Способ получения композиционного материала из коры березы

Изобретение относится к деревообрабатывающей промышленности, в частности к производству композиционных материалов из измельченного древесного сырья. Выполняют сушку и измельчение коры березы, отделение пробкового слоя от общей массы коры и его сушку, формирование смеси композита в виде ковра из бересты и связующего, горячее прессование. В качестве древесного наполнителя используют измельченную бересту в количестве от 70 до 89,99 мас.%, с содержанием влаги от 6 до 16 мас.%, и размерами частиц от 150 до 3000 мкм, в качестве связующего используют гидролизованный суберин в количестве от 5 до 30 мас.%. Горячее прессование сформированного ковра проводят при температуре 135-145°С и давлении от 10 до 15 МПа с последующим извлечением композиционного материала и выдержкой в течение 24 часов при температуре воздуха 20±3°С. Улучшаются тепло- и звукоизоляционные свойства полученного материала. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к производству композиционных материалов из измельченного древесного сырья, например из коры березы, и может быть использовано в производстве экологически безопасных материалов, обладающих тепло- и звукоизоляционными свойствами и применяемых в строительстве, а также в других отраслях промышленности.

Известны способы изготовления древесно-полимерных композиционных материалов прессованием на основе древесных наполнителей (стружек, опилок, древесного волокна) и термореактивных связующих - фенолформальдегидных, карбамидоформальдегидных смол и их модификаций (A.M. Козаченко. Общая технология производства древесных плит. М.: Высшая школа, 1990. 144 с.; Т.В. Соловьева. Технология древесных композиционных материалов и изделий. Минск: БГТУ, 2008. 180 с.).

Однако композиционные материалы, произведенные по данной технологии, токсичны для человека, так как в процессе эксплуатации готовых изделий выделяются пары фенола и формальдегида, которые относятся к высокоопасным веществам. Кроме того, высока их себестоимость, так как синтетические связующие имеют высокую стоимость. Что касается изоцианатных связующих, то, хотя изделия на их основе менее токсичны, изоцианатные смолы являются еще более дорогими, чем фенольные.

Известен способ изготовления тепло- и звукоизоляционного строительного материала (Пат. РФ №2645994; МПК C08J 11/04, В29В 17/00; опубл. 28.02.2018), включающий измельчение, гомогенизацию смеси полимерных отходов и отходов древесины в виде опилок при температуре от 130 до 200°С, загрузку смеси в форму и нагрев до 230°С в течение 10-15 минут с приложением давления до 5 МПа и с последующим охлаждением в течение часа. Смесь полимерных отходов включает отходы полиэтилентерефталата, поливинилхлорида, полиэтилена, натурального каучука и фенопласты.

Основными недостатками данного изобретения являются недостаточные теплоизоляционные свойства и низкие амортизационные качества строительных материалов, полученных данным способом.

Известен способ изготовления древесного композиционного материала (Пат. РФ №2310669; МПК C08L 97/00; опубл. 20.11.2007), включающий приготовление композиции из древесного наполнителя и связующего, формирование ковра и его последующее горячее прессование. При этом в качестве древесного наполнителя используют опилки, которые смешивают со связующим при температуре размягчения связующего 130-140°С, а в качестве связующего используют смесь частично гидролизованного суберина и субериновых кислот, полученную гидролизом измельченной бересты березы в присутствии гидроксида натрия при температуре 85-87°С. Горячее прессование сформированного ковра проводят при температуре 130-140°С и давлении 10-13 МПа. Доля древесного наполнителя может доходить до 80 мас.%. Принят за прототип.

Основными недостатками данного изобретения являются недостаточные теплоизоляционные свойства и низкие амортизационные качества строительных материалов, полученных данным способом. Кроме того, использование опилок в качестве древесного наполнителя позволяет создавать только грубый плитный материал, требующий последующей обработки.

Предлагаемый способ получения композиционного материала из коры березы решает две задачи, во-первых, получение простого и экологически безопасного композиционного материала, обладающего повышенными тепло- и звукоизоляционными свойствами, во-вторых, утилизация безвозвратных отходов фанерных, лесопильных и деревоперерабатывающих производств в виде коры березы.

Наилучшими тепло- и звукоизоляционными свойствами обладают экологически безопасные материалы из коры пробкового дуба. Однако кора пробкового дуба является редким и дорогим сырьем, ее запасы очень ограничены. Кора березы, а именно пробковый слой (береста), схожа по многим свойствам с корой пробкового дуба.

Пробковый слой коры березы (береста) является основной частью корки и составляет до 25 мас.% от общей массы коры, а в стенках пробковых клеток находится щелочерастворимое вещество - суберин (до 40 мас.% от общей массы бересты), представляющий собой комплекс гидрокислот и фенольных кислот, связанных между собой простыми эфирными связями с образованием сетчатой полимерной структуры - полиэстолида. Благодаря суберину береста малопроницаема для воды, газов и звуковых волн. Таким образом, использование бересты в качестве основного наполнителя в композиционном материале позволяет существенно улучшать его тепло- и звукоизоляционные свойства.

