суставов. Преимущество микроструктуры согласно настоящему изобретению становится очевидным при сравнении с другой микроструктурой устройств для наращивания кости, а именно имеющей элементарные ячейки, образованные в алмазоподобной решетке. Хотя благодаря своему высокому модулю упругости такая алмазоподобная структура имеет хорошую несущую способность, она проявляет одинаково высокий модуль упругости во всех основных направлениях. Это представляет собой недостаток в отношении биосовместимости, в частности, в случае устройств для наращивания кости, поскольку природная кость, как уже было упомянуто выше, проявляет различную жесткость в различных направлениях. Настоящее изобретение преодолевает этот недостаток, особенно в предпочтительном варианте осуществления, где сдвиг имеет такую конфигурацию, что узловая точка соседнего нижнего слоя расположена под верхним лучом тетраподов соседнего верхнего слоя таким образом, что продолженная центральная линия верхнего луча проходит через узловую точку. В результате этого несущая способность дополнительно улучшается только в направлении продолженной центральной линии, которая перпендикулярна плоскости слоев.

Коротко говоря, предлагаемое расположение со сдвигом слоев, которые в остальном отношении представляют собой регулярно расположенные тетраподы, обеспечивает неожиданно высокое улучшение биосовместимости.

Предпочтительно, поворот происходит в пределах плоскости, т.е. ось поворота перпендикулярна плоскости, определяемой слоем.

Элементарные ячейки в пределах любого слоя ограничивают внутреннее пространство внутри каждой элементарной ячейки, и в силу расположения со сдвигом между слоями вышеупомянутое внутреннее пространство является несимметричным в трех пространственных измерениях. Три пространственных измерения представляют собой основные направления ортонормированной системы, в которой одно из направлений совпадает с направлением верхнего луча тетраподов, ограничивающих элементарную ячейку.

Другими словами, предлагаемая конфигурация обеспечивает пористую структуру, которая значительно отличается от известной алмазной конфигурации. Благодаря предлагаемому относительному повороту между тетраподами одного слоя и ближайшего следующего слоя, настоящее изобретение предлагает новый тип элементарной ячейки, которая является почти такой же компактной, как алмазная элементарная ячейка, но имеет преимущество, заключающееся в том, что жесткость не является одинаковой во всех трех пространственных направлениях, а изменяется в зависимости от направления. Поскольку природная кость, в частности губчатая часть кости, проявляет различную жесткость в зависимости от направления нагрузки, пористая структура в соответствии с настоящим изобретением демонстрирует аналогичную характеристику и, таким образом, достигает повышенной степени биосовместимости. Это представляет собой достаточно значительное преимущество, поскольку костный материал проявляет тенденцию к дегенерации, если рядом с ним находится имплантат, который имеет иную жесткость. Посредством приспособления жесткости к характерной зависимости свойств природной кости от направления можно предотвратить нежелательную деградацию. Это представляет собой главное преимущество имплантатов, имеющих пористую структуру в соответствии с настоящим изобретением.

Предпочтительно, предлагаемое повернутое положение относится к истинному повороту на угол, приводящий в наклонное положение, причем повороты на 360° или кратные углы и 180° или кратные углы не считаются поворотами, поскольку они относятся к тривиальному случаю отсутствия поворота или только к инверсии.

Предпочтительно, в пределах каждого слоя три соседних тетрапода соединены друг с другом одним из своих лучей в узловой точке, и узловые точки определяют базовую плоскость вышеупомянутого слоя, при этом четвертый луч вышеупомянутых тетраподов ориентирован по существу перпендикулярно базовой плоскости. Благодаря этому достигнут четко определенный боковой сдвиг между тетраподами двух соседних слоев. Во время приложения любой нагрузки пористая структура в направлении четвертого луча будет иметь более высокую жесткость по сравнению с любым из других направлений. Кроме того, узловые точки вышеупомянутого слоя предпочтительно расположены непосредственно под четвертыми лучами тетраподов соседнего верхнего слоя. Вышеупомянутый эффект может быть дополнительно усилен посредством выбора сдвига между слоями таким образом, что четвертый луч тетрапода соседнего верхнего слоя направлен непосредственно в узловую точку трех соседних тетраподов соседнего нижнего слоя. Согласно использованному термину «направлен» вышеупомянутый четвертый луч ориентирован в направлении узловой точки соседнего нижнего слоя, но все же остается на некотором расстоянии от нее, т.е. вышеупомянутый четвертый луч фактически не вступает в контакт с узловой точкой соседнего нижнего слоя.

Согласно предпочтительной конфигурации лучи тетраподов ориентированы по существу перпендикулярно или наклонно, но не параллельно базовой плоскости. Поскольку исключена ориентация лучей тетраподов параллельно базовой плоскости, в значительной степени упрощено получение пористой структуры способами аддитивного производства, такими как электронно-лучевое плавление (ЭЛП) или селективное лазерное плавление (СЛП). Еще более рациональное изготовление может быть достигнуто за счет формирования тетраподов на месте посредством нанесения и затвердевания материала, предпочтительно в последовательных слоях. Это может быть достигнуто при помощи вышеупомянутых способов ЭЛП и СЛП.

В контексте настоящего документа стандартная ориентация тетрапода включает в себя один из лучей, направленный вверх («верхний луч»), и остальные три луча, образующие основание («базовые лучи»), причем дальние концы трех базовых лучей определяют базовую плоскость. Предпочтительно, угол между каждым из базовых лучей и базовой плоскостью составляет более чем 20°, предпочтительно он находится в интервале от 25° до 35°. Благодаря этому может быть достигнуто более крутое расположение базовых лучей, что позволяет упрощать изготовление, в частности, описанными выше способами. Предпочтительно, три базовых луча ориентированы под равными углами друг к другу, и в результате этого они образуют равнобедренный треугольник.

