Способ определения видов радиолокационных сигналов в автокорреляционном приемнике



Способ определения видов радиолокационных сигналов в автокорреляционном приемнике
Способ определения видов радиолокационных сигналов в автокорреляционном приемнике
Способ определения видов радиолокационных сигналов в автокорреляционном приемнике

Владельцы патента RU 2716017:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к области радиотехники, в частности, к способам и технике радиотехнического мониторинга источников радиоизлучений. Технический результат выражается в расширении видов радиолокационных сигналов, контролируемых в ходе радиотехнического мониторинга. Указанный технический результат достигается тем, что принятый сигнал фильтруют, в первом канале: задерживают на заданное время, перемножают сигнал с его задержанной копией, оценивают разностную частоту сигнала первого канала, выделяют составляющую сигнала на разностной частоте первого канала и низкочастотную составляющую сигнала, получают их амплитудно-частотные спектры (АЧС); во втором канале: частоту принятого сигнала после фильтрации удваивают, сигнал на удвоенной частоте задерживают на заданное время, перемножают его с задержанной копией, оценивают разностную частоту сигнала второго канала, выделяют составляющую сигнала на разностной частоте второго канала и низкочастотную составляющую сигнала, получают их АЧС. Полученные спектры сигналов сравнивают с заданными пороговыми значениями и по результатам сравнения принимают решение о виде принятого радиолокационного сигнала. Если принято решение о приеме ФКМ сигнала, то составляющую сигнала на разностной частоте первого канала задерживают на время фазовой автоматической подстройки частоты (ФАПЧ), подают ее для ФАПЧ, формируют простой сигнал и производят его вычитание из составляющей сигнала после задержки на время перестройки, определяют низкочастотную огибающую составляющей полученной разности сигнала и нормируют ее, определяют низкочастотную огибающую составляющей сигнала на разностной частоте первого сигнала, по которой формируют опорные ФКМ сигналы по всем возможным кодам Баркера, которые соответствуют полученным нормированным сигналам, производят вычитание опорных ФКМ сигналов из соответствующих нормированных сигналов. Если принято решение о приеме ЛЧМ и ФКМ сигналов, то определяют низкочастотную огибающую составляющей сигнала на разностной частоте первого сигнала и нормируют ее, по которой формируют опорные ФКМ сигналы по всем возможным кодам Баркера, которые соответствуют полученным нормированным сигналам, производят вычитание опорных ФКМ сигналов из соответствующих нормированных сигналов. По отсутствию сигнала после вычитания опорного ФКМ сигнала определяют сигнал с фазо-кодовой манипуляцией по коду Баркера. По наличию сигнала после вычитания опорного ФКМ сигнала определяют сигнал с фазо-кодовой манипуляцией по коду Фрэнка. 1 ил., 1 табл.

 

Изобретение относится к области радиотехники, в частности, к способам и технике радиотехнического мониторинга источников радиоизлучений.

Известен способ распознавания или различения сигналов основанный на преобразовании малоинформативных входных признаков в более информативные с помощью специальных операторов, например, оператора удвоения частоты входного сигнала [Смирнов Ю.А. Радиотехническая разведка - М.: Воениздат, 2001. - с. 123-125].

Наиболее близким по технической сущности (прототипом) является способ определения видов радиолокационных сигналов в автокорреляционном приемнике (АКП) [Патент RU 2683791 С1, МПК G01S 7/40, опубл. 02.04.2019. бюл. №10], заключающийся в проверке наличия или отсутствия амплитудно-частотных спектров (АЧС) низкочастотной составляющей, составляющей на разностной частоте результирующего сигнала после перемножения и аналогичных составляющих сигнала на удвоенной частоте после перемножения с его задержанной копией по заданному порогу.

Недостатком способа-прототипа является определение только наличия ЛЧМ, двоичных ФКМ и простых сигналов с возможными ошибками при одновременном присутствии сигналов с другим видом модуляции.

Технический результат, на достижение которого направлено заявляемое изобретение, выражается в расширении видов радиолокационных сигналов, контролируемых в ходе радиотехнического мониторинга.

