Способ изготовления космического аппарата

Изобретение относится к космической технике, а более конкретно созданию космических аппаратов (КА). Способ изготовления КА, содержащего систему электропитания, имеющую в своем составе солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения, заключающийся в сборке электрических схем. После указанных операций проводят электрические испытаний КА на функционирование, испытания на воздействие механических нагрузок, термовакуумные испытания, а также заключительные испытания. Заключительные испытания проводят с питанием космического аппарата от аккумуляторных батарей. Величины напряжений источников стабилизированного напряжения регулируют до снижения возникших соответствующих подзарядных токов до минимального установленного значения, после чего уровни ограничения величины токов источников стабилизированного напряжения повышают до требующейся величины. Достигается сокращение времени изготовления КА. 1 ил.

 

Изобретение относится к космической технике и может быть использовано при создании связных (телекоммуникационных) космических аппаратов (КА).

Известен «Способ изготовления космического аппарата (патент Российской Федерации №2571480), включающий изготовление комплектующих, сборку космического аппарата, включающего систему электропитания, имеющую в своем составе солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения с общей шиной, связанной с корпусом космического аппарата, проведение электрических испытаний, включая сборку схем испытаний космического аппарата на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а также заключительных испытаний, отличающийся тем, что при проектировании схем испытаний все соединители из числа соединителей в силовых цепях аккумуляторных батарей от шин аккумуляторных батарей противоположной полярности относительно общей шины системы электропитания выбирают с розетками со стороны аккумуляторных батарей, а при сборке схем испытаний эти соединители стыкуют в последнюю очередь».

Недостатком известного способа изготовления космического аппарата является то, что он, защищая аккумуляторные батареи от возникновения аварийных ситуаций, связанных с нештатным разрядом аккумуляторных батарей (короткого замыкания), не отражает технологии работы с ними в процессе изготовления космического аппарата

Анализ источников информации по патентной и научно-технической информации показал, что наиболее близким по технической сути прототипом предлагаемого технического решения является патент Российской Федерации №2459749: «Способ изготовления космического аппарата, включающий изготовление комплектующих, сборку космического аппарата, включающего систему электропитания, имеющую солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения для согласования работы солнечной и аккумуляторных батарей и обеспечения питанием стабильным напряжением заданного номинала модулей служебных систем и полезной нагрузки, подготовку источников электроэнергии к работе, проведение электрических испытаний космического аппарата на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а также заключительных испытаний, включая контроль стыковки солнечных и аккумуляторных батарей, отличающийся тем, что испытания на воздействие механических нагрузок и контроль стыковки солнечных и аккумуляторных батарей проводят со штатными аккумуляторными и солнечными батареями, причем аккумуляторные батареи перед проведением испытаний на воздействие механических нагрузок заряжают режимом, эквивалентным режиму штатного предстартового заряда, а все остальные испытания проводят с применением технологических функциональных имитаторов солнечных и аккумуляторных батарей, причем имитаторы солнечных батарей подключают к промышленной сети непосредственно, а имитаторы аккумуляторных батарей к промышленной сети комбинировано: по зарядному интерфейсу - непосредственно, а по разрядному интерфейсу - через систему гарантированного электроснабжения, при этом штатные аккумуляторные батареи хранят электрически разобщенными со стабилизированным преобразователем напряжения, в подзаряженном состоянии».

Недостатком известного способа изготовления космического аппарата является то, что он не предусматривает испытаний космического аппарата с разряженными аккумуляторными батареями, либо испытаний космического аппарата с сохранением емкости заряженных аккумуляторных батарей в процессе проведения работ.

Для заявленного способа выявлены основные общие существенные признаки, такие как: сборка электрических схем, проведение электрических испытаний космического аппарата на функционирование, испытание на воздействие механических нагрузок, термовакуумные испытания, а так же заключительные испытания.

Технической проблемой предложенного авторами технического решения является совершенствование технологии работы с аккумуляторными батареями в процессе изготовления космического аппарата для сокращения затрат времени, при со хранении высокой надежности проводимых работ.

Поставленная техническая проблема решается тем, что при изготовлении космического аппарата, содержащего систему электропитания, имеющую в своем составе солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения, заключающийся в сборке электрических схем, проведении электрических испытаний космического аппарата на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а так же заключительных испытаний, заключительные испытания проводят с питанием космического аппарата только от аккумуляторных батарей, для чего параллельно аккумуляторным батареям подключают источники стабилизированного напряжения с напряжениями равными текущим напряжениям аккумуляторных батарей соответственно. Кроме того, величину напряжений источников стабилизированного напряжения выбирают несколько выше текущих значений напряжений соответствующих аккумуляторных батарей, при этом, ограничивают величины их токов на минимальном уровне, а после подключения источников стабилизированного напряжения к аккумуляторным батареям, величины напряжений источников стабилизированного напряжения регулируют до снижения возникших соответствующих подзарядных токов до минимального установленного значения, после чего уровни ограничения величины токов источников стабилизированного напряжения повышают до требующейся величины.