Кроме того, предпочтительно длина четвертого луча тетрапода меньше длины базовых лучей. Это обеспечивает более крутое расположение базовых лучей с одновременным сохранением общей формы тетраэдра, ограниченного лучами тетрапода. Особенно предпочтительным является выбор - в зависимости от угла наклона базовых лучей к базовой плоскости - такой длины верхнего луча, что свободные концы лучей образуют правильный тетраэдр. В результате этого преимущество образования правильного (т.е. идеального) тетраэдра сочетается с более устойчивой конфигурацией и надежным изготовлением тетраподов, обеспечивая тем самым значительное повышение практичности. Кроме того, как уже разъяснено выше, поскольку используются различные углы, размер некоторых углов становится меньше, что является благоприятным для ускорения врастания костной ткани.

Предпочтительно, слои поочередно сдвинуты таким образом, что тетраподы одного слоя повернуты по отношению к тетраподам соседнего слоя, предпочтительно с чередующимся расположением слоев, имеющих повернутые и неповернутые тетраподы. Такое чередующееся расположение сочетает эффективное изготовление с улучшенными характеристиками имплантата согласно настоящему изобретению. Следует отметить, что благодаря такому чередующемуся расположению требуются слои только двух различных типов, а именно первые слои с тетраподами в их исходном (неповернутом) положении и вторые слои с повернутыми тетраподами, причем первые и вторые слои чередуются друг с другом. Это обеспечивает регулярную структуру, имеющую рассмотренные выше преимущества и превосходящую известную алмазоподобную конфигурацию.

Предпочтительный материал для пористой структуры представляет собой обычный биосовместимый материал. Такой материал предпочтительно выбран из группы, включающей в себя титановые сплавы, чистый титан, кобальтохромовый сплав, тантал, нержавеющую сталь и цирконий. Более предпочтительно, вышеупомянутый материал представляет собой титан марки 2. Он сочетает превосходную биосовместимость с хорошими характеристиками прочности и жесткости. Еще один предпочтительный материал представляет собой титановый сплав (например, Ti6A14V). Этот материал является более доступным, а также имеет несколько более высокую жесткость. Использование такого биосовместимого материала для получения элементарных ячеек устраняет необходимость наличия защитного покрытия в целях достижения биосовместимости. Однако это не ограничивает возможность нанесения, по меньшей мере, на часть элементарных ячеек покрытия на основе материала, ускоряющего рост костей, в частности, фосфата кальция (СаР). В результате этого можно обеспечить повышенную скорость и полноту врастания материала соседней природной кости в устройство для наращивания кости. Кроме того, покрытие может быть выполнено в качестве покрытия, полученного при помощи физического осаждения из паровой фазы (ФОПФ). Его материал предпочтительно выбран из группы, включающей в себя ниобий, тантал, цирконий и их оксиды (оксид ниобия, оксид тантала и оксид циркония). Выбираемая толщина покрытия составляет предпочтительно от 1 мкм до 10 мкм и предпочтительнее менее чем 7 мкм. В результате этого даже с таким дополнительным покрытием будет сохранена высокая степень гибкости и по-прежнему будет достигнуто достаточно широкое взаимное соединение пор на уровне элементарных ячеек. Кроме того, сочетание материала и тонкости создает покрытие, которое будет иметь высокую устойчивость к надрезу.

Согласно дополнительному предпочтительному варианту осуществления, который может быть пригодным для рассмотрения в качестве отдельного объекта защиты, имплантируемое устройство для наращивания кости дополнительно включает в себя армирующую структуру, предпочтительно состоящую из сплошного материала. В результате этого может быть дополнительно повышена устойчивость в отношении механического напряжения при одновременном сохранении общих преимуществ пористой структуры согласно настоящему изобретению. Предпочтительно, армирующая структура сформирована как одно целое с пористой структурой. Предпочтительно, армирующая структура включает в себя структуру в виде сплошного тела, присутствующую в дополнение к пористой структуре, причем пористая структура прикреплена к структуре в виде сплошного тела. Более предпочтительно, структура в виде сплошного тела и пористая структура образованы в качестве единой структуры. В результате этого могут быть получены более сложные костные имплантаты, имеющие дополнительные функции, такие как чашки для вертлужной части имплантата. Особенно предпочтительно, высота и размер костного имплантата подобраны для применения в вертлужной или плечевой чашке или устройстве для наращивания кости, предпочтительно бедренном, большеберцовом, вертлужном или плечевом устройстве для наращивания кости.

Согласно дополнительному аспекту настоящего изобретения, который может быть пригодным для рассмотрения в качестве отдельного объекта защиты, предложен имплантат для эндопротезирования, включающий в себя тело, состоящее из сплошного материала, и контактирующую с костью часть, состоящую из пористой структуры, при этом пористая структура состоит из регулярно расположенных элементарных ячеек, внутренние пространства которых образуют сообщающиеся поры, и элементарные ячейки образованы основными элементами, расположенными послойно, при этом основные элементы выполнены в форме тетраподов, причем тетраподы в каждом слое расположены в параллельной ориентации и занимают в своем слое положения, повернутые по отношению к тетраподам соседнего слоя. Согласно предпочтительному варианту осуществления тело представляет собой чашку, предпочтительно для вертлужной части эндопротеза тазобедренного сустава. Благодаря наличию чашки, образуется надлежащая опора для вхождения в зацепление с головкой бедренной части с образованием шарнирного соединения. В результате сочетания с пористой структурой согласно настоящему изобретению устойчивое механическое сочленение объединено с фиксирующей микроструктурой с улучшенной биосовместимостью, в частности, в отношении воздействия напряжений и переноса нагрузки от чашки в вертлужную впадину. Это применимо с соответствующими изменениями к другому предпочтительному варианту осуществления, в котором тело представляет собой чашку для эндопротеза плечевого сустава.

