Способ оценки температуры вязко-хрупкого перехода металла

Изобретение относится к испытательной технике и используется для определения температуры вязко-хрупкого перехода и регистрации сигнала акустической эмиссии на основе классификации импульсов с использованием искусственной нейронной сети. Сущность: образец, установленный на столе твердомера, подвергают индентированию при разных температурах с регистрацией сигнала акустической эмиссии, полученный сигнал акустической эмиссии подвергают обработке с выделением отдельных импульсов, определением их параметров и последующей их классификацией с использованием обученной искусственной нейронной сети, а за температуру вязко-хрупкого перехода принимают температуру, при которой количество импульсов, характеризующих хрупкий и вязкий механизмы разрушения, совпадают. Технический результат: повышение точности оценки температуры вязко-хрупкого перехода металла. 4 ил., 1 табл.

 

Изобретение относится к испытательной технике и используется для определения температуры вязко-хрупкого перехода и использованием регистрации сигнала акустической эмиссии на основе классификации импульсов с использованием искусственной нейронной сети

Известен способ определения температуры вязко-хрупкого перехода по результатам фрактографического анализа изломов образцов, когда за температуру вязко-хрупкого перехода применяется температура, при которой доля хрупкой составляющей в изломе составляет 50%.

Недостатком данного способа является его высокая трудоемкость (необходимость исследования большого количества изломов образцов, испытанных при разных температурах) и необходимость применения дополнительного оборудования (оптических и электронных микроскопов) для получения точного результата.

Известен также способ оценки температуры вязко-хрупкого перехода с использованием регистрации и обработки сигнала акустической эмиссии [Патент RU 2027988 C1 от 06.09.1991 г., опубл. 27.01.1995 г.].

Способ позволяет проводить оценку температуры вязко-хрупкого перехода за счет установления взаимосвязи температуры вязко-хрупкого перехода материала и акустической эмиссии, возникающей при хрупком разрушении образца. При этом для испытания используют образец из n элементов, каждый из которых представляет балку с защемленными концами. При различных температурах к середине элементов прикладывают усилие и регистрируют импульсы акустической эмиссии, а за температуру вязкохрупкого перехода материала принимают температуру, при которой доля P элементов, излучающих импульсы акустической эмиссии, находится в диапазоне 0 < P < 1.

Недостатком способа является необходимость применения достаточно сложных по своей геометрии образцов для испытаний и их большое количество для получения точного результата, а также низкий уровень автоматизации процесса оценки температуры вязко-хрупкого перехода.

Для расширения области использования способа оценки температуры вязко-хрупкого перехода, упрощения геометрии испытуемых образцов, а также исключения человеческого фактора при оценке температуры вязко-хрупкого перехода предлагается испытания проводить на твердомере методом индентирования на образцах в виде пластин металла, а для классификации импульсов в сигнале акустической эмиссии использовать обученную нейронную сеть классификации импульсов.

Целью изобретения является снижение металлоемкости, трудоемкости и повышение уровня автоматизации при определении температуры вязко-хрупкого перехода металла.

Технический результат изобретения, заключается в повышении точности оценки температуры вязко-хрупкого перехода металла.

Технический результат достигается тем, что в способе оценки температуры вязко-хрупкого перехода материала, заключающемся в том, что образец, установленный на столе твердомера подвергают индентированию при разных температурах с регистрацией сигнала акустической эмиссии, полученный сигнал акустической эмиссии подвергают обработке с выделением отдельных импульсов, определением их параметров и последующей их классификацией с использованием обученной искусственной нейронной сети, а за температуру вязко-хрупкого перехода принимают температуру, при которой количество импульсов характеризующих хрупкий и вязкий механизмы разрушения совпадают.за счет использования в процессе испытаний одного образца, а также обученной искусственной нейронной сети классификации импульсов сигнала акустической эмиссии.

Технический результат достигается за счет использования в процессе испытаний одного образца, а также обученной искусственной нейронной сети классификации импульсов сигнала акустической эмиссии.

Для оценки характера разрушения металлов и температуры вязко-хрупкого перехода был разработан специализированный стенд на базе твердомера ТШ-2М. В качестве индентора использовался шарик диаметром 2,5 мм. Также возможно использование других видов инденторов. Стенд включает в себя датчик акустической эмиссии (АЭ), 4 датчика температуры, устанавливаемые на образец металла (пластина 4х100х100 мм). Принципиальная схема стенда показана на Фиг. 1.

