Способ получения водорода



Способ получения водорода
Способ получения водорода
C25B9/17 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2750887:

Общество с ограниченной ответственностью "Интеллект" (RU)

Изобретение относится к способу получения водорода, согласно которому в заполненную микросферами реакционную зону электролитной ячейки, размещенной между катодом и анодом, подают электролит, отличающийся тем, что концы катода и анода в месте их контакта с реакционной зоной выполняют в виде перфорированных дисков, причем, отверстия перфорации равномерно распределяют по площади перфорированных дисков для обеспечения равномерного потока электролита в реакционной зоне для равномерного обтекания микросфер, которые выполняют из нанопористого полистирола с диаметром 1 мм, и покрывают островковым методом пленкой переходных металлов, в поры микросфер включают наноразмерные частицы металлов, чем обеспечивают при подаче положительных импульсов на анод и отрицательных импульсов на катод повышение выхода водорода и выделения тепла, причем, внешние поверхности электродов и соответствующих им перфорированных дисков покрывают электроизолирующей пленкой толщиной 0.1-20 мкм. Требуемый технический результат заключается в повышении производительности получения водорода с одновременным увеличением уровня генерации тепловой энергии. 1 ил.

 

Изобретение относится к электрохимии и может быть использовано для получения водорода и тепла и с применением электролитических ячеек.

Известно техническое решение [RU 93804, U1, С25В 11/10, 10.05.2010], согласно которому дистиллированную воду подают в анодное пространство ячейки, содержащей размещенные в корпусе пористые токопроводящие электроды и твердый полимерный электролит, причем на поверхность пористых электродов предварительно наносят смесь оксидов на основе празеодима, стронция и кобальта в соотношении 0,05:0,45:0,5.

Недостатком этого технического решения является относительно низкая производительность.

Известен способ получения водорода при электролизе [RU 2532561, С2, С25В 1/04, 10.11.2014], согласно которому подают энергию от источника энергии на анод и активированный катод в электролизере, а полученный в результате электролиза водород направляют в накопитель водорода и производят отбор тепла, выделяющегося в процессе электролиза в теплообменник, причем, энергию для электролиза поставляют от возобновляемых источников энергии в импульсном режиме подачи тока, а отбор тепла осуществляют посредством циркуляции теплоносителя в теплообменнике-аноде, выполненном в виде изогнутой по спирали полой трубки, при этом, активацию катода проводят импульсным П-образным электрическим током непосредственно в электролите электролизера, в качестве которого использована морская вода с содержанием соли от 3,5 до 40 г/л.

Недостатком этого технического решения является относительно низкая производительность.

Кроме того, известен способ получения водорода [RU 2497748, С2, С25В 3/38, 10.11.2013], согласно которому проводят реакцию паровой каталитической конверсии углеродсодержащей жидкости с получением продуктов реакции, содержащих водород, продукты реакции направляют на вход катодного пространства для электролиза в высокотемпературном электролизере, на выходе из катодного пространства выделяют реакционный поток, содержащий синтез-газ, который направляют на каталитический синтез углеродсодержащей жидкости, в анодном пространстве, отделенном от катодного пространства электролитическим слоем, выделяют кислород, углеродсодержащую жидкость возвращают в начало процесса на конверсию, а полученный в процессе синтеза углеродсодержащей жидкости водород очищают от оксидов углерода.

Недостатком этого технического решения является относительно низкая производительность и относительно высокая сложность.

Наиболее близким по технической сущности к предложенному является техническое решение [US 2632901, С2, С25В 1/13, 11.10.2017], согласно которому электролит подают межэлектродное пространство электролитической ячейки, содержащую непроводящий корпус, имеющий входной и выходной электроды, первую проводящую сетку, помещенную внутри корпуса, вторую проводящую сетку, помещенную внутри корпуса с промежутком от первой проводящей сетки и смежный канал, направленный к выходному электроду, множество проводящих микросфер в основном однородного размера и плотности с электрическим контактом с первой проводящей сеткой и изолированными от второй проводящей сетки, причем, проводящие микросферы выполнены с тонким проводящим металлическим покрытием, сформированным химическим соединением с катионной обменной поверхностью сферической полимерной микрокромки.

