Способ уменьшения микроволнистости колец подшипников качения

Изобретение относится к устройству подшипника качения. Заявлен способ уменьшения микроволнистости колец подшипников качения. На поверхность колец нового подшипника пипеткой наносится смесь глицерина с абразивным порошком 5-10 мкм в 4-5 местах после удаления заводской смазки. На диагностическом стенде обеспечивается частота вращения внутреннего кольца 24,4 Гц и создается нагрузка в 1 кг на наружное кольцо в течение 20 мин, при этом каждые 60° наружное кольцо проворачивается относительно внутреннего, после чего смесь удаляется, закладывается новая смазка в подшипник, обеспечивается частота вращения на протяжении 20 мин. Причем снятие характеристик осуществляется при помощи диагностического комплекса, включающего датчик виброускорения с магнитом, установленный на наружном кольце подшипника, устройство преобразования сигнала, ноутбук, подвергающие сигнал датчика виброускорения преобразованию Фурье, определяющие амплитуду и частоту вибрации подшипника качения в диапазоне частот от 5 до 5000 Гц, изменяющихся в зависимости от микроволнистости колец подшипников качения. Результат сравнения полученных виброакустических характеристик подшипника качения с новой и заводской смазкой свидетельствует об уменьшении микроволнистости на кольцах подшипника качения. Технический результат: уменьшение микроволнистости колец подшипников качения перед установкой на механизм. 2 ил.

 

Изобретение относится к области машиностроения, устройства подшипника качения.

Цель изобретения - уменьшение микроволнистости колец подшипников качения перед установкой на механизм.

Цель изобретения достигается тем, что на поверхность колец нового подшипника пипеткой наносится смесь глицерина с абразивным порошком (5-10 мкм) в 4-5 местах после удаления заводской смазки, на диагностическом стенде обеспечивается частота вращения внутреннего кольца 24,4 Гц и создается нагрузка в 1 кг на наружное кольцо в течении 20 минут, при этом каждые 60 град. наружное кольцо проворачивается относительно внутреннего, после чего смесь удаляется, закладывается новая смазка в подшипнику обеспечивается частота вращения на протяжении 20 минут. Причем снятие характеристик осуществляется при помощи диагностического комплекса, включающего датчик виброускорения с магнитом, установленный на наружном кольце подшипника, устройство преобразования сигнала, ноутбук, подвергающих сигнал датчика виброускорения преобразованию Фурье, определяющих амплитуду и частоту вибрации подшипника качения в диапазоне частот от 5 до 5000 Гц, изменяющихся в зависимости от микроволнистости колец подшипников качения. Результат сравнения полученных виброакустических характеристик подшипника качения с новой и заводской смазкой свидетельствует об уменьшении микроволнистости на кольцах подшипника качения.

Работает устройство следующим образом. Методика проведения эксперимента включала несколько этапов:

Сначала при помощи дизельного топлива из подшипника удаляется заводская смазка. Затем поверхность колей подшипника качения при помощи пипетки промазывается в нескольких местах подготовленной смесью из глицерина и мелкодисперсного абразивного вещества (5-10 мкм). После этого обеспечивается частота вращения внутреннего кольца 24.4 Гц на протяжении 30 мин. с равномерной нагрузкой около 1 кг, при этом каждые 7.5 минут наружное кольцо перемещалось по отношению к внутреннему на 60 град. По истечении этого времени подшипник качения промывается от глицерина с абразивным порошком с помощью дизельного топлива. Потом закладывается смазка MANNOL LC-2, OI MOL KSC WR2, Литол-24 РФ и обеспечивается частота вращения внутреннего кольца на 25-30 минут.

Вычисление частот вибрации подшипников качения.

Если принять толщину внутреннего и наружного колец подшипника равными, то радиус внутренней поверхности можно вычислить по формуле, мм:

где d, D - диаметры соответственно внутреннего и наружного колец, мм; rш - радиус шарика, мм.

Частота вращения центра шара (сепаратора) определяется по формуле, Гц:

Перемещения шара происходят случайным образом. Если имеются какие-либо дефекты на наружном кольце или разноразмерности тел качения, тогда частотный спектр вибрации определяется выражением:

ƒн.к.0Zшk,

где ƒн.к. - частота, на которой проявляются дефекты наружного кольца, Гц; Zш - число тел качения в подшипнике, шт.; k - количество касаний одной точки качения рабочей поверхности внутреннего и наружного кольца.

Относительно внутреннего кольца шары перемещаются с частотой Тогда дефекты внутреннего кольца проявляются на частотах, Гц:

Частота вращения шара определяется выражением, Гц;

Тогда дефекты тел качения выявляются на частотах, Гц:

Перекос наружного кольца вычисляется по формуле, Гц:

ƒп.н.к.=2ƒн.к..