Образцы для испытаний (Фиг. 1) охлаждались при помощи подведенных к ним медных хладопроводов от смеси жидкого азота и спирта в необходимых пропорциях для установления температуры испытания. Контроль температуры осуществляли при помощи температурных датчиков pt100, устанавливаемых на поверхность образца. Для регистрации сигнала АЭ применялись широкополосные датчики АЭ фирмы ГлобалТест (GT350) и АЦП фирмы National Instruments модели 6636 (Фиг. 1).

Принципиальная схема предложенного способа оценки температуры вязко-хрупкого перехода индентированием с регистрацией сигнала АЭ представлена на Фиг. 2.

Суть способа заключается в следующем.

На стол твердомера (1) устанавливается образец металла (2) с подведенными к нему медными хладопроводами (3) и резистором для регулирования температуры испытания. Контроль температуры осуществляется датчиками температуры (4) установленными по периметру образца. По центру образца устанавливается датчик АЭ (5).

В ходе испытания на твердость сигнал акустической эмиссии с датчика (5) поступает на аналогово-цифровой преобразователь (АЦП) (6), после преобразования сигнал подается на персональный компьютер (ПК) со специальным программным обеспечением (7). Для фильтрации исходного сигнала в разработанном ПО используются, как цифровые фильтры (полоса пропускания 100 - 800 кГц), так и Wavelet фильтр в модуле (8). После этого в модуле (9) происходит выделение импульсов сигнала АЭ с построением огибающей импульса. Пример выделенного импульса с огибающей и параметрами импульса показан на Фиг. 3.

В модуле (10) определяются параметры импульсов (амплитуда, длительность, энергия и др. параметров)

Выделенные импульсы (параметры импульсов - Xi) поступают на вход обученной искусственной нейронной сети (ИНС) классификации импульсов (11). Структура ИНС и процесс классификации показан на Фиг. 4. На основе классификации определяется принадлежность импульсов к одному из трех классов (табл. 1) импульсов в модуле (12), а именно импульс характеризующий хрупкий (Х), вязкий (В) или смешанный (С) механизм разрушения металла. Определяется количество импульсов характеризующих хрупкий механизм разрушения (N1), смешанное разрушение (N2) и вязкое разрушение (N3) и общее количество импульсов в сигнале АЭ (N).

На основе полученных классов импульсов определяется характер разрушения образца в модуле (13) для этого определяется параметр, характеризующий преимущественно хрупкое разрушение А1=((N1/N)+0,5*(N2/N))*100% и параметр, характеризующий преимущественно вязкое разрушение А2=((N3/N)+0,5*(N2/N))*100%. При сопоставлении соответствующих параметров определяется преобладающий механизм разрушения и доля каждого механизма. Температура, при которой А1≈А2 принимаем за температуру вязко-хрупкого перехода.

Данные по твердости (14), параметры импульсов, определенные в модуле (10), а также преобладающий характер разрушения, определенный в модуле (13) записываются в таблицу результатов испытаний (15) и в базу данных параметров испытаний (16). Дополнительные параметры импульсов сигнала АЭ (амплитуда, длительность, энергия импульса) могут быть использованы для уточнения температуры вязко-хрупкого перехода.

Для оценки погрешности предложенного способа определения температуры вязко-хрупкого перехода были проведены испытания на углеродистых сталях (сталь 20, сталь 45, сталь У8 и т.д.). Полученные данные в ходе классификации сопоставлялись с результатами фрактографических исследований образцов, испытанных на ударный изгиб в широком диапазоне температур.

Погрешность определения температуры вязко-хрупкого перехода металлов не превышала 6%.

Преимущества данного подхода по сравнению с существующими способами состоят в следующем: достигается высокая точность и исключается человеческий фактор при оценке температуры вязко-хрупкого перехода за счет использования искусственной нейронной сети классификации импульсов в сигнале акустической эмиссии. Уменьшается металлоемкость испытаний, т.к. для выявления температуры вязко-хрупкого перехода металла достаточно использовать один образец. Снижается трудоемкость испытаний, т.к. испытания с использованием индентора просты и не требуют применения дорогостоящего испытательного оборудования (копров, установок для испытаний).