Указанный технический результат достигается тем, что принятый сигнал фильтруют, в первом канале: задерживают на заданное время, перемножают сигнал с его задержанной копией, оценивают разностную частоту сигнала ƒраз 1, выделяют составляющую сигнала на разностной частоте ƒраз 1 и низкочастотную составляющую сигнала, получают их АЧС; во втором канале: частоту принятого сигнала после фильтрации удваивают, сигнал на удвоенной частоте задерживают на заданное время, перемножают его с задержанной копией, оценивают разностную частоту сигнала ƒраз 2 выделяют составляющую сигнала на разностной частоте ƒраз 2 низкочастотную составляющую сигнала, получают их АЧС, полученные спектры сигналов сравнивают с заданными пороговыми значениями и по результатам сравнения принимают решение о виде принятого радиолокационного сигнала, согласно изобретению, дополнительно: если принято решение о приеме ФКМ сигнала, то составляющую сигнала на разностной частоте ƒраз 1 задерживают на время фазовой автоматической подстройки частоты (ФАПЧ), подают ее для ФАПЧ, формируют простой сигнал и производят его вычитание из составляющей сигнала после задержки на время перестройки, определяют низкочастотную огибающую составляющей полученной разности сигнала и нормируют ее, определяют низкочастотную огибающую составляющей сигнала на разностной частоте ƒраз 1, по которой формируют опорные ФКМ сигналы по всем возможным кодам Баркера, которые соответствуют полученным нормированным сигналам, производят вычитание опорных ФКМ сигналов из соответствующих нормированных сигналов; если приняты решения о приеме ЛЧМ и ФКМ сигналов, то определяют низкочастотную огибающую составляющей сигнала на разностной частоте ƒраз 1 и нормируют ее, по которой формируют опорные ФКМ сигналы по всем возможным кодам Баркера, которые соответствуют полученным нормированным сигналам, производят вычитание опорных ФКМ сигналов из соответствующих нормированных сигналов; по отсутствию сигнала после вычитания опорного ФКМ сигнала определяют сигнал с ФКМ по коду Баркера; по наличию сигнала после вычитания опорного ФКМ сигнала определяют сигнал с ФКМ по коду Фрэнка.

Сущность изобретения заключается в том, что если принято решение о приеме ФКМ сигнала, то составляющую сигнала на разностной частоте ƒраз 1 задерживают на время ФАПЧ, подают ее для ФАПЧ, формируют простой сигнал и производят его вычитание из составляющей сигнала после задержки на время перестройки, определяют низкочастотную огибающую составляющей полученной разности сигнала и нормируют ее, определяют низкочастотную огибающую составляющей сигнала на разностной частоте ƒраз 1, по которой формируют опорные ФКМ сигналы по всем возможным кодам Баркера, которые соответствуют полученным нормированным сигналам, производят вычитание опорных ФКМ сигналов из соответствующих нормированных сигналов; если приняты решения о приеме ЛЧМ и ФКМ сигналов, то определяют низкочастотную огибающую составляющей сигнала на разностной частоте ƒраз 1 и нормируют ее, по которой формируют опорные ФКМ сигналы по всем возможным кодам Баркера, которые соответствуют полученным нормированным сигналам, производят вычитание опорных ФКМ сигналов из соответствующих нормированных сигналов; по отсутствию сигнала после вычитания опорного ФКМ сигнала определяют сигнал с ФКМ по коду Баркера; по наличию сигнала после вычитания опорного ФКМ сигнала определяют сигнал с ФКМ по коду Фрэнка.

