Стартовый твердотопливный ускоритель ракеты-носителя

Предлагаемое изобретение относится к области ракетостроения, а именно к стартовым твердотопливным ускорителям ракеты-носителя. Стартовый твердотопливный ускоритель ракеты-носителя состоит из секций канальных зарядов с корпусами, выполненными в виде «коконов» из высокопрочного композиционного материала. Секции канальных зарядов соединены между собой с помощью газоводов. К нижней секции заряда подстыковано поворотное сопло. Особенностью конструкции является то, что верхняя часть внутреннего канала каждого заряда, кроме дальнего от сопла, забронирована на длину, равную величине свода заряда, на внутренней поверхности газовода закреплен козырек, выполненный из жаростойкого материала, выступающий на всю длину бронировки и скрепленный с ней. Предлагаемая конструкция стартового твердотопливного ускорителя ракеты-носителя обеспечивает повышение надежности его работы и баллистической эффективности. 3 ил.

 

Предлагаемое изобретение относится к области ракетостроения, а именно, к стартовым твердотопливным ускорителям ракеты-носителя, направлено на совершенствование конструкции, повышение надежности работы и улучшение газодинамических параметров потока.

Известны боковые твердотопливные ускорители ракеты-носителя «Титан-III С», представляющие собой твердотопливные двигатели, состоящие из пяти секций зарядов с корпусами, выполненными из стали, секции заряда с корпусом и соплом, а также переднего днища («Ракеты-носители», В.А. Александров, В.В. Владимиров / Воениздат, 1981 г., стр. 27-31).

Известны также твердотопливные ускорители в составе ступени ракеты-носителя по патенту РФ №2386571, состоящие из секций скрепленных зарядов с корпусами, выполненными в виде «коконов» из высокопрочного композиционного материала, соединенных между собой с помощью газоводов. Недостатком известных конструкций является недостаточная надежность из-за особенностей газодинамических процессов в области сужения и расширения потока в районе газоходов.

Фактически в процессе выгорания заряда твердого топлива и уменьшения свода поверхности горения (увеличения проходного сечения каналов зарядов) струя продуктов сгорания предыдущего заряда сужается на входе в газоход и в дальнейшем расширяется при поступлении в камеру сгорания следующего заряда. При расширении струи увеличивается скорость течения газа. Сверхзвуковая (или дозвуковая скоростная струя) взаимодействует с поверхностью горения заряда, что приводит к вымыванию с поверхности частиц топлива, увеличению скорости горения и эрозионному горению и как следствие к непрогнозируемому изменению характеристик, возможному недопустимому увеличению давления, снижению времени работы, уменьшению надежности, ухудшению баллистических характеристик.

Целью предлагаемого изобретения является создание твердотопливного ускорителя ракеты-носителя с коконными секциями с улучшенной газодинамикой, что обеспечивает повышение надежности его работы и баллистической эффективности.

Указанная цель достигается предлагаемой конструкцией стартового твердотопливного ускорителя ракеты-носителя, состоящего из секций канальных зарядов с корпусами, выполненными в виде «коконов» из высокопрочного композиционного материала, соединенных между собой с помощью газоводов, и сопла, монтируемого к нижней секции.

Отличительной особенностью конструкции является то, что верхняя часть внутреннего канала каждого заряда, кроме дальнего от сопла, забронирована на длину, равную величине свода заряда;

на внутренней поверхности газовода закреплен козырек, выступающий на всю длину бронировки и скрепленный с ней, например, с помощью клеевого соединения, выполненный из жаростойкого материала.

Предлагаемое изобретение иллюстрируется графическими изображениями.

На фиг. 1 показан общий вид стартового твердотопливного ускорителя ракеты-носителя.

На фиг 2 показано соединение секций канальных зарядов с корпусами с помощью газоводов.

На фиг. 3 проиллюстрировано характерное течение потока.

Стартовый твердотопливный ускоритель ракеты-носителя фиг. 1 состоит из секций канальных зарядов 1 с корпусами 2, выполненными в виде «коконов» из высокопрочного композиционного материала. К нижней секции заряда подстыковано поворотное сопло 3. Секции канальных зарядов соединены между собой с помощью газоводов 4 (фиг. 2).