Недостатком этого технического решения является относительно низкая производительность.

Задачей, которая решается в изобретении, является создание способа, который обеспечивает большую производительность получения водорода с одновременным увеличением уровня генерации тепловой энергии.

Требуемый технический результат заключается в повышении производительности получения водорода с одновременным увеличением уровня генерации тепловой энергии.

Поставленная задача решается, а требуемый технический результат достигается тем, что, в способе, согласно которому в заполненную микросферами реакционную зону электролитной ячейки, размещенной между катодом и анодом подают электролит, при этом, согласно изобретению, концы катода и анода в месте их контакта с реакционной зоной, выполняют в виде перфорированных дисков, причем, отверстия перфорации равномерно распределяют по площади перфорированных дисков для обеспечения равномерного потока электролита в реакционной зоне для равномерного обтекания микросфер, которые выполняют из нанопористого полистирола с диаметром 1 мм, и покрывают островковым методом пленкой переходных металлов, в поры микросфер включают наноразмерные частицы металлов, чем обеспечивают при подаче положительных импульсов на анод и отрицательных импульсов на катод повышение выхода водорода и выделения тепла, причем, внешние поверхности электродов и соответствующих им перфорированных дисков покрывают электроизолирующей пленкой толщиной 0.1-20 мкм.

На чертеже представлена конструкция электролитической ячейки, с помощью которой реализуют предложенный способ.

На чертеже обозначены: 1 - верхний корпус, 2 - верхний электрод, 3 - диэлектрические сетки, например, из капрона, 4 - уплотнительное кольцо, обеспечивающее защиту от протечки электролита между диэлектрической емкостью цилиндрической формы и корпусом, 5 - фланец, обеспечивающий сжатие уплотнительного кольца для более эффективного уплотнения, 6 - диэлектрическая емкость цилиндрической формы, 7 - микросферы с диаметром 1 мм из полистирола, покрытого металлом, например, палладием, 8 - нижний корпус, 9 - нижний электрод, 10 - перфорированные диски.

Верхний 2 и нижний 9 электроды выполнены, в частности, из титана, имеют форму трубки и покрыты резистивной пленкой толщиной, например, 100 нм. На концах верхнего 2 и нижнего 9 электродов в месте соединения с диэлектрической емкостью 6 цилиндрической формы закреплены перфорированные диски 10 с диаметром, соответствующим внутреннему диаметру диэлектрической емкости 6 цилиндрической формы.

Используется электролитическая ячейка следующим образом.

Через электролитическую ячейку прокачивают снизу вверх электролит, например, 2-х молярный раствор соли LI SO4. Так, как микросферы 7 электропроводны, то для предотвращения короткого замыкания установлены диэлектрические сетки 3. При этом, внешние поверхности верхнего 2 и нижнего 9 электродов и соответствующих им перфорированных дисков 10 покрыты электроизолирующей пленкой с толщиной 0.1-20 мкм. При меньшей толщине возникают технологические трудности изготовления и снижается надежность сохранения пленки в процессе эксплуатации, а при большей толщине снижается интенсивность выхода целевого продукта.

Верхний 2 и нижний 9 электроды выполнены с возможность подачи и вывода в реакционную зону диэлектрической емкости 6 цилиндрической формы электролита в виде двухмолярного раствора соли LI SO4.

Диэлектрическая емкость цилиндрической формы выполнена с возможностью размещения в ее реакционной зоне микросфер, представляющих собой, например, нанопористые сферические сферы из полистирола с диаметром 1 мм, покрытые островковым методом пленкой переходных металлов в поры которых включены наноразмерные частицы металлов.

На электроды подается импульсное напряжение, например, 100…200 вольт. Получаемая тепловая энергия подсчитывается как разница температур на выходе (на выходе верхнего электрода 2) по отношению температуры на входе (на входе нижнего электрода 9), умноженная на величину расхода электролита через ячейку и на его теплоемкость.