Табл. 1 Классы импульсов сигнала АЭ

Вязкое разрушение Хрупкое разрушение Вязко-хрупкое разрушение
Импульсы небольшой амплитуды и относительно большой длительности, возникающие в результате микропластической деформации и ответственны за вязкое разрушение Импульсы большой амплитуды и относительно небольшой длительности, которые возникают в результате страгивания и развития трещин, характерны для хрупкого разрушения Импульсы, для которых характерны признаки указанных типов, характеризуют смешанный механизм разрушения или чередование механизмов

Способ оценки температуры вязко-хрупкого перехода материала, заключающийся в том, что образец, установленный на столе твердомера, подвергают индентированию при разных температурах с регистрацией сигнала акустической эмиссии, отличающийся тем, что полученный сигнал акустической эмиссии подвергают обработке с выделением отдельных импульсов, определением их параметров и последующей их классификацией с использованием обученной искусственной нейронной сети, а за температуру вязко-хрупкого перехода принимают температуру, при которой количество импульсов, характеризующих хрупкий и вязкий механизмы разрушения, совпадают.



 

Похожие патенты:

Изобретение относится к области исследования механических свойств материалов. Сущность: осуществляют нагрев поверхности образца и наносят резцом царапину на нагретую поверхность образца.

Изобретение относится к области испытания физико-механических свойств металлов и может применяться для определения температуры хладноломкости конструкционных низколегированных сталей трубопроводов.

Изобретение относится к контролю твердости металла на стационарном твердомере и может быть использовано для многократного контроля твердости образцов металла при заданной установившейся отрицательной температуре, например, для косвенной оценки критической температуры хрупкости (КТХ) с использованием температурных зависимостей твердости, полученных на образце металла, достаточном для измерения твердости, в случаях, когда невозможно определить КТХ по результатам испытаний на ударный изгиб из-за отсутствия достаточного количества металла для изготовления образцов.

Изобретение относится к испытательной технике. .

Изобретение относится к определению механических свойств материалов, а именно к определению твердости металлов в условиях зоны резания. .

Изобретение относится к исследованию механических свойств материалов, а именно к способам определения критической температуры хрупкости. .

Изобретение относится к измерениям механических свойств материалов , а именно к измерениям твердости поверхностных слоев. .

Использование: для определения локальных дефектов поверхности катания железнодорожных рельсов. Сущность изобретения заключается в том, что выполняют непрерывное измерение сигналов акустической эмиссии контактирующих поверхностей в зоне колесо-рельс, по измеренным амплитудным значениям сигналов акустической эмиссии судят о наличии и длине локальных дефектов поверхности катания железнодорожных рельсов, которая пропорциональна линейной скорости движения колеса и обратно пропорциональна длительности акустико-эмиссионного сигала.

Использование: для оценки степени разрушения материалов при акустико-эмиссионном контроле процесса трения твердых, жидких и газообразных тел. Сущность изобретения заключается в том, что для фиксации и преобразования акустических импульсов используется пьезодатчик с частотной характеристикой, перекрывающей собственные частоты акустических импульсов, возникающих при разрушении применяемых в конструкции материалов, подсоединенный к управляющему компьютеру, снабженному программой для непрерывной записи поступающих сигналов; предварительно параметры контрольных импульсов, характерных для применяемых материалов, определяются для трения твердых тел на специальной установке с вращательным или возвратно-поступательным движением при приложении разной нагрузки на трущуюся пару, а для жидких и газообразных тел - на установке, позволяющей прокачивать данные тела вдоль твердой поверхности с разными скоростями и давлениями; при контроле состояния конструкции по параметрам акустических импульсов программными средствами выводятся на экран параметры текущих характерных для данных материалов и тел импульсов и производится их сравнение с контрольными; на основании этого сравнения делается вывод о состоянии конструкции или характере процесса.

Использование: для низкотемпературного локального нагружения участка нефтегазопровода при акустико-эмиссионном методе неразрушающего контроля. Сущность изобретения заключается в том, что выбирается участок нефтегазопровода для проведения акустико-эмиссионного контроля, где устанавливаются два преобразователя акустических эмиссий, при этом расстояние между ними определяется технической характеристикой акустико-эмиссионного комплекса и нормативных документов, между ними создается локальная упругая деформация нефтегазопровода, регистрируются сигналы акустической эмиссии, по параметрам которых судят о наличии дефекта в материале и сварных соединениях нефтегазопровода, при этом создание упругой деформации локального участка нефтегазопровода достигается за счет низкотемпературного охлаждения поверхности этого участка твердым диоксидом углерода, за счет сублимации твердого диоксида углерода при минус 72°С.

Использование: для контроля структурного состояния сплавов на основе никелида титана при охлаждении сплава в температурном интервале, содержащем интервал превращений.

Изобретение относится к прогнозированию на всех стадиях возникновения и развития дефектов в больших инженерных сооружениях. Оптоволоконный акустико-эмиссионный способ включает нанесение хрупкого тензочувствительного материала на многомодовое оптическое волокно, отвердение материала и определение по образующимся в материале трещинам зоны опасных пластических деформаций.