Известно, что для определения вида принятого радиолокационного сигнала проверяют наличие или отсутствие АЧС низкочастотной составляющей, составляющей на разностной частоте результирующего сигнала после перемножения и аналогичных составляющих сигнала на удвоенной частоте после перемножения с его задержанной копией по заданному порогу [Патент RU 2683791 С1, МПК G01S 7/40, опубл. 02.04.2019. бюл. №10]. Для простого сигнала характерно наличие низкочастотных составляющих на разностной частоте, которые из-за неизменной несущей частоты близки к нулевой частоте (аналогично для исходного простого сигнала на удвоенной частоте). Для исходного ЛЧМ сигнала за счет изменения мгновенной частоты сигнала за время задержки характерно наличие составляющей на разностной частоте, а низкочастотные составляющие близки к нулю (аналогично для исходного ЛЧМ сигнала на удвоенной частоте). Для исходных ФКМ сигналов по кодам Баркера и Фрэнка после удвоения частоты составляющие на разностной частоте близки к нулю. Дополнительно: если принято решение о приеме ФКМ сигнала, то составляющую сигнала на разностной частоте ƒраз 1 задерживают на время ФАПЧ, подают ее для ФАПЧ, формируют простой сигнал и производят его вычитание из составляющей сигнала после задержки на время перестройки, определяют низкочастотную огибающую составляющей полученной разности сигнала и нормируют ее, определяют низкочастотную огибающую составляющей сигнала на разностной частоте ƒраз 1, по которой формируют опорные ФКМ сигналы по всем возможным кодам Баркера, которые соответствуют полученным нормированным сигналам, производят вычитание опорных ФКМ сигналов из соответствующих нормированных сигналов; если приняты решения о приеме ЛЧМ и ФКМ сигналов, то определяют низкочастотную огибающую составляющей сигнала на разностной частоте ƒраз 1 и нормируют ее, по которой формируют опорные ФКМ сигналы по всем возможным кодам Баркера, которые соответствуют полученным нормированным сигналам, производят вычитание опорных ФКМ сигналов из соответствующих нормированных сигналов; по отсутствию сигнала после вычитания опорного ФКМ сигнала определяют сигнал с ФКМ по коду Баркера; по наличию сигнала после вычитания опорного ФКМ сигнала определяют сигнал с ФКМ по коду Фрэнка. Этим достигается указанный в изобретении технический результат.

Способ определения видов радиолокационных сигналов в АКП может быть реализован, например, с помощью устройства, схема которого приведена на фигуре, где обозначено: 1.1, 1.2 и 1.3 - полосовые фильтры; 2 - умножитель частоты; 3.1, 3.2 и 3.3 - линии задержки; 4.1 и 4.2 - перемножители; 5.1 и 5.2 - фильтры низких частот; 6.1, 6.2, 6.3 и 6.4 - блоки получения спектра, предназначены для получения спектра ЛЧМ, ФКМ по кодам Баркера и Фрэнка и простых радиоимпульсов; 7.1, 7.2, 7.3 и 7.4 - пороговые устройства; 8.1, 8.2 и 8.3 - блоки принятия решения; 9.1 и 9.2 - ключи; 10.1,10.2 и 10.3 - детекторы огибающей; 11.1, 11.2 и 11.3 - блоки вычитания; 12.1 и 12.2 - формирователи опорного сигнала, предназначены для формирования ФКМ сигнала по всем возможным кодам Баркера; 13 - синтезатор с ФАПЧ, предназначен для перестройки на разностную частоту простого сигнала. Назначение остальных элементов устройства ясны из их названий.