Благодаря введенным верхнему и нижнему перфорированным дискам 10 с диаметром, соответствующим внутреннему диаметру диэлектрической емкости 3 цилиндрической формы, каждый из которых закреплен на концах, соответственно, верхнего 2 и нижнего 9 электродов, которые используются для ввода и вывода электролита в реакционной зоне диэлектрической емкости 6 цилиндрической формы, обеспечивается более равномерное обтекание электролитом микросфер, что повышает интенсивность формируемого потока водорода и выделения тепла.

Такое же повышение интенсивности формируемого потока водорода и выделения тепла возникает и за счет покрытия электродов и перфорированным дискам электроизолирующей пленкой. Это обеспечивает более равномерное электромагнитное поле в реакционной зоне и также способствует повышению интенсивности формируемого потока водорода и выделению тепла.

Подавая импульс положительной полярности на анод и соответственно, противоположной полярности на анод островковые наноразмерные пленки металла на поверхности микросфер и нано размерные частицы металла в их порах реализуют протекание трех процессов. Это - подогрев электролита и повышении эффективности процесса электролиза. Подогрев катализаторов разложения воды на ионы, разряда последних на атомарные радикалы и катализаторов «сборки» молекул водорода и кислорода. Причем, за счет экзотермичности процессов «сборки» температура электролита повышается существенно сильнее, чем это достигается только от джоулева тепла, протекающего тока, чем увеличивают интенсивность процесса электролиза. При этом, используют все указанные процессы в комплексе и, тем самым, повышают выход водорода, против процесса в обычной электролитической ячейке.

Экспериментально установлено, что длительность импульса положительной полярности следует выбирать больше длительности импульсов отрицательной полярности, а соотношение длительностей подбирать из условия максимального нагрева электролита в реакционной зоне и максимального выделения водорода при минимальной мощности потребления из источника электроэнергии.

Таким образом, указанные выше усовершенствования позволили получать существенно большее количество водорода и тепла, чем и достигается требуемый технический результат.

Способ получения водорода, согласно которому в заполненную микросферами реакционную зону электролитной ячейки, размещенной между катодом и анодом, подают электролит, отличающийся тем, что концы катода и анода в месте их контакта с реакционной зоной выполняют в виде перфорированных дисков, причем, отверстия перфорации равномерно распределяют по площади перфорированных дисков для обеспечения равномерного потока электролита в реакционной зоне для равномерного обтекания микросфер, которые выполняют из нанопористого полистирола с диаметром 1 мм, и покрывают островковым методом пленкой переходных металлов, в поры микросфер включают наноразмерные частицы металлов, чем обеспечивают при подаче положительных импульсов на анод и отрицательных импульсов на катод повышение выхода водорода и выделения тепла, причем, внешние поверхности электродов и соответствующих им перфорированных дисков покрывают электроизолирующей пленкой толщиной 0,1-20 мкм.



 

Похожие патенты:
Изобретение относится к области нанотехнологий, а именно к способам получения наноразмерных материалов, которые могут служить фотокатализаторами в процессах окисления органических загрязнений, присутствующих в воде и воздухе, и может быть использовано в химической, фармацевтической и текстильной промышленности.

Группа изобретений относится к медицинской технике, а именно к двум вариантам генератора водорода и двум вариантам облачной системы мониторинга. В первом варианте генератор водорода, взаимодействующий с облачной системой мониторинга, содержит устройство генерирования водорода, содержащее емкость для воды, выполненную с возможностью вмещения воды, подлежащей электролизу.

Изобретение относится к области высокотемпературной электрохимии и может быть использовано при изготовлении солнечных батарей из кремниевых пластин, изготовленных по методу Чохральского. Способ включает катодную поляризацию кремниевой пластины путем помещения кремниевой пластины в расплав K2WO4 – Na2WO4 – WO3 и подачи на нее катодного потенциостатического импульса величиной от –920 до –1020 мВ относительно платинокислородного электрода сравнения.