Выбор предельного уровня вибрации, дБ:

где ат - текущее значение виброускорения при принятой виброскорости, мм/с2; ат=2πƒν10-3; а0 принимаем равным 3⋅10-4 мм/с2; ν - виброскорость, принимаем ν=2,8 мм/с на частоте 50 Гц. [1. Грунтович Н.В. Монтаж, наладка и эксплуатация электрооборудования. Учебное пособие. Мн. «Новое знание»; М.: ИНФРА-М, 2017 г. - 271 с.]

При анализе спектров допускается погрешность обработки ±5 Гц от рассчитанных частот вибрации. На рисунке 1 представлены спектры вибраций подшипника качения №409. Уменьшение вибрации внутреннего кольца, обусловленное изменением шероховатости, на частотах 105, 327, 425 Гц; наружного кольца - на частотах 123, 246, 300, 369, 176-194; тел качения - 225, 445. Высокий уровень вибрации в области 5-5000 Гц до обработки (восстановления) подшипника свидетельствует о наличии микроволнистости колец. После обработки и замены смазки наблюдается уменьшение вибрации в рассматриваемой области на рисунке 2 [2. Голубева В.А., Петров И.В., Грунтович Н.В. Уменьшение микроволнистости на кольцах подшипников качения при помощи различных смазок. Современные технологии проектирования в машиностроении и методы обработки материалов. Аддитивные технологии. Материалы XII Международной научно-технической конференции «Современные проблемы машиноведения», 2018 - 74-75 с.].

Источники информации:

1. Грунтович Н.В. Монтаж, наладка и эксплуатация электрооборудования. Учебное пособие. Мн. «Новое знание»; М.: ИНФРА-М, 2017 г. - 271 с. (Высшее образование: Бакалавриат)

2. Голубева В.А., Петров И.В., Грунтович Н.В. Уменьшение микроволнистости на кольцах подшипников качения при помощи различных смазок. Современные технологии проектирования в машиностроении и методы обработки материалов. Аддитивные технологии. Материалы XII Международной научно-технической конференции «Современные проблемы машиноведения», 2018 -74-75 с.

Способ уменьшения микроволнистости колец подшипников качения, отличающийся тем, что на поверхность колец нового подшипника пипеткой наносится смесь глицерина с абразивным порошком 5-10 мкм в 4-5 местах после удаления заводской смазки, на диагностическом стенде обеспечивается частота вращения внутреннего кольца 24,4 Гц и создается нагрузка в 1 кг на наружное кольцо в течение 20 мин, при этом каждые 60° наружное кольцо проворачивается относительно внутреннего, после чего смесь удаляется, закладывается новая смазка в подшипник, обеспечивается частота вращения на протяжении 20 мин, причем снятие характеристик осуществляется при помощи диагностического комплекса, включающего датчик виброускорения с магнитом, установленный на наружном кольце подшипника, устройство преобразования сигнала, ноутбук, подвергающие сигнал датчика виброускорения преобразованию Фурье, определяющие амплитуду и частоту вибрации подшипника качения в диапазоне частот от 5 до 5000 Гц, изменяющихся в зависимости от микроволнистости колец подшипников качения, результат сравнения полученных виброакустических характеристик подшипника качения с новой и заводской смазкой свидетельствует об уменьшении микроволнистости на кольцах подшипника качения.



 

Похожие патенты:

Изобретение относится к области машиностроения и может быть использовано при изготовлении малошумных и/или быстроходных подшипников качения разного типа и конструкций.

Изобретение касается конструктивного элемента подшипника качения, в частности кольца подшипника качения, а также подшипника качения. Конструктивный элемент подшипника качения (2, 3, 4) имеет азотированную поверхностную зону (5), в которой содержание азота уменьшается в направлении снаружи вовнутрь, центральную зону (6).

Изобретение относится к кольцу (1) подшипника. Кольцо (1) подшипника, на поверхность которого по меньшей мере частично нанесено электроизолирующее покрытие (4) в виде слоя из пористого керамического материала.

Изобретение может быть использовано при изготовлении сваркой оплавлением стальной детали, в частности подшипникового кольца. При осуществлении стыковой сварки производят оплавление и осадку с получением сварного шва (24).

Изобретение относится к улучшенному кольцу подшипника и способу его изготовления. Кольцо (160) подшипника имеет внутреннюю и наружную периферию, также имеет дорожку качения для элементов качения на одной из упомянутых периферий, причем кольцо подшипника имеет зубчатую структуру на одной из упомянутых периферий, а также имеет по меньшей мере одно сварное соединение (151).

Изобретение относится к кольцу (1) подшипника с фланцем (7), которое изготовлено из сортового проката фасонного профиля из высокоуглеродистой стали и содержит по меньшей мере одно сварное соединение, полученное при стыковой сварке оплавлением.

