Способ получения полимерного материала с открытыми порами

Изобретение относится к химии и технологии полимеров, в частности технологии получения полимерных материалов с открытыми порами. Описан способ получения полимерного материала с открытыми порами, включающий смешивание полиэтилена высокой плотности, толуола и парафина при массовых соотношениях полиэтилен : толуол, равном 1:29, и полиэтилен : парафин, равном 1:2-58, до образования гомогенного раствора. Смешивание осуществляют при температуре 70-110°С и интенсивности перемешивания 400-600 об/мин. Затем полученный раствор охлаждают до 20-27°С и отделяют выпавший твердый осадок путем фильтрации, из которого формуют материал и удаляют из него остатки толуола. Далее удаляют парафин экстракцией хлористым метиленом и сушат от остатков хлористого метилена. Технический результат заключается в снижении трудоемкости изготовления и простоте аппаратурного оформления при получении макропористого полиэтилена с открытой структурой пор с заданной порозностью, с высокими значениями краевых углов по отношению к воде, а также обладающего проницаемостью по отношению к неполярным органическим соединениям и ограниченно проницаемого по отношению к воде. 8 з.п. ф-лы, 7 ил., 4 табл.,10 пр.

 

Изобретение относится к химии и технологии полимеров, в частности технологии получения полимерных материалов с открытыми порами, которые могут быть использованы в производстве пленок, фильтров, мембран, сорбентов и других газо- и жидкостно- проницаемых, а также теплоизолирующих изделий; сепараторов аккумуляторных батарей, матриц для получения нанокомпозитов, полимер-полимерных смесей и т.д.

Известны общие подходы к синтезу пористых полимерных материалов [Advanced sorbents for oil-spill cleanup: recent advances and future perspectives / J. Ge, H.-Y. Zhao, H.-W. Zhu, J. Huang // Advanced Materials. - 2016. - Vol. 28. - P. 10459-10490., Saleem, J. Oil sorbents from plastic wastes and polymers: A review / J. Saleem, M. A. Riaz, G. McKay // Journal of Hazardous Materials. - 2018. - Vol. 341. - P. 424-437., Handbook of Porous Solids / Edited by F. Schuth, K. S. W. Sing, and J. Weitkarnp. - WILEY-VCH Verlag GmbH, 2002. - P. 1964-2013., Gu, S. Open cell aerogel foams with hierarchical pore structures / S. Gu, S. C. Jana // Polymer. - 2017. - Vol. 127. - P. 1-9]: использование вспенивающих агентов различной природы [Основы технологии переработки пластмасс: Учебник для вузов / С.В. Власов, Л.Б. Кандырин, В.Н. Кулезнев и др. - М. : Мир, 2006. - 600 с.], формование на твердых и мягких шаблонах [Hou, Q. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process / Q. Hou, D. W. Grijpma, J. Feijen // J. Biomed Mater Res. B. Appl. Biomater. - 2003. - Vol. 67. - P. 732-740], холодная вытяжка в присутствии жидких сред, вызывающих набухание полимера [патент США № 3426754, МПК A61F13/02 и др., 1969 г. и патент США № 3839516, МПК B29C44/00 и др., 1974 г.], термоиндуцированное фазовое разделение [Wang, G. Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water / G. Wang, H. Uyama// Scientific Reports. - 2016. - Vol. 6. - P. 21265-21269., Preparation and characterization of ECTFE hollow fiber membranes via thermally induced phase separation / H. Karkhanechi, S. Rajabzadeh, E. D. Nicolò, H. Usuda // Polymer. - 2016. - Vol. 99. - P. 515-524], сшивание полимерных порошков [авторское свидетельство СССР 1666476, МПК C08J 9/24, C08L 23/06, 1991 г.], использование фазового разделения, индуцированного действием нерастворителя и/или его паров [Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity / H. Hong, Y. Pan, H. Sun, Z. Zhu // Solar Energy Materials and Solar Cells. - 2018. - Vol. 174. - P. 307-313., Additive-free poly(vinylidene fluoride) aerogel for oil/water separation and rapid oil adsorption / X. Chen, Y. N. Liang, X. Tang, W. Shen, X. Hu // Chemical Engineering Journal. - 2017. - Vol. 308. - P. 18-26], химически индуцированного фазового разделения, в котором при непосредственном разделении происходит реакция полимеризации [Facile Synthesis of Marshmallow-like Macroporous Gels Usable under Harsh Conditions for the Separation of Oil and Water / G. Hayase, K. Kanamori, M. Fukuchi, H. Kaji // Angewandte Chemie. - 2013. - Vol. 52. - P. 1-5., Handbook of Porous Solids / Edited by F. Schuth, K. S. W. Sing, and J. Weitkarnp. - WILEY-VCH Verlag GmbH, 2002. - 1964 - 2013], совмещение вышеуказанных способов [Gu, S. Open cell aerogel foams with hierarchical pore structures / S. Gu, S. C. Jana // Polymer. - 2017. - Vol. 127. - P. 1-9].