Устройство работает следующим образом: принятый сигнал поступает на вход полосового фильтра 1.1 с полосой пропускания ΔƒВЧ, которая может быть, задана, например, предельной шириной спектра сигналов радиоэлектронных систем в заданном частотном диапазоне РТМ [Радиоэлектронные системы; Основы построения и теория. Справочник. / Под ред. Я. Д. Ширмана. - М.: Радиотехника, 2007. - с. 297]. Выделенный сигнал задерживается в линии задержки на время, определяемое как и перемножается с его задержанной копией. Полосовым фильтром 1.2, выделяется составляющая сигнала на разностной частоте ƒраз 1 [Патент RU 2683791 С1, МПК G01S 7/40, опубл. 02.04.2019. бюл. №10]. Для простого сигнала полученная составляющая сигнала близка к нулю. Низкочастотным фильтром 5.1 выделяется низкочастотная составляющая на выходе перемножителя 4.1, которая близка к нулю для ЛЧМ сигнала. Сигнал на выходе полосового фильтра 1.1 подается на вход умножителя частоты 2, где удваивается частота сигнала, производится задержка сигнала в линии задержки на время, определяемое как и перемножение сигнала с его задержанной копией. Полосовым фильтром 1.3, выделяется составляющая сигнала на разностной частоте ƒраз 2 [Патент RU 2683791 С1, МПК GO 1S 7/40, опубл. 02.04.2019. бюл. №10]. Для простого сигнала и ФКМ сигнала полученная составляющая близка к нулю. Низкочастотным фильтром 5.2 выделяется низкочастотная составляющая на выходе перемножителя 4.2, которая близка к нулю для ЛЧМ сигнала. Для сигналов на выходе фильтров 1.2, 5.1, 1.3 и 5.2 получают АЧС, максимальные значения которых сравниваются в пороговых устройствах 7.1, 7.2, 7.3 и 7.4 соответственно. Пороговое значение GП может быть определено, например, по критерию Неймана-Пирсона при заданной вероятности ложной тревоги и вероятности правильного обнаружения [Смирнов Ю.А. Радиотехническая разведка - М.: Воениздат, 2001. - с. 237-240]. Принятые в пороговых устройствах 7.1, 7.2, 7.3 и 7.4 решения подаются на первый, второй, третий и четвертый входы блока принятия решения 8.1. Блок 8.1 принимает решение о виде принятого сигнала в соответствии с таблицей.

Если с первого выхода блока принятия решения 8.1 на ключ 9.1 подается решение, что принят ФКМ сигнал, то детектором огибающей 10.1, выделяется и нормируется низкочастотная огибающая составляющей сигнала на выходе фильтра 1.2, которая поступает на вход 7 входов блока вычитания 11.1. По сигналу на выходе детектора 10.1 в формирователе 12.1 формируются опорные ФКМ сигналы 7 видов кода Баркера, которые соответствуют нормированным сигналам на выходе детектора 10.1. В блоке 11.1 производится вычитание опорных ФКМ сигналов из соответствующих сигналов на выходе детектора 10.1. Выходные сигналы блока 11.1 поступают на 7 входов блока принятия решения 8.2, которые для случая приема ФКМ сигнала по коду Баркера близки к нулю, а для случая приема ФКМ сигнала по коду Фрэнка значительно отличаются от нуля.

Если с второго выхода блока принятия решения 8.1 на ключ 9.2 подается решение, что приняты ЛЧМ и ФКМ сигналы, то сигнал на выходе фильтра 1.2 поступает на синтезатор с ФАПЧ 13 [Генераторы высоких и сверхвысоких частот: Учеб. пособие/ О.В. Алексеев, А.А. Головков, А.В. Митрофанов и др. - М: Высш. шк., 2003. - с. 195], который перестраивается на разностную частоту простого сигнала. Дополнительно сигнал на выходе фильтра 1.2 задерживается в линии задержки 3.3 на время перестройки синтезатора 13 и поступает на вход блока вычитания 11.2. В блоке 11.2 производится вычитание простого сигнала на выходе синтезатора 13 из составляющей сигнала на выходе линии задержки 3.3. Детектором огибающей 10.3, выделяется и нормируется низкочастотная огибающая составляющей сигнала на выходе блока 11.2, которая поступает на 7 входов блока вычитания 11.3. Детектором огибающей 10.2, выделяется низкочастотная огибающая составляющей сигнала на выходе фильтра 1.2, по которой в формирователе 12.2 формируются опорные ФКМ сигналы 7 видов кода Баркера, которые соответствуют нормированным сигналам на выходе детектора 10.3. В блоке 11.3 производится вычитание опорных ФКМ сигналов из соответствующих сигналов на выходе детектора 10.3. Выходные сигналы блока 11.3 поступают на 7 входов блока принятия решения 8.3, которые для случая приема ФКМ сигнала по коду Баркера близки к нулю, а для случая приема ФКМ сигнала по коду Фрэнка значительно отличаются от нуля.