Согласно еще одному варианту осуществления тело представляет собой элемент в виде перегородки, разделяющий пористую структуру на отдельные секции. В результате этого может быть достигнута ситуация, когда цемент, нанесенный на одну сторону тела, не будет достигать другой стороны перегородки. Согласно дополнительному предпочтительному варианту осуществления тело представляет собой армирующий элемент, что обеспечивает дополнительную механическую прочность.

Следующий предпочтительный вариант осуществления представляет собой конусообразную форму, имеющую внутренний канал, проходящий от нижней до верхней стороны, и выполненную с возможностью введения стержня эндопротеза, предпочтительно бедренной части эндопротеза тазобедренного сустава и/или бедренной и/или большеберцовой частей эндопротеза коленного сустава.

Еще один предпочтительный вариант осуществления сконфигурирован подобно кейджу для позвоночника. Кейджи для позвоночника представляют собой имплантируемые устройства, которые должны быть помещены в межпозвонковое пространство между двумя соседними позвонками вместо природного межпозвонкового диска, который был удален или является дефектным. В результате этого кейджи для позвоночника предотвращают коллапсом межпозвонкового пространства. Долгосрочная задача кейджа для позвоночника заключается в том, чтобы осуществлять сращивание двух соседних позвонков за счет костного материала, врастающего внутрь межпозвонкового пространства. Кейдж для позвоночника согласно настоящему варианту осуществления характеризуется пористой внутренней сердцевиной, имеющей пористую структуру согласно настоящему изобретению для ускорения врастания кости. Внутреннюю сердцевину окружает оболочка. Она изготовлена из сплошного материала и выполняет двойную задачу, которая заключается в выполнении несущей функции и обеспечении защиты структуры внутренней сердцевины. Кроме того, на верхней стороне и нижней стороне оболочки предусмотрено множество фиксирующих зубцов. Они имеют форму пирамиды для фиксации имплантата в заданном месте. Кроме того, они наклонены относительно направления имплантации, что упрощает имплантацию и предотвращает нежелательное отклонение от направления имплантации.

Предпочтительно, пористая структура имеет такие размеры, что средняя ширина пор составляет от 0,1 до 1,5 мм, предпочтительно от 0,4 до 1,0 мм, и лучи тетраподов ограничивают стенки пор, имеющие толщину от 0,2 до 1,0 мм, предпочтительно от 0,4 до 0,7 мм.

Кроме того, настоящее изобретение относится к способу изготовления костного имплантата, который содержит тело, характеризующееся пористой структурой, и имеет размер и форму, подобранные для подгонки к кости, предпочтительно в дефекте кости, причем вышеупомянутый способ предусматривает изготовление костного имплантата путем использования технологии послойного нанесения с образованием пористой структуры, что включает в себя образование чередующихся слоев основных элементов, которые выполнены в виде тетраподов; расположение тетраподов в каждом слое в по существу параллельной ориентации; поворот тетраподов в каждом следующем слое по отношению к тетраподам предшествующего слоя; образование регулярно расположенных элементарных ячеек, внутренние пространства которых образуют сообщающиеся поры, причем элементарные ячейки ограничены основными элементами, расположенными послойно. Этим способом могут быть изготовлены устройства, которые подробно описаны выше. За дополнительными подробностями можно обратиться к приведенным выше пояснениям.

Предпочтительно, способ дополнительно предусматривает стадии создания трехмерной модели костного имплантата; задания тела костного имплантата; задания контактирующей с костью поверхности костного имплантата, которая выполнена с возможностью дополнения соответствующей поверхности кости, при этом, по меньшей мере, контактирующая с костью поверхность изготовлена в качестве пористой структуры. В результате этого может быть реализовано изготовление индивидуального костного имплантата согласно конкретным потребностям пациента. Применение способа ЭЛП или СЛП обеспечивает точное и эффективное изготовление таких имплантатов.

Кроме того, способ предпочтительно предназначен для изготовления предлагаемого костного имплантата.

Далее настоящее изобретение будет описано более подробно со ссылками на прилагаемые фигуры. На фигурах представлено следующее:

на фиг. 1 представлено подробное изображение, иллюстрирующее элементарную ячейку пористой структуры костного имплантата согласно настоящему изобретению;

на фиг. 2 представлено схематическое изображение элементарной ячейки и образующих ее тетраподов;

на фиг. 3а-с представлены три изображения пористой структуры в трех пространственных направлениях;

на фиг. 4а, b представлен первый вариант осуществления имплантата для эндопротезирования, включающего в себя устройство для наращивания кости пластинчатой формы;

на фиг. 5а, b представлены изображения поперечного сечения устройства для наращивания кости пластинчатой формы и его варианта;

на фиг. 6 представлен второй вариант осуществления имплантата для эндопротезирования, включающего в себя устройство для наращивания кости в форме сегмента;

на фиг. 7а, b представлены подробные изображения устройства для наращивания кости в форме сегмента;

на фиг. 8 представлено изображение поперечного сечения устройства для наращивания кости в форме сегмента;

на фиг. 9 представлен третий. вариант осуществления имплантата для эндопротезирования в форме конического устройства для наращивания большеберцовой кости;

на фиг. 10 представлено поперечное сечение конического устройства для наращивания большеберцовой кости;

на фиг. 11а-с представлены варианты четвертого варианта осуществления имплантата для эндопротезирования в форме кейджа для позвоночника;

на фиг. 12 представлено подробное изображение, иллюстрирующее элементарную ячейку известной алмазоподобной пористой структуры;

на фиг. 13 представлено схематическое изображение известной алмазной элементарной ячейки; и

на фиг. 14а-с представлены три изображения алмазоподобной пористой структуры в трех пространственных направлениях.