Верхняя (по потоку) часть внутреннего канала каждого заряда кроме дальнего от сопла забронирована. Длина бронировки 5 (фиг. 2) равна величине свода S заряда (фиг. 3). На внутренней поверхности газовода 4 закреплен козырек 6 (фиг. 2), выполненный из жаростойкого материала, который выступает на длину бронировки 5, и скреплен с ней, например, с помощью клеевого соединения.

Работает стартовый твердотопливный ускоритель ракеты-носителя следующим образом. По стартовой команде происходит воспламенение твердого топлива. Горячие газы продуктов его сгорания поступают в камеру сгорания первого и последующих секций зарядов и сопло, создавая тягу.

В процессе выгорания твердого топлива увеличиваются диаметры каналов зарядов. Начинается горение топлива над бронировкой. Газы из этой области истекают в осевом направлении и препятствуют прямому натеканию струи из предыдущей секции через газоход на поверхность топлива (фиг. 3). Это не приводит к вымыванию топлива струей из газохода, не приводит к нерасчетному эрозионному горению, обеспечивает выполнение расчетных характеристик и параметров, повышает надежность работы стартового ускорителя и баллистическую эффективность.

Козырек, выполненный из жаростойкого материала, защищает бронировку от воздействия осевого потока продуктов сгорания из газохода, что не только предотвращает ее нагрев с внутренней стороны, но и обеспечивает ее целостность в месте контакта с топливом при выгорании топлива над ней.

Стартовый твердотопливный ускоритель ракеты-носителя, состоящий из секций канальных зарядов с корпусами, выполненными в виде «коконов» из высокопрочного композиционного материала, соединенных между собой с помощью газоводов, и сопла, монтируемого к нижней секции,

отличающийся тем, что

верхняя часть внутреннего канала каждого заряда, кроме дальнего от сопла, забронирована на длину, равную величине свода заряда, а на внутренней поверхности газовода закреплен козырек, выступающий на длину бронировки и скрепленный с ней, например, с помощью клеевого соединения, выполненный из жаростойкого материала.



 

Похожие патенты:

Изобретение относится к ракетной технике, а более конкретно, к устройству многокамерного жидкостного ракетного двигателя с дожиганием с управляемым вектором тяги.

Изобретение относится к жидкостным ракетным двигателям. Ракетный двигатель в сборе (5), включающий в себя бак (30B) для жидкого кислорода, двигатель (10), имеющий камеру сгорания (12), и «нагреватель» теплообменник (46) для превращения в пар жидкого кислорода.

Изобретение относится к области реактивных двигательных установок, а более конкретно к реактивной двигательной установке (1), в которой первый топливный контур (6) для подачи первого компонента топлива в основной двигатель (4) содержит отвод (13), расположенный ниже по потоку от насоса (8b) первого турбонасоса (8) и проходящий через первый регенеративный теплообменник (10) и турбину (8a) первого турбонасоса (8), а второй топливный контур (7) для подачи второго компонента топлива в основной двигатель (4) содержит отвод, расположенный ниже по потоку от насоса (9b) второго турбонасоса (9) и проходящий через второй регенеративный теплообменник (11) и турбину (9a) второго турбонасоса (9).

Изобретение относится к области двигательных установок на криогенном топливе, и в частности к криогенной двигательной установке (1), содержащей по меньшей мере один маршевый двигатель (6) многократного запуска, первый криогенный бак (2), соединенный с маршевым двигателем (6) для его питания первым компонентом топлива, первый газовый бак (4), по меньшей мере один осаждающий топливо двигатель (7, 8) и первый питающий контур (16) для питания первого газового бака (4).

Изобретение относится к ракетной технике и может быть использовано преимущественно в силовых блоках ракет-носителей (РН) для управления вектором тяги. .

Изобретение относится к ракетной технике и может быть использовано преимущественно в жидкостных ракетных двигателях. .

Изобретение относится к жидкостным ракетным двигателям. .

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя твердого топлива с изменяемым в полете значением суммарного импульса тяги.

Изобретение относится к ракетной технике и может быть использовано при проектировании твердотопливных двигателей с обнулением или реверсом тяги, например противоштопорных ракет для испытаний самолетов.
Наверх