Использование: для акустико-эмиссионного контроля качества кольцевого сварного шва. Сущность изобретения заключается в том, что устанавливаются по контуру шва широкополосные преобразователи, осуществляют калибровку объекта контроля, устанавливают пороги селекции выше уровня шумов и осуществляют прием возникающих в зоне сварки акустических сигналов и их усиление, фильтрацию сигналов по величине заданной амплитуды, аналого-цифровое преобразование, регистрацию времен прихода сигналов акустической эмиссии на акустические преобразователи, вычисление координат источников акустических сигналов, при этом выполняют построение браковочной сетки после калибровки по контуру сварного шва, устанавливают пороговые значения нормированного коэффициента по суммарной амплитуде, затем в процессе выполнения каждого прохода сварки осуществляют регистрацию сигналов акустической эмиссии и расчет их суммарной амплитуды для вычисления координат активных областей сварного шва и величины нормированного коэффициента Ki,j в каждой ячейке браковочной сетки, сравнивают их с пороговыми значениями и при превышении первого порогового значения дефект считают малозначительным, при превышении второго порога нормированных коэффициентов дефект считается значительным, затем регистрируют сигналы акустической эмиссии в процессе остывания сварного шва и вычисляют нормированные коэффициенты Ki,j по амплитуде и сравнивают с их пороговым значением для этапа остывания сварного шва, после чего, сравнивая полученные данные, корректируют координаты расположения источников акустических сигналов сварного шва.

Использование: для регистрации и анализа сигналов акустической эмиссии в системе диагностического мониторинга производственных объектов. Сущность изобретения заключается в том, что обнаружение и выделение сигналов АЭ на фоне шума осуществляют посредством математической обработки зарегистрированного временного ряда зашумленных сигналов АЭ путем их цифровой фильтрации в скользящем временном окне со случайной шумовой компонентой с применением трехкаскадного цифрового фильтра - одномерного полосового нормализующего частотного фильтра, адаптивного спектрально-корреляционного фильтра с переменной линией задержки, двумерного статистического частотно-временного фильтра - в три стадии.

Использование: для моделирования неустойчивых переходных процессов накопления повреждений в диагностируемом объекте с регистрацией точек структурной и системной бифуркации.

Использование: для диагностики сосудов и трубопроводов, работающих под давлением, методом акустической эмиссии. Сущность изобретения заключается в том, что проводят предварительное исследование акустических свойств объекта контроля, затем устанавливают первичные преобразователи, проверяют работоспособность акустико-эмиссионной аппаратуры и проводят калибровку каналов, регистрируют сигналы акустической эмиссии, определяют координаты развивающихся дефектов и судят об их степени опасности, первоначально нагружают контролируемый объект до 5% от испытательного давления, регистрируют акустическую эмиссию, разбивают ее на сигналы одинаковой длительности, для каждого сигнала определяют максимальную амплитуду, размах, количество пересечений нулевой линии и количество локальных максимумов амплитуды, отмечают сигналы с шумами и/или помехами, фиксируют их в базе данных, затем продолжают нагружение до испытательного давления, сравнивают параметры каждого сигнала с параметрами из базы данных и в случае подобия считают сигнал неинформативным.

Использование: для определения дефектов структуры образца из углепластика. Сущность изобретения заключается в том, что сначала зона контроля образца из углепластика разбивается на квадратные ячейки, в каждой из которых осуществляется регистрация сигналов акустической эмиссии от имитатора, их локация, затем для каждой ячейки, в которой имеется локация сигналов, определяются структурные коэффициенты РИ и критическое значение MARSE, после чего осуществляется ступенчатое статическое нагружение образца увеличивающейся нагрузкой и при появлении в процессе нагружения в ячейках образца устойчивой локации сигналов, рассчитывается параметр MARSE и при превышении его критического значения определяется структурный коэффициент РН для данной ячейки, зона устойчивой локации накрывается локационной сеткой, определяется размер ячейки по скорости распространения акустического сигнала в материале образца, дефект считается опасным при условии, если в ячейке у сигналов параметр MARSE превышает его критическое значение, затем путем сравнения структурных коэффициентов, полученных при работе имитатора РИ и в процессе нагружения РН, судят о типе дефекта в образце: значение РН≤РИ соответствует разрушению матрицы, расслоению композиционного образца, а РР≥РИ - разрыву волокон материала образца.

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения капель жидкости при нагреве внешним тепловым потоком.
Наверх