Пористая структура, используемая в разнообразных вариантах осуществления устройств для эндопротезирования, представлена на фиг. 1-3.

Пористая структура 3 состоит из регулярно расположенных элементарных ячеек 4. Подробное изображение элементарной ячейки и ее окружения представлено на фиг. 1. Элементарная ячейка имеет внутреннее свободное пространство 40, которое сообщается с внутренним свободным пространством соседних элементарных ячеек 4. Регулярное расположение элементарных ячеек 4 представлено на фиг. 2. Поскольку на фиг. 3а-с представлены изометрические изображения во всех трех пространственных измерениях (т.е. в направлениях х, у и z правой системы координат), можно сделать вывод, что элементарные ячейки 4 регулярно расположены послойно, однако в деталях расположение отличается в различных направлениях, как показывает взаимное сравнение, представленное на фиг. 3а-с. Это обусловлено особенностями конфигурации элементарной ячейки 4, как будет далее разъяснено более подробно.

Каждую из элементарных ячеек 4 образуют основные элементы, причем каждый основной элемент выполнен в форме тетрапода 5. Тетрапод 5 представляет собой структуру, имеющую четыре луча 51, 52, 53, 54, соединенные в центральной точке 50, причем каждый из лучей 51, 52, 53, 54 направлен из центральной точки 50, и их свободные концы образуют тетраэдр.

Тетраэдр может быть неправильным или правильным. Необязательно образуется равнобедренный тетраэдр, в котором каждый из лучей 51, 52, 53, 54 образует одинаковый угол α с каждым из остальных трех лучей; в этом случае угол α определен следующим образом:

что составляет приблизительно 109,47°.

В контексте настоящего документа, в стандартной ориентации тетрапода один из лучей 51, 52, 53, 54 направлен вверх («верхний луч» 51), а остальные три луча образуют основание («базовые лучи» 52, 53, 54), причем дальние концы трех базовых лучей 52, 53, 54 определяют базовую плоскость 45.

Для образования элементарной ячейки 4 три соседних тетрапода 5 соединены друг с другом одним из своих базовых лучей 52, 53, 54 в узловой точке 55. Четвертый тетрапод 5' расположен сверху вышеупомянутых трех соседних тетраподов 5 таким образом, что свободные концы его базовых лучей 52', 53', 54' соединены со свободным концом верхнего луча 51 каждого из вышеупомянутых трех соседних тетраподов 5. Ограниченное при этом пространство представляет собой внутреннее пространство 40 элементарной ячейки 4.

Как можно лучше всего понять при рассмотрении фиг. 3, четвертый тетрапод 5' расположен в другом, более высоком слое, чем три тетрапода 5. Кроме того, можно легко понять, то четвертый тетрапод 5' расположен таким образом, что продолжение его верхнего луча 51' из его центра 50' проходит прямо через узловую точку 55, где соединены три тетрапода 5 соседнего, т.е. непосредственно нижележащего следующего слоя. Другими словами, узловая точка 55 расположена таким образом, что она находится непосредственно под верхним лучом четвертого тетрапода соседнего, т.е. непосредственно вышележащего следующего слоя.

Эта конфигурация элементарной ячейки 4 является характерной для пористой структуры 3 согласно настоящему изобретению. Отличие от известной алмазоподобной структуры, которая представлена на фиг. 12-14, является достаточно очевидным. В известной алмазоподобной структуре отсутствует такое расположение тетраподов. У нее отсутствует существенный признак, заключающийся в наличии узловой точки, расположенной непосредственно под тетраподом соседнего верхнего слоя (см. фиг. 13). Полученная в результате элементарная ячейка представлена на фиг. 12. Она является симметричной во всех трех измерениях, и в результате этого жесткость пористой структуры является одинаковой во всех трех пространственных направлениях, как представлено на фиг. 14а-с. Здесь элементы, имеющие одинаковые или аналогичные функции, обозначены такими же позициями, как и на фиг. 1-3.

Благодаря этому структурному отличию, общая жесткость пористой структуры согласно настоящему изобретению становится зависимой от направления и, таким образом, в большей степени приближена к характеристикам природной кости.

В качестве материала пористой структуры предпочтительно используют титановый сплав или чистый титан.

Пористую структуру получают способом электронно-лучевого плавления (ЭЛП). Этот способ представляет собой способ аддитивного производства, при помощи которого можно производить сплошной или пористый материал. Требуемый материал предоставляют в форме порошка с желательными гранулометрическими параметрами. Согласно способу ЭЛП порошки требуемого материала наносят последовательными слоями с требуемым расположением и в требуемой последовательности (как определено на предшествующей стадии моделирования пористой структуры) и подвергают плавлению таким образом, чтобы получить связное тело. Необязательно покрытие 30 наносят на пористую структуру способом физического осаждения из паровой фазы (ФОПФ), предпочтительно используя тантал; в качестве альтернативы, покрытие 30 может представлять собой покрытие на основе фосфата кальция (СаР).