Действительно, в процессе изготовления космического аппарата на заключительных этапах, когда космический аппарат находится в максимально штатной конфигурации, ограничены (в основном, отсутствуют) возможности запитки бортовой аппаратуры космического аппарата от наземных имитаторов аккумуляторных и солнечных батарей. При этом аккумуляторные батареи могут быть в разряженном состоянии, либо в полностью заряженном состоянии (подготовленные к штатной эксплуатации). И то и другое не допускает (или делает нежелательным) снятие с аккумуляторных батарей емкости. Проведение предварительного подзаряда аккумуляторных батарей (или последующего компенсирующего дозаряда), при проведении какой-либо «заключительной» операции, усложняет технологический процесс, снижает его надежность и требует дополнительных затрат времени.

На фиг. 1 приведена функциональная схема автономной системы электропитания КА (с наземными связями) с одной аккумуляторной батареей, поясняющая работу по предлагаемому способу изготовления космического аппарата.

Автономная система электропитания содержит солнечную батарею 1, подключенную к нагрузке 3 через стабилизированный преобразователь напряжения 2 и аккумуляторную батарею 5, подключенную к стабилизированному преобразователю 2. Стабилизированный преобразователь напряжения 2 состоит из стабилизатора напряжения 4, зарядного преобразователя 6 и разрядного преобразователя 7. В процессе изготовления КА солнечная батарея находится в отстыкованном состоянии и вне КА. На КА солнечная батарея 1 устанавливаются на время проведения испытания КА на воздействие механических нагрузок, а так же при подготовке КА к штатной эксплуатации. В отдельных случаях, например при неориентированных солнечных батареях, солнечные батареи находятся постоянно в составе КА и электрически с ним состыкованы, а наземные имитаторы солнечных батарей стыкуют к специально предусмотренным технологическим соединителям (отводам) параллельно солнечным батареям. В представленном примере солнечные батареи 1 находятся вне КА. Система электропитания выполнена с общей минусовой шиной связанной с корпусом 8 КА.

Аккумуляторная батарея (в рассматриваемом примере используется одна аккумуляторная батарея) 5 минусом связана с общей минусовой шиной через соединители 5-2, а плюсом через контакты 2-1 силового коммутатора (на чертеже не показан) стабилизатора напряжения 2 с зарядным 6 и разрядным 7 преобразователями (информационные связи аккумуляторной батареи 5 не показаны).

К аккумуляторной батарее подключен наземный зарядно-разрядный комплекс 10. Соединители от аккумуляторной батареи противоположной полярности относительно общей шины системы электропитания выбраны с розетками со стороны аккумуляторной батареи, что обеспечивает исключение возможности возникновения коротких замыканий при проведении монтажных работ с КА.

При проведении «заключительных» испытаний, когда аккумуляторная батарея штатно подстыкована, она может находиться в разряженном состоянии или в полностью заряженном (подготовленная к штатной эксплуатации КА) состоянии. В обоих случаях разряд аккумуляторной батареи недопустим (или крайне нежелателен). В то же время, технологический процесс изготовления КА требует его включения для проведения «записи исходного состояния» и совместных проверок со средствами выведения КА на орбиту.

Для решения этой задачи предлагается заключительные испытания проводить с питанием космического аппарата только от аккумуляторных батарей, для чего параллельно аккумуляторным батареям подключать источники стабилизированного напряжения с напряжениями равными текущим напряжениям аккумуляторных батарей соответственно. При этом величину напряжений источников стабилизированного напряжения выбирают несколько выше текущих значений напряжений соответствующих аккумуляторных батарей, ограничивают величины их токов на минимальном уровне, а после подключения источников стабилизированного напряжения к аккумуляторным батареям, величины напряжений источников стабилизированного напряжения регулируют до снижения возникших соответствующих подзарядных токов до минимального установленного значения, после чего уровни ограничения величины токов источников стабилизированного напряжения повышают до требующейся величины. Работа проводится зарядно-разрядным комплексом по специальной циклограмме или в «ручном режиме» оператором.

Таким образом, заявляемый способ изготовления КА позволяет усовершенствовать технологию работы с аккумуляторными батареями в процессе изготовления КА для сокращения затрат времени, при сохранении высокой надежности проводимых работ.

Способ изготовления космического аппарата, содержащего систему электропитания, имеющую в своем составе солнечные батареи, аккумуляторные батареи и стабилизированный преобразователь напряжения, заключающийся в сборке электрических схем, проведении электрических испытаний космического аппарата на функционирование, испытаний на воздействие механических нагрузок, термовакуумных испытаний, а также заключительных испытаний, отличающийся тем, что заключительные испытания проводят с питанием космического аппарата от аккумуляторных батарей, для чего параллельно аккумуляторным батареям подключают источники стабилизированного напряжения с напряжениями, равными текущим напряжениям аккумуляторных батарей соответственно, величины напряжений источников стабилизированного напряжения выбирают несколько выше текущих значений напряжений соответствующих аккумуляторных батарей, при этом ограничивают величины их токов на минимальном уровне, а после подключения источников стабилизированного напряжения к аккумуляторным батареям величины напряжений источников стабилизированного напряжения регулируют до снижения возникших соответствующих подзарядных токов до минимального установленного значения, после чего уровни ограничения величины токов источников стабилизированного напряжения повышают до требующейся величины.