Таким образом, в предлагаемом способе определения видов радиолокационных сигналов в АКП новыми существенными признаками изобретения являются вновь введенные процедуры обработки поступающих на входе высокочастотного фильтра радиолокационных сигналов разного вида.

Предложенное техническое решение является новым, поскольку из общедоступных сведений неизвестны способы, позволяющие распознавать виды модуляции сигналов (простой, ЛЧМ, ФКМ сигнал по кодам Баркера и Фрэнка) в АКП.

Способ может быть успешно реализован на основе стандартных радиоэлектронных устройств и средств.

Способ определения видов радиолокационных сигналов в автокорреляционном приемнике, заключающийся в фильтрации принятого сигнала, в первом канале: в задержке принятого сигнала на заданное время, перемножении принятого сигнала с его задержанной копией, оценке разностной частоты сигнала, выделении составляющей сигнала на разностной частоте и низкочастотной составляющей сигнала, получении их амплитудно-частотных спектров (АЧС); во втором канале: в удвоении частоты принятого сигнала после фильтрации, задержке сигнала на удвоенной частоте на заданное время, перемножении сигнала на удвоенной частоте с его задержанной копией, оценке разностной частоты сигнала, выделении составляющей сигнала на разностной частоте и низкочастотной составляющей сигнала, получении их АЧС, сравнении полученных спектров сигналов с заданными пороговыми значениями и принятии решения о виде принятого радиолокационного сигнала, отличающийся тем, что дополнительно: если принято решение о приеме ФКМ сигнала, то составляющую сигнала на разностной частоте первого канала задерживают на время фазовой автоматической подстройки частоты (ФАПЧ), подают ее для ФАПЧ, формируют простой сигнал и производят его вычитание из составляющей сигнала после задержки на время перестройки, определяют низкочастотную огибающую составляющей полученной разности сигнала и нормируют ее, определяют низкочастотную огибающую составляющей сигнала на разностной частоте первого сигнала, по которой формируют опорные ФКМ сигналы по всем возможным кодам Баркера, которые соответствуют полученным нормированным сигналам, производят вычитание опорных ФКМ сигналов из соответствующих нормированных сигналов; если приняты решения о приеме ЛЧМ и ФКМ сигналов, то определяют низкочастотную огибающую составляющей сигнала на разностной частоте первого сигнала и нормируют ее, по которой формируют опорные ФКМ сигналы по всем возможным кодам Баркера, которые соответствуют полученным нормированным сигналам, производят вычитание опорных ФКМ сигналов из соответствующих нормированных сигналов; по отсутствию сигнала после вычитания опорного ФКМ сигнала определяют сигнал с фазо-кодовой манипуляцией по коду Баркера; по наличию сигнала после вычитания опорного ФКМ сигнала определяют сигнал с фазо-кодовой манипуляцией по коду Фрэнка.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение относится к контрольно-измерительной технике и может быть использовано для бесконтактного измерения начальной скорости снаряда, являющейся одной из важнейших баллистических характеристик оружия, оказывающей влияние на его боевые свойства.

Изобретение может быть использовано в бортовых навигационных системах. Достигаемый технический результат - повышение надежности и безопасности пилотирования летательного аппарата.

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства для определения координат воздушного судна (ВС), используя для подсветки ВС навигационные сигналы глобальной навигационной спутниковой системы (ГНСС) и сигналы псевдоспутников (ПС).

Изобретение относится к области радиолокации и предназначено для определения курса неманеврирующих объектов. Технический результатом изобретения заключается в повышении точности определения курса неманеврирующего объекта.

Изобретение относится к области радиолокационной техники и может быть использовано при построении бортовых импульсных некогерентных радиовысотомеров. Технический результат - расширение диапазона измеряемых дальностей, снижение энергопотребления, снижение уровня паразитных сигналов и наводок по цепям питания и управления.