Первый вариант осуществления костного имплантата, используемого для эндопротеза, представлен на фиг. 4а, b. Он включает в себя вертлужную чашку 6 для вертлужной части эндопротеза тазобедренного сустава. Как известно из уровня техники, вертлужная чашка 6 состоит из сплошного биосовместимого материала. Однако вследствие дефектов природной кости на месте, где должна быть имплантирована вертлужная чашка 6, может оказаться необходимым установка костного имплантата 7 для наращивания кости. Костный имплантат 7 представляет собой устройство для наращивания кости пластинчатой формы, которое имеет сплошную внутреннюю стенку 70, первую пористую структуру 71 на своей внутренней стороне и вторую пористую структуру 72 на своей наружной стороне, причем пористые структуры 71, 72 имеют описанную выше конфигурацию. Сплошная внутренняя стенка действует как перегородка, изолирующая пористые структуры 71, 72 друг от друга. В результате этого пористые структуры 71, 72 могут служить для различных целей. Пористая структура 71 может служить в качестве контактирующей поверхности для вертлужной чашки 6. Для крепления к вертлужной чашке 6 может быть использован цемент 69, причем цемент 61 проникает в сообщающиеся поры пористой структуры и в результате этого обеспечивает прочную фиксацию.

Пористая структура 72 служит для заполнения дефектов кости. Она может содержать каналы 73, на которые нанесена внутренняя оболочка 74, изготовленная из сплошного материала с использованием такого же способа и одновременно с изготовлением пористой структуры 72. Благодаря особой конфигурации основных элементов 4 пористой структуры 72 согласно настоящему изобретению, костный имплантат 7 имеет достаточно высокую жесткость, что обеспечивает улучшенную несущую способность, в частности, в направлении повышения жесткости. Пористая структура 72 дополнительно способствует врастанию кости, что обеспечивает надежную долгосрочную фиксацию. Для начальной фиксации могут быть использованы крепежные элементы, такие как винты для остеосинтеза (не показаны), которые помещают в каналы 73. Внутренняя оболочка 74 действует в качестве барьера, препятствующего прохождению в каналы 73 какого-либо входящего потока, поступающего из пористой части, который может взаимодействовать с винтами для остеосинтеза, и/или обеспечивающего несущую опору для головок вышеупомянутых винтов для остеосинтеза.

Согласно варианту, представленному на фиг. 5b, внутри пористой структуры 72 присутствует сплошная сердцевинная часть 75. Сердцевинная часть 75 действует в качестве дополнительного элемента жесткости, обеспечивая, в частности, повышенное сопротивление кручению.

Второй вариант осуществления костного имплантата, используемого для эндопротезирования, представлен на фиг. 6, 7а, 7b, 8. Он содержит вертлужную чашку 6 для вертлужной части эндопротеза тазобедренного сустава. Вертлужная чашка 6 изготовлена из сплошного биосовместимого материала, как и в первом варианте осуществления. Однако имеются отличия в костном имплантате 7'. Аналогичные компоненты, предназначенные для одинаковой или аналогичной задачи, обозначены соответствующими позициями. Согласно второму варианту осуществления костный имплантат 7' представляет собой сегментообразное устройство для наращивания кости, форма которого подобна сегменту сферы. Аналогично пластинчатому устройству для наращивания кости в первом варианте осуществления, вышеупомянутое устройство содержит внутреннюю стенку 70' и пористые структуры 71', 72' на обеих своих сторонах. Более одного костного имплантата 7' можно использовать и прикреплять к вертлужной чашке 6, но для простоты изложения материала проиллюстрирован только один имплантат. Костный имплантат 7' может содержать каналы 73', защищенные внутренними оболочками 74', как выше разъяснено более подробно в отношении первого варианта осуществления.

Третий вариант осуществления костного имплантата представлен на фиг. 9 и 10. Он сконфигурирован как коническое устройство 8 для наращивания большеберцовой кости, используемое для большеберцового компонента эндопротеза коленного сустава (не показан). Коническое устройство 8 для наращивания большеберцовой кости предназначено в качестве заместителя материала дефектной кости у ближнего конца большеберцовой кости, заполняя пустоты, вызванные дефектами кости. В результате этого образовано полное основание, к которому может быть прикреплен большеберцовый компонент эндопротеза коленного сустава. Для этой цели коническое устройство 8 для наращивания большеберцовой кости изготовлено с использованием пористой структуры согласно настоящему изобретению. Первая часть 81 пористой структуры нанесена на внутреннюю поверхность конического устройства для наращивания большеберцовой кости, чтобы обеспечить контакт посредством костного цемента (не проиллюстрирован), причем стержень большеберцового компонента проходит через внутреннее пространство конического устройства 8 для наращивания большеберцовой кости. Благодаря высокой пористости, может быть достигнуто хорошее проникновение, что обеспечивает устойчивую фиксацию. Вторая часть 82 пористой структуры нанесена на наружную поверхность конического устройства 8 для наращивания большеберцовой кости. Она выполнена с возможностью ускорения врастания костного материала для долгосрочной фиксации. Для того чтобы предотвратить любую нежелательную миграцию цемента, нанесенного на внутреннюю поверхность, предусмотрена промежуточная стенка 80. Она действует в качестве перегородки, блокирующей приток цемента в пористую структуру 82 на наружной стороне. Для того чтобы предотвратить любой нежелательный поток в области верхнего конца конического устройства 8 для наращивания большеберцовой кости, предусмотрена верхняя крышка 83, закрывающая верхнюю поверхность первой и второй пористых структур 81, 82.