 

Похожие патенты:

Заявленная группа изобретений относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств, а также систем радиационного захолаживания в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство.

Изобретение относится к космической технике, а более конкретно к испытаниям элементов космического аппарата (КА). Способ испытаний многозвенной системы космического аппарата на функционирование заключается в том, что КА устанавливают на системе обезвешивания.

Изобретение относится к испытательной технике и может быть использовано для имитации невесомости при наземной отработке трансформируемых систем (ТС) космических аппаратов.

Изобретение относится к наземным испытаниям космических аппаратов (КА), корпус которых выполнен с боковыми гранями из сотопанелей (СП), содержащих аксиальные (вертикальные) и горизонтальные коллекторные тепловые трубы.

Изобретение относится к области авиации и космонавтики, в частности к устройствам тренажеров имитации полета, а также может быть использовано для развлечения в роли симулятора игровых полетов.

Изобретение относится к области обеспечения пожаровзрывобезопасности и может быть использовано при разработке средств и способов обеспечения пожаровзрывоопасности объектов транспорта, нефте- и газохимической промышленности, атомных электростанций, объектов ракетно-космической техники и других объектов, на которых обращаются горючие газы.

Изобретение относится к способам проведения испытаний оптико-электронных приборов (ОЭП), в частности звездных датчиков, на помехозащищенность от бокового излучения.

Изобретение относится к области машиностроения, а именно к системам обезвешивания. Система обезвешивания имеет шарнирное соединение, на одном конце которого закреплен обезвешиваемый объект.

Изобретение относится к испытательному оборудованию и может быть использовано при исследовании работоспособности систем летательных аппаратов в условиях одновременного воздействия вакуума и невесомости.

Изобретение относится к оптико-электронной, оптико-механической и криогенно-вакуумной технике и предназначено для точной радиометрической калибровки, исследований и испытаний оптико-электронных и оптико-механических устройств (аппаратуры), а также систем радиационного захолаживания в условиях вакуума, низких фоновых тепловых излучений и в условиях, имитирующих космическое пространство.

Изобретение относится к средствам развёртывания тросовой системы, включающей в себя связанные космические аппараты (КА). На одном из КА (2) установлен барабан (3) с тросом (4), безынерционная (5) и электромагнитная (10), с регулируемым источником питания (11), катушки.

Изобретение относится к космической технике, а более конкретно к трансформируемым космическим конструкциям. Устройство выдвижения полезной нагрузки от космического аппарата методом наддува раскладываемой трубчатой конструкции включает раскладываемую трубчатую конструкцию, сложенную в транспортном положении, оба конца которой герметично закрыты.

Изобретение относится к конструкции и оборудованию главным образом малоразмерных спутников, предназначенных для создания антенных систем. Бинарный космический аппарат (БКА) содержит два кубических корпуса с поворотными телескопическими штангами, на которых размещены мультивекторные матричные ракетные двигатели (ММРД) для развёртывания гибкой солнечной батареи, интегрированной с коллинеарной антенной, информационными и силовыми шинами, позиционной штрихкодовой лентой.

Изобретение относится к конструкции и оборудованию главным образом малоразмерных спутников, предназначенных для создания антенных систем. Бинарный космический аппарат (БКА) содержит два кубических корпуса с поворотными телескопическими штангами, на которых размещены мультивекторные матричные ракетные двигатели (ММРД) для развёртывания гибкой солнечной батареи, интегрированной с коллинеарной антенной, информационными и силовыми шинами, позиционной штрихкодовой лентой.

Изобретение относится к космической технике, в частности к узлам натяжения вант. Узел натяжения вант содержит площадку с вантами, закрепленную между накладкой и первым кронштейном, а также второй и третий кронштейны для установки с внутренней и внешней сторон силовой конструкции корпуса.

Изобретение относится преимущественно к корпусным элементам малых космических аппаратов (МКА), изготовленным по новым технологиям из сэндвич-панелей (СП) на основе вспененного алюминия.

Изобретение относится к технологическому контролю, преимущественно космических объектов (КО). Способ включает измерение угла (α) между направлением от ориентира на КО к источнику освещения (Солнцу) и нормалью к поверхности КО в точке ориентира.

Изобретение относится к бортовым системам космических аппаратов (КА). Негерметичный приборный отсек (НГПО) КА выполнен из сотопанелей с технологическими (ТО) и вентиляционными (ВО) отверстиями.

Изобретение относится к бортовым системам малого космического аппарата. Каркас модуля наноспутника формируют направляющие (1), связующие планки (6) и планки (7) системы раскрытия.

Изобретение относится к бортовым системам малого космического аппарата. Каркас модуля наноспутника формируют направляющие (1), связующие планки (6) и планки (7) системы раскрытия.
Наверх