Система и способ управления электролитическим реактором по требованию для подачи водородно-кислородного газа в двигатель внутреннего сгорания. Система минимизирует потребление мощности реактора и паразитную энергетическую потерю, как правило, ассоциированную с непрерывными реакторами.

Изобретение относится к электрохимическому получению наноматериалов, а именно к электрохимическому способу получения нановискеров оксида меди. Способ включает электролиз поливольфраматного расплава в импульсном потенциостатическом режиме с применением платинового анода и медной фольги - в качестве катода, при этом электролизу подвергают поливольфраматный расплав, содержащий эквимольную смесь K2WO4 - Na2WO4 (1:1) и 35 мол.% WO3 в импульсном потенциостатическом режиме, где величина импульса напряжения составляет - 0.975 В при длительности 0.1 с.

Изобретение относится к неорганической химии и нанотехнологии и может быть использовано при изготовлении светопоглощающих материалов для солнечных батарей. Сначала в двухэлектродный бездиафрагменный электролизёр помещают медные электроды и раствор, содержащий в качестве растворителя систему вода : ДМФА при их объемном отношении 1:1, щавелевую кислоту и хлорид калия в качестве фонового электролита.

Изобретение относится к двум вариантам слоистого изделия для электролиза. По одному из вариантов изделие содержит: электрод для электролиза, мембрану или питающий проводник в контакте с электродом для электролиза, и жидкость, заключенную между электродом для электролиза и мембраной или питающим проводником, при этом жидкость обеспечивает возможность электроду для электролиза и мембране или питающему проводнику сцепляться друг с другом за счёт адгезии и имеет поверхностное натяжение от 20 мН/м до 80 мН/м.
Изобретение относится к неорганической химии и может быть использовано в биологии и медицине. Сначала дистиллированную воду очищают методом двойного обратного осмоса и помещают в неё электроды, изготовленные из серебра, содержащего не более 10-4 масс.

Изобретение относится к электроду для электролиза, имеющему массу на единицу площади 48 мг/см2 или менее и механическую силу, прилагаемую против силы сцепления на единицу массы × единицу площади, от 0,08 Н/(мг·см2) до 1,6 Н/(мг·см2). Также изобретение относится к двум вариантам слоистого изделия, рулону для электролиза.

Изобретение относится к электролитической ячейке для генерации чистого водорода из природного углеводородного топлива, содержащей протонпроводящий керамический электролит и слои электродов из того же материала с добавкой никеля. Ячейка характеризуется тем, что электролит и электроды выполнены на основе скандата лантана, допированного стронцием.

Изобретение может быть использовано в химической промышленности. Для получения моногидрата гидроксида лития высокой чистоты готовят раствор хлорида лития растворением материалов, содержащих хлорид лития, в воде или материалов, содержащих карбонат лития, в соляной кислоте. Раствор хлорида лития очищают от кальция и магния с использованием раствора гидроксида лития, отделяют твердую фазу от раствора хлорида лития. Осуществляют электрохимическую конверсию очищенного раствора хлорида лития в раствор гидроксида лития мембранным электролизом. Анолит, циркулирующий в анодном контуре мембранной электролизной установки, подкисляют соляной кислотой до рН 1-3. Концентрацию хлорида лития в анолите поддерживают на уровне 50-300 г/л, а концентрацию получаемого раствора гидроксида лития - в пределах 40-80 г/л. Образующийся в электролизере раствор щелочи частично выводят из процесса и направляют на стадию упаривания для кристаллизации моногидрата гидроксида лития. Пульпу моногидрата гидроксида лития центрифугируют, полученные кристаллы направляют на промывку, обезвоживание и сушку с получением конечного продукта. Изобретение позволяет вовлечь в производство материалы, содержащие карбонат лития или хлорид лития, для получения моногидрата гидроксида лития высокой степени чистоты при использовании минимального количества реагентов, исключив образование отходов. 4 з.п. ф-лы, 3 пр.
Наверх