Четвертый вариант осуществления костного имплантата представлен на фиг. 11. Он сконфигурирован как кейдж 9 для позвоночника, помещаемый в межпозвонковое пространство для ускорения сращивания двух соседних позвонков (не показаны). Вышеупомянутый кейдж действует в качестве заместителя межпозвонкового диска и предотвращает коллапс межпозвонкового пространства в случае удаления вышеупомянутого диска. Обычно два кейджа 9 помещают рядом друг с другом в одно межпозвонковое пространство. Внутренняя сердцевина 91 образована пористой структурой (на фиг. 11а обозначено перекрестной штриховкой), что ускоряет врастание кости для улучшенного сращивания двух соседних позвонков. Сердцевину 91 окружает оболочка 90, состоящая из сплошного материала и действующая в качестве армирующего элемента, который придает механическую прочность кейджу 9 для позвоночника. На верхней и нижней поверхностях оболочки 90 присутствует множество зубцов 92. Зубцы 92 по своей форме подобны наклонным пирамидам и предназначены для фиксации кейджа в заданном месте, что предотвращает любое нежелательное смещение. Вариант кейджа 9' представлен на фиг. 11b. Этот вариант сконфигурирован аналогично варианту, представленному на фиг. 11а, однако он отличается симметрично расположенными углублениями 93 на его боковых сторонах, действующими в качестве соединительных средств для зацепления с инструментом для введения (не показан). Другой вариант кейджа 9'' представлен на фиг. 11с. Этот вариант аналогичен варианту, представленному на фиг. 11b, однако он отличается дополнительным соединительным отверстием 94 на передней секции оболочки 90. Соединительное отверстие 94 снабжено внутренней резьбой для обеспечения прикрепления к инструменту для удерживания (не показан) с противорезьбой.

Для изготовления костного имплантата 7, 8 может быть предпочтительным создание трехмерной модели костного имплантата, задание тела костного имплантата, а также задание контактирующей с костью поверхности костного имплантата 7, 8, которая выполнена с возможностью дополнения соответствующей поверхности кости, при этом, по меньшей мере, контактирующая с костью поверхность изготовлена в качестве пористой структуры. В результате этого костный имплантат 7, 8 может быть смоделирован таким образом, чтобы соответствовать предполагаемому положению имплантата. Это обеспечивает очень точное изготовление.

Способ изготовления костного имплантата, который содержит тело, характеризующееся пористой структурой, и имеет размер и форму, подобранные для подгонки к кости, предпочтительно в дефекте кости, может быть охарактеризован как способ, который предусматривает изготовление костного имплантата 7, 8 с применением технологии послойного нанесения для образования пористой структуры, что включает в себя образование чередующихся слоев основных элементов, выполненных в форме тетраподов 5; расположение тетраподов 5 в каждом слое в по существу параллельной ориентации; поворот тетраподов 5 в каждом следующем слое по отношению к тетраподам 5 предшествующего слоя; образование регулярно расположенных элементарных ячеек 4, внутренние пространства которых образуют сообщающиеся поры, причем элементарные ячейки 4 ограничены основными элементами, расположенными послойно.

1. Костный имплантат, содержащий тело, характеризующееся пористой структурой (3), и имеющий размер и форму, подобранные для подгонки к кости, предпочтительно в дефекте кости,

отличающийся тем, что пористая структура (3) состоит из регулярно расположенных элементарных ячеек (4), внутренние пространства которых образуют сообщающиеся поры, и

элементарные ячейки (4) образованы основными элементами, расположенными послойно, при этом основные элементы выполнены в форме тетраподов (5, 5'), причем тетраподы (5) в каждом слое расположены в параллельной ориентации и занимают в своем слое положения, повернутые по отношению к тетраподам (5') соседнего слоя.

2. Костный имплантат по п. 1, в котором в пределах слоя три соседних тетрапода (5) соединены друг с другом одним из своих лучей (52, 53, 54) в узловой точке (55), и узловые точки (55) определяют базовую плоскость (45) вышеупомянутого слоя, а четвертый луч (54) вышеупомянутых тетраподов (5) ориентирован по существу перпендикулярно базовой плоскости (45).

3. Костный имплантат по п. 2, в котором узловые точки (55) вышеупомянутого слоя расположены непосредственно под четвертым лучом (54') тетраподов (5') соседнего верхнего слоя таким образом, что вышеупомянутый четвертый луч (54') находится на некотором расстоянии от вышеупомянутой узловой точки (55), расположенной непосредственно под ним.

4. Костный имплантат по п. 2 или 3, в котором лучи (51, 52, 53, 54) тетраподов (5, 5') ориентированы по существу перпендикулярно или наклонно, но не параллельно базовой плоскости (45).

5. Костный имплантат по любому из пп. 2-4, в котором угол между лучами (52, 53, 54), соединяющимися в узловой точке, и базовой плоскостью (45) составляет более чем 20°, предпочтительно от 25° до 35°.

6. Костный имплантат по любому из пп. 2-5, в котором четвертый луч (51) имеет меньшую длину, чем другие лучи (52, 53, 54).

7. Костный имплантат по любому из предыдущих пунктов, в котором слои поочередно сдвинуты таким образом, что тетраподы (5) одного слоя повернуты по отношению к тетраподам (5') соседнего слоя, предпочтительно с чередующимся расположением слоев, имеющих повернутые и неповернутые тетраподы (5, 5').

8. Костный имплантат по любому из предыдущих пунктов, в котором тетраподы (5, 5') изготовлены на месте посредством нанесения и затвердевания материала, предпочтительно в последовательных слоях.

9. Костный имплантат по любому из предыдущих пунктов, в котором тетраподы (5, 5') получены способом электронно-лучевого плавления (ЭЛП) или селективного лазерного плавления (СЛП).

10. Костный имплантат по любому из предыдущих пунктов, в котором пористая структура предпочтительно состоит из биосовместимого материала, выбранного из группы, включающей в себя титановые сплавы, чистый титан, кобальтохромовый сплав, тантал, нержавеющую сталь и цирконий.