Поставленные задачи решаются тем, что в способе получения композиционного материала из коры березы, обладающего повышенными тепло- и звукоизоляционными свойствами, включающем приготовление композиции из древесного наполнителя и связующего, формирование ковра и его последующее горячее прессование, согласно изобретению, сначала производят сушку и измельчение коры березы, отделение ее пробкового слоя - бересты, от общей массы коры и ее сушку; полученную измельченную бересту используют в качестве древесного наполнителя, в количестве от 70 до 89,99 мас.%, с содержанием влаги от 6 до 16 мас.% и размерами частиц от 150 до 3000 мкм, в качестве связующего используют гидролизованный суберин в количестве от 5 до 30 мас.%, горячее прессование сформированного ковра проводят при температуре 135-145°С и давлении от 10 до 15 МПа с последующим извлечением композиционного материала и выдержкой в течение 24 часов при температуре воздуха 20±3°С. Отделение пробкового слоя от основной массы измельченной коры березы осуществляют методом пенной флотации посредством воздуха в воде. Гидролизованный суберин получают гидролизом измельченной бересты березы и гидроксида натрия при температуре 85-90°С.

Согласно изобретению, производят сушку и измельчение коры березы, отделение ее пробкового слоя - бересты, от общей массы коры и ее сушку. Отделение пробкового слоя от основной массы измельченной коры осуществляют методом пенной флотации посредством воздуха в воде. Частицы бересты являются гидрофобными (плохо смачиваемыми водой) в отличие от частиц корки, которые являются гидрофильными (хорошо смачиваемыми водой) частицами. При флотации мелкие пузырьки воздуха прилипают к плохо смачиваемым водой частицам бересты, и образовавшаяся пена поднимает их к поверхности, а все остальные частицы коры оседают. Пену в дальнейшем сгущают и фильтруют.

Полученную измельченную бересту (с содержанием влаги от 6 до 16 мас.% и размерами частиц от 150 до 3000 мкм) используют в качестве древесного наполнителя и смешивают со связующим при температуре его размягчения 135-145°С. В качестве связующего используют гидролизованный суберин, полученный гидролизом измельченной бересты березы и гидроксида натрия при температуре 85-90°С. Связующее и древесный наполнитель берут в массовом соотношении 5-30:70-89,99.

Из полученной композиции формируют ковер и проводят его горячее прессование при удельном давлении 10-15 МПа и температуре 135-145°С с последующим извлечением композиционного материала и выдержкой в течение 24 часов при температуре воздуха 20±3°С. Испытания полученных материалов проводят по ГОСТ 16297-80 «Материалы звукоизоляционные и звукопоглощающие. Методы испытаний» и ГОСТ 17177-94 «Материалы и изделия строительные теплоизоляционные. Методы испытаний».

Предлагаемый способ позволяет получить строительный материал из отходов в виде коры березы с улучшенными тепло- и звукоизоляционными свойствами. Так, при плотности образца 200-210 кг/м3 и при прочности на разрыв 0,20-0,50 МПа коэффициент теплопроводности составляет 0,041 Вт/(мС°), а коэффициент звукопоглощения - 0,40, что соответствует требованиям ГОСТ.

В таблице 1 представлены основные свойства готовых изделий, полученных заявляемым и известным способами.

Из таблицы 1 видно, что при сравнении тепло- и звукоизоляционных свойств строительных материалов, полученных заявленным и известным способами, тепло- и звукоизоляционный строительный материал, полученный предлагаемым способом обладает лучшими характеристиками.

1. Способ получения композиционного материала из коры березы, обладающего повышенными тепло- и звукоизоляционными свойствами, включающий приготовление композиции из древесного наполнителя и связующего, формирование ковра и его последующее горячее прессование, отличающийся тем, что сначала производят сушку и измельчение коры березы, отделение ее пробкового слоя - бересты, от общей массы коры и ее сушку; полученную измельченную бересту используют в качестве древесного наполнителя, в количестве от 70 до 89,99 мас.%, с содержанием влаги от 6 до 16 мас.% и размерами частиц от 150 до 3000 мкм, в качестве связующего используют гидролизованный суберин в количестве от 5 до 30 мас.%, горячее прессование сформированного ковра проводят при температуре 135-145°С и давлении от 10 до 15 МПа с последующим извлечением композиционного материала и выдержкой в течение 24 часов при температуре воздуха 20±3°С.

2. Способ получения композиционного материала из коры березы по п. 1, отличающийся тем, что отделение пробкового слоя от основной массы измельченной коры березы осуществляют методом пенной флотации посредством воздуха в воде.

3. Способ получения композиционного материала из коры березы по п. 1, отличающийся тем, что гидролизованный суберин получают гидролизом измельченной бересты березы и гидроксида натрия при температуре 85-90°С.