Изобретение относится к радиотехнике и может быть использовано в системах радиомониторинга при решении задачи скрытого определения координат источника радиоизлучения (ИРИ), в условиях априорной неопределенности относительно поляризационных и пространственных параметров радиосигналов, шумов и помех, когда налагаются ограничения на габаритные размеры пеленгаторной антенной системы, в частности для определения координат ИРИ с борта летательного аппарата (ЛА).

Изобретение относится к пассивным системам видения оптического, инфракрасного и миллиметрового диапазонов длин волн, предназначенным для наблюдения за объектами, и может найти применение в пассивных системах ближнего зондирования наземных и воздушных объектов.

Изобретение относится к радиолокационным системам (РЛС) с импульсным фазоманипулированным зондирующим сигналом, используемым на подвижных носителях, преимущественно на беспилотных летательных аппаратах (БПЛА), и предназначенным для обнаружения и сопровождения моноимпульсным способом сигналов от объектов назначения (целей).

Изобретение относится к радиолокации и может быть использовано в радиолокационных системах опознавания объектов. Достигаемый технический результат - увеличение сектора работы в угломестной плоскости при неподвижной антенной системе за счет использования электронного сканирования диаграммы направленности (ДН).

Изобретение относится к области радиолокационной техники и может быть использовано при построении бортовых импульсных некогерентных радиовысотомеров. Технический результат - расширение диапазона измеряемых дальностей, снижение энергопотребления, снижение уровня паразитных сигналов и наводок по цепям питания и управления.

Изобретение относится к области радиолокации, а именно к гомодинным радиолокаторам. Технический результат - улучшение разрешающей способности радиолокатора.

Изобретение относится к области радиолокации, а именно к гомодинным радиолокаторам. Технический результат - создание радиолокационной станции мониторинга ледовой обстановки, для которой необходима увеличенная дальность действия (для обеспечения широкой полосы обзора) и возможность измерения второй координаты (высоты) лоцируемого объекта для выделения и определения координат айсбергов и оценки степени опасности.

Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера.

Изобретение относится к области радиолокации, а именно к гомодинным радиолокаторам. Достигаемый технический результат - возможность определения высоты лоцируемого объекта.

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

Изобретение относится к области радиолокационной техники и может быть использовано при построении радиолокационных систем, предназначенных для определения дальности от движущегося объекта до поверхности земли, использующих принцип отражения радиоволн.

Способ измерения дальности относится к области техники радиотехнический средств измерения расстояний и может быть использован, например, для измерения малых дальностей в локальных навигационных системах при управлении движением подводных объектов.

Изобретение относится к области радиотехники, в частности к способам нелинейной радиодальнометрии источников радиоизлучения, и может использоваться для обнаружения и измерения расстояния до излучающих объектов с нелинейными электрическими свойствами, в частности радиопередатчиков.

Изобретение относится к области техники радиотехнический средств позиционирования и может быть использовано, например, для управления движением подвижных объектов.

Изобретение относится к радиотехнике и может быть использовано в однопозиционных системах скрытного контроля наземного, морского и воздушного пространства, осуществляющих траекторное сопровождение подвижных объектов по прямым радиосигналам их бортовых радиопередатчиков и копиям этих радиосигналов, отраженным посторонними отражателями в виде естественных неоднородностей рельефа местности или стационарных и подвижных объектов искусственного происхождения. Достигаемый технический результат изобретения - повышение информативности (определение вектора скорости в дополнение к пространственным координатам) и оперативности пространственной локализации широкого класса радиоизлучающих объектов однопозиционной системой контроля в условиях априорной неопределенности формы, размеров, отражающих свойств и пространственных координат посторонних отражателей радиосигналов. Повышение информативности и оперативности достигается за счет расширения номенклатуры измеряемых параметров отраженных сигналов (временные задержки и доплеровские сдвиги частоты вместо временных задержек) и осуществления операций проверки гипотезы о значениях доплеровских сдвигов отраженных сигналов вместо операций проверки гипотезы о значениях пространственных координат отражателей, являющихся сложно осуществимыми в стационарных и практически не осуществимыми в мобильных комплексах скрытного контроля. 2 ил.
Наверх