11. Костный имплантат по п. 10, в котором материал представляет собой чистый титан, предпочтительно титан марки 2, или титановый сплав, предпочтительно Ti6A14V.

12. Костный имплантат по любому из предыдущих пунктов, в котором пористая структура имеет полученное способом физического осаждения из паровой фазы ФОПФ покрытие (30), предпочтительно выбранное из группы, включающей в себя ниобий, тантал, цирконий и их оксиды.

13. Костный имплантат по любому из предыдущих пунктов, в котором пористая структура имеет покрытие (30) на основе фосфата кальция.

14. Костный имплантат по п. 12 или 13, в котором толщина покрытия (30) составляет от 1 мкм до 10 мкм, предпочтительно менее чем 7 мкм.

15. Костный имплантат по любому из предыдущих пунктов, в котором предусмотрена структура в виде сплошного тела, к которой присоединена пористая структура, предпочтительно с образованием единой структуры.

16. Костный имплантат по любому из предыдущих пунктов, у которого форма и размер подобраны таким образом, чтобы он подходил для применения в качестве вертлужной или плечевой чашки, устройства для наращивания кости, предпочтительно вертлужного, плечевого, бедренного или большеберцового устройства (8) для наращивания кости, или кейджа (9), предпочтительно межпозвонкового кейджа.

17. Имплантат для эндопротезирования, включающий в себя тело, состоящее из сплошного материала, и контактирующую с костью часть, состоящую из пористой структуры (3), отличающийся тем, что

пористая структура (3) состоит из регулярно расположенных элементарных ячеек (4), внутренние пространства которых образуют сообщающиеся поры, и

элементарные ячейки (4) образованы основными элементами, расположенными послойно, при этом основные элементы выполнены в форме тетраподов (5, 5'), причем тетраподы (5) в каждом слое расположены в параллельной ориентации и занимают в своем слое положения, повернутые по отношению к тетраподам (5') соседнего слоя.

18. Имплантат для эндопротезирования по п. 17, в котором тело представляет собой компонент шарнирного соединения, предпочтительно чашку (6) с необязательным покрытием.

19. Имплантат для эндопротезирования по п. 17, в котором тело представляет собой элемент (70, 80) в виде перегородки, разделяющий пористую структуру на две отдельные секции (71, 72, 81, 82), причем элемент (70, 80) в виде перегородки предпочтительно выполнен с возможностью блокирования растекания цемента.

20. Имплантат для эндопротезирования по любому из пп. 17-19, в котором тело представляет собой армирующий элемент (75).

21. Имплантат для эндопротезирования по п. 17 или 20, в котором тело образует кейдж (9) для позвоночника и выполнено с возможностью окружения сердцевины (91), состоящей из пористой структуры.

22. Способ изготовления костного имплантата, который содержит тело, характеризующееся пористой структурой, и имеет размер и форму, подобранные для подгонки к кости, предпочтительно в дефекте кости, причем способ предусматривает изготовление костного имплантата с использованием технологии послойного нанесения для образования пористой структуры, что включает в себя

- образование чередующихся слоев основных элементов, выполненных в форме тетраподов;

- расположение тетраподов в каждом слое в по существу параллельной ориентации;

- поворот тетраподов в каждом следующем слое по отношению к тетраподам предшествующего слоя;

- образование регулярно расположенных элементарных ячеек, внутренние пространства которых образуют сообщающиеся поры, причем элементарные ячейки ограничены основными элементами, расположенными послойно.

23. Способ по п. 22, дополнительно предусматривающий следующие стадии:

- создание трехмерной модели костного имплантата;

- задание тела костного имплантата;

- задание контактирующей с костью поверхности костного имплантата, которая выполнена с возможностью дополнения соответствующей поверхности кости, при этом, по меньшей мере, контактирующая с костью поверхность изготовлена в качестве пористой структуры.

24. Способ по п. 22 или 23, дополнительно предусматривающий нанесение покрытия на пористую структуру в процессе физического осаждения из паровой фазы (ФОПФ), предпочтительно с использованием тантала для покрытия.

25. Способ по п. 22 или 23, дополнительно предусматривающий нанесение на пористую структуру покрытия, которое представляет собой покрытие на основе СаР (фосфата кальция).



 

Похожие патенты:

Изобретение относится к изготовлению керамических форм сложной геометрии из порошковых систем. Осуществляют послойное программно-компьютерное моделирование изделия, подготовку керамического порошка, послойное нанесение керамического порошка на подложку и послойно-селективную обработку каждого слоя.

Группа изобретений относится к электроимпульсному нанесению упрочняющего покрытия из порошка на поверхность стальной детали. Способ включает спекание засыпки порошка в неэлектропроводной матрице на поверхности детали под давлением пуансона путем пропускания импульсов тока.

Изобретение относится к области строительства. Энергоэффективная огнестойкая многослойная изолирующая панель состоит из конструктивоформирующего слоя из пеноалюминия закрытоячеистой или открытоячеистой структуры и последующих, нанесенных как минимум с одной стороны объемоформирующего, теплоизолирующего и связующего слоя из жесткого пенополимера закрытоячеистой структуры, огнестойкого пеноминерального жесткого закрытоячеистого слоя в виде стыкуемых в замок пластин, и отделочного слоя из общеприменимых негорючих и слабогорючих строительных материалов.

Группа изобретений относится к способу и машине для изготовления сырых изделий, сделанных по меньшей мере из одного материала, выбранного из керамических материалов и металлических материалов с использованием технологии аддитивных процессов.