 

Похожие патенты:

Настоящее изобретение относится к способу получения деметилированных лигносульфонатов путем проведения реакции деметилирования. Данный способ включает предварительную обработку водного раствора нейтрального лигносульфоната бромпроизводным HBr до рН 4-4,5 при перемешивании в течение 25-30 минут и подогреве до 30-40°С.

Изобретение относится к способу производства алкоксилированных полифенолов, а именно алкоксилированных лигнинов. Способ производства алкоксилированного полифенола включает проведение реакции полифенола с алкоксилирующей добавкой в присутствии катализатора и алкоксилированного полифенола в качестве растворителя, причем массовое соотношение полифенол/алкоксилированный полифенол в качестве растворителя является меньшим чем 2, предпочтительно меньшим или равным 1,5, более предпочтительно меньшим или равным 1, еще более предпочтительно меньшим или равным 0,5, с последующим удалением остаточной алкоксилирующей добавки.

Изобретение относится к способу изготовления термически стабилизированных неклейких растяжимых волокон, которые можно дополнительно перерабатывать в промежуточные углеродные волокна и, наконец, также в углеродные волокна.

Настоящее изобретение относится к композиции, используемой для клеев для конструкционной древесины. Указанная композиция содержит лигнин, диспергированный в полиизоцианате.

Изобретение относится к пневматической шине транспортного средства и к способу изготовления такой шины, где шина включает металлический компонент, текстильный компонент и отвержденный компонент на основе каучука, соединенные друг с другом с помощью отверждения, и при этом отвержденный компонент на основе каучука включает лигнин, обработанный способом гидротермальной карбонизации.

Группа изобретений относится к области биотехнологии. Предложена установка и способ повышения концентрации содержащей растворимые углеводы фракции, а также полученные указанным способом содержащая растворимые углеводы фракция и твердая фракция.

Изобретение относится к композиции проклеивающего агента, содержащей крахмал, лигносульфонат и поли(алкилакрилат), или поли(алкилметакрилат), или смесь поли(алкилакрилата) и поли(алкилметакрилата), или сополимер алкилакрилата и алкилметакрилата, где массовое соотношение лигносульфоната к поли(алкилакрилату), или поли(алкилметакрилату), или к смеси поли(алкилакрилата) и поли(алкилметакрилата), или к сополимеру алкилакрилата и алкилметакрилата составляет от 1:9 до 3:2; и где крахмал имеет молекулярную массу Mn самое большее 10000 г/моль; и где поли(алкилакрилат) выбран из группы, состоящей из полимеров, получаемых путем свободнорадикальной сополимеризации по меньшей мере одного этиленненасыщенного мономера С1-С8-алкилакрилата, предпочтительно поли(алкилакрилат) представляет собой поли(трет-бутилакрилат), и поли(алкилметакрилат) выбран из группы, состоящей из полимеров, получаемых путем свободнорадикальной сополимеризации по меньшей мере одного этиленненасыщенного мономера С1-С8-алкил(мет)акрилата, предпочтительно поли(алкилметакрилат) представляет собой поли(трет-бутилметакрилат).

Изобретение относится к производству плитных материалов типа древесноволокнистых высокой плотности из растительного сырья с использования синтетических связующих.

Изобретение относится к водной отверждаемой связующей композиции для связывания набора несвязанных или слабо связанных субстанций, содержащая (i) полифенольное макромолекулярное соединение, которое несет множество фенольных или полигидроксибензольных радикалов, таких как катехольные радикалы (дигидроксибензол), предпочтительно лигносульфонатные соли и конденсированные таннины и их смеси, и (ii) полиаминовое соединение с функциональной аминогруппой, причем отношение полифенольного макромолекулярного соединения к полиаминовому соединению с функциональной аминогруппой находится в интервале от 98:2 до 50:50, предпочтительно от 98:2 до 70:30 мас.

Изобретение относится к способ разделения фракции частиц лигноцеллюлозы и фракции частиц лигнина, в котором сырой лигнин образуется из исходного материала, включающего частицы лигноцеллюлозы и частицы лигнина, при этом способ включает добавление в сырой лигнин стабилизирующего химического реагента отдельно или в сочетании с гидрофобным химическим реагентом на по меньшей мере одной стадии, так что по меньшей мере стабилизирующий агент добавляют в сырой лигнин, причем указанный стабилизирующий агент представляет собой полисахарид или модифицированный полисахарид, и обработку сырого лигнина путем отделения фракции частиц лигнина и фракции частиц лигноцеллюлозы друг от друга на по меньшей мере одной стадии твердофазного разделения.

Группа изобретений относится к деревообрабатывающей промышленности, в частности к получению древесностружечных плит. Многослойная древесностружечная плита содержит по меньшей мере один центральный слой и поверхностный слой.
Наверх