Изобретение относится к композитным стальным подшипникам, более конкретно изобретение относится к композитным стальным подшипникам, способам и применениям, включая, но не ограничиваясь этим, ветряные генераторы и другое тяжелое оборудование.

Изобретение относится к кольцу (1) подшипника, в частности роликового подшипника, которое изготавливается из сортового проката (2) прямого профиля, который изгибается в кольцевую форму, при этом кольцо (1) подшипника соединяется в процессе сварки встык оплавлением и дополнительно содержит дополнительный компонент (8), заключенный в материал кольца подшипника.

Изобретение относится к области машиностроения, в частности к термической обработке колец подшипников качения, которые эксплуатируются на железнодорожном транспорте, и может быть использовано в подшипниковой промышленности при производстве деталей подшипников, в частности внешних колец.

Изобретение относится к машиностроению, в частности к подшипниковым узлам, воспринимающим повышенные радиальные нагрузки, и может быть использовано при подготовке к эксплуатации радиально-упорных конических роликовых подшипников качения.

Изобретение относится к машиностроению. Волновая передача (1) содержит генератор (4) волн, снабженный жесткой вставкой (5) и волновым подшипником (7).

Изобретение относится к области машиностроения, в частности к многорядным шариковым подшипникам качения, и может быть использовано в малооборотных высоконагруженных механизмах для восприятия значительных радиальных и осевых нагрузок, особенно при существенном превышении осевой нагрузки в одном направлении осевой нагрузки в другом направлении.

Изобретение относится к области машиностроения, в частности к многорядным шариковым подшипникам качения, и может быть использовано в малооборотных высоконагруженных механизмах для восприятия значительных радиальных и осевых нагрузок, особенно при существенном превышении осевой нагрузки в одном направлении осевой нагрузки в другом направлении.

Изобретение относится к области машиностроения, в частности к подшипникам качения. Роликовый подшипник качения содержит внутреннее кольцо и наружное кольцо с дорожками качения, выполненными в виде эквидистантных поверхностей однополостного гиперболоида.

Изобретение относится к узлу из двух концентрических частей и подшипника, расположенного между указанными частями для обеспечения возможности их относительного поворота вокруг вертикальной оси поворота.

Группа изобретений относится к области рельсовых транспортных средств, в частности к тормозным системам. Соединение для компенсации отпускания пневматического тормоза включает резьбовой толкатель, храповое колесо, соединенное посредством резьбы с толкателем для вращательного движения по нему, и винтовое соединение, включающее первый подшипник и второй подшипник, установленные на храповом колесе для содействия вращению этого колеса.

Изобретение относится к области машиностроения, в частности к многорядным шариковым подшипникам качения, и может быть использовано в малооборотных высоконагруженных механизмах для восприятия значительных радиальных и осевых нагрузок.

Изобретение относится к области машиностроения, в частности к многорядным шариковым подшипникам качения, и может быть использовано в малооборотных высоконагруженных механизмах для восприятия значительных радиальных и осевых нагрузок.

Изобретение относится к области машиностроения, в частности к многорядным шариковым подшипникам качения, и может быть использовано в малооборотных высоконагруженных механизмах для восприятия значительных радиальных и осевых нагрузок.

Изобретение относится к области машиностроения, в частности к многорядным шариковым подшипникам качения, и может быть использовано в малооборотных высоконагруженных механизмах для восприятия значительных радиальных и осевых нагрузок.

Изобретение относится к устройству подшипника качения. Заявлен способ уменьшения микроволнистости колец подшипников качения. На поверхность колец нового подшипника пипеткой наносится смесь глицерина с абразивным порошком 5-10 мкм в 4-5 местах после удаления заводской смазки. На диагностическом стенде обеспечивается частота вращения внутреннего кольца 24,4 Гц и создается нагрузка в 1 кг на наружное кольцо в течение 20 мин, при этом каждые 60° наружное кольцо проворачивается относительно внутреннего, после чего смесь удаляется, закладывается новая смазка в подшипник, обеспечивается частота вращения на протяжении 20 мин. Причем снятие характеристик осуществляется при помощи диагностического комплекса, включающего датчик виброускорения с магнитом, установленный на наружном кольце подшипника, устройство преобразования сигнала, ноутбук, подвергающие сигнал датчика виброускорения преобразованию Фурье, определяющие амплитуду и частоту вибрации подшипника качения в диапазоне частот от 5 до 5000 Гц, изменяющихся в зависимости от микроволнистости колец подшипников качения. Результат сравнения полученных виброакустических характеристик подшипника качения с новой и заводской смазкой свидетельствует об уменьшении микроволнистости на кольцах подшипника качения. Технический результат: уменьшение микроволнистости колец подшипников качения перед установкой на механизм. 2 ил.

Наверх