Изобретение относится к спеченному уплотнительному материалу для газотурбинных двигателей. Материал содержит порошок нитрида бора, порошок нихрома и порошок карбонильного никеля, при этом содержание порошка карбонильного никеля составляет 10-15 мас.% от содержания порошка нихрома.

Изобретение относится к порошковой металлургии, в частности к изготовлению высоконагруженных составных дисков с функционально градиентными свойствами для газотурбинных установок (ГТУ) и газотурбинных двигателей (ГТД), работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся по сечению.

Группа изобретений относится к получению тела из металлической пены, которое содержит подложку, изготовленную по меньшей мере из одного металла или металлического сплава A и слой металла или металлического сплава B, присутствующего на по меньшей мере одном участке поверхности подложки, причем A и B отличаются размером зерна металла или металлического сплава.

Изобретение относится к спеченным фрикционным материалам на основе железа, предназначенным для изготовления фрикционных элементов, используемых в узлах трения при ограниченной смазке.

Изобретение относится к получению многослойной энерговыделяющей наноструктурированной фольги для соединения материалов. Способ включает приготовление исходной смеси металлических порошков планетарным перемешиванием, формование смеси порошков горячей прецизионной прокаткой через валки.

Группа изобретений относится к изготовлению объемных изделий из порошка в виде заполненной оболочки с донной частью. Формируют на опоре донную часть, затем формируют внешнюю оболочку по высоте из групп слоев, причем каждую из групп слоев формируют путем послойной насыпки порошка, его планаризации и послойного лазерного спекания заданной области в плоскости каждого слоя с получением оболочки заданной высоты, после формирования каждой группы слоев внутреннюю полость полученной внешней оболочки заполняют порошком на высоту этой группы слоев и проводят лазерное спекание порошка внутренней полости упомянутой оболочки на всю его глубину.

Группа изобретений относится к медицинской технике и может быть использована в травматологии и ортопедии для замещения деформированной или разрушенной вертлужной впадины при первичном и ревизионном эндопротезировании тазобедренного сустава.

Изобретение относится к медицине. Способ установки индивидуальных конструкций в область вертлужной впадины при обширных костных дефектах включает выполнение компьютерной томографии таза, построение трехмерной модели области дефекта, пространственную ориентацию вертлужного компонента эндопротеза тазобедренного сустава, виртуальное проектирование индивидуального имплантата с его оптимальным расположением относительно костного дефекта с последующей имплантацией индивидуального компонента и его фиксацией винтами.

Изобретение относится к медицине. Репозиционно-фиксационное опорное кольцо для оперативного лечения смещенных полифрагментарных переломов вертлужной впадины имеет вогнутую форму и отверстия для введения винтов, имеет форму полусферы, наружную и внутреннюю поверхности, два ряда отверстий в полусфере и три фланца с отверстиями для введения фиксирующих винтов.

Изобретение относится к медицине. Репозиционно-фиксационное опорное кольцо для оперативного лечения смещенных переломов вертлужной впадины, имеющее вогнутую форму и отверстия для введения винтов, имеет форму полусферы, наружную и внутреннюю поверхности, отверстие для ревизии и манипуляций на дне вертлужной впадины, два ряда отверстий в полусфере и три фланца с отверстиями для введения фиксирующих винтов.

Изобретение относится к медицине. Репозиционно-фиксационное опорное кольцо для оперативного лечения смещенных переломов вертлужной впадины имеет вогнутую форму и отверстия для введения винтов.

Изобретение относится к медицине. Универсальное репозиционно-фиксационное кольцо с динамической компрессией для оперативного лечения смещенных переломов вертлужной впадины имеет вогнутую форму и отверстия для введения винтов.
Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для замещения дефекта дна вертлужной впадины при эндопротезировании тазобедренного сустава у пациентов, находящихся на хроническом гемодиализе.

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для одноэтапной локальной инфильтрационной анестезии при эндопротезировании тазобедренного сустава.

Изобретение относится к медицине. Биартикулярный жидкостно-циркуляционный анатомически адаптируемый эндопротез тазобедренного сустава содержит ножку клиновидной формы, сферическую головку, вертлужную чашку, вкладыш, имеющий с головкой подвижное сферическое соединение, трубчатую коническую гофрированную упругую оболочку, армированную по концам соответственно меньшим и большим кольцами.

Биартикулярный эндопротез тазобедренного сустава со сферической гидростатической опорой относится к медицинской технике и может быть использован в ортопедии и травматологии при лечении травм, заболеваний и повреждений тазобедренного сустава.

Группа изобретений относится к медицине. Способ закрепления ткани или соответствующего протеза в отверстии, выполненном в кости человека или животного, предусматривает этапы: обеспечение наличия крепежного средства (3) и по меньшей мере одного анкерного фиксатора (6), содержащего плавкий материал; выполнение отверстия (2) в кости человека или животного, причем отверстие (2) содержит по меньшей мере один вход на поверхности кости и внутреннюю стенку и имеет размеры, соответствующие устанавливаемому в отверстии крепежному средству (3); запрессовка ткани или протеза в отверстии (2) путем размещения указанной ткани или протеза в отверстии (2) и прижатия к первому участку внутренней стенки путем введения крепежного средства (3) с усилием в отверстие или путем расширения крепежного средства в отверстии; одновременная передача энергии в плавкий материал анкерного фиксатора (6) и продвижение анкерного фиксатора (6) относительно крепежного средства (3) для расплавления по меньшей мере части плавкого материала вблизи второго участка, отличного от первого участка внутренней стенки, и обеспечение его контакта с упомянутым вторым участком стенки; выдержка расплавленного материала для затвердевания в контакте со вторым участком стенки.
Наверх