Лишь немногие из них предложены или реализованы для самых многотоннажных, дешевых и широко распространенных полиолефинов - полиэтилена и полипропилена, причем структуры с открытыми порами, пригодные для использования в качестве мембран и фильтров, описаны в единичных работах.

Так, в патенте РФ № 2224773 [МПК C08J 9/04, B29C 67/20 и др., 2004 г.] приводится технология получения вспененных полиолефинов с открытыми ячейками (порами), которые можно применить в качестве звукоизоляции. Образование пористой структуры обеспечивается за счет использования вспенивающих агентов непосредственно в процессе переработки. Недостатком технологий с использованием вспенивающих агентов является наличие закрытых и открытых пор.

Скорее всего, материал, полученный по технологии, отраженной в патенте РФ № 2194719 [МПК C08F 6/12, 2002 г.], является пористым, хотя прямых указаний на этот факт в тексте патента нет. В данной работе использовались полиолефины, патент посвящен способу выделения полиолефинов из растворов.

Известны способы получения нанопористых полимеров, в том числе полиолефинов, методом одноосной или двуосной вытяжки в физически активной среде [патент РФ № 2676765, МПК B29C 55/04, B29C 55/12, 2019 г.; патент РФ № 2308375, МПК B29C 55/06, C08J 9/28, 2007 г.; и др]. Недостатком данных методов является сложность технологии вытяжки и регулирования пористости изделий.

Известен способ получения пористых полимерных материалов различных размеров общей совокупностью методов, основанных на физическом разделении смеси полимер-растворитель. Растворитель представляет собой смеси веществ различной растворяющей способности по отношению к растворяемому полимеру. Так, самая простая система состоит из следующих составляющих: полимер, «хороший» растворитель, «плохой» растворитель. Общий принцип действия данной группы методов основан на образование гомогенной системы при определенных условиях (это условие является необходимым и достаточным) и последующем нарушении гомогенности с образованием границ разделов фаз: жидкость-твердое тело, жидкость-жидкость для повышения зародышеобразования выпадающего осадка полимера. Принцип физического разделения может быть реализован в следующих вариантах: термически индуцированное [Wang, G. Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water / G. Wang, H. Uyama// Scientific Reports. - 2016. - Vol. 6. - P. 21265-21269], химически индуцированное [Facile Synthesis of Marshmallow-like Macroporous Gels Usable under Harsh Conditions for the Separation of Oil and Water / G. Hayase, K. Kanamori, M. Fukuchi, H. Kaji // Angewandte Chemie. - 2013. - Vol. 52. - P. 1-5], индуцированное нерастворителем и/или его парами [Additive-free poly(vinylidene fluoride) aerogel for oil/water separation and rapid oil adsorption / X. Chen, Y. N. Liang, X. Tang, W. Shen, X. Hu // Chemical Engineering Journal. - 2017. - Vol. 308. - P. 18-26]. Общим недостатком является обязательное применение лиофильной сушки при извлечении одного из растворителей, что лимитирует процесс по следующим факторам: время, сложность процесса, производительность по массе готового продукта, ограничения по применяемым растворителям.

Известен способ формирования пористой структуры методом спекания порошков полиэтилена, облученного и необлученного ионизирующим излучением, с последующим уплотнением и спеканием [авторское свидетельство СССР 1666476, МПК C08J 9/24, C08L 23/06, 1991 г.]. В описании изобретения имеются только некоторые технические данные полученных мембран (прочность на растяжение, воздухопроницаемость, потери напора воздуха, размер пузырьков воздуха), необходимые для вывода о соответствии материала требованиям, предъявляемым к пористым пластинам для мелкопузырчатой аэрации в аэротенках. Данные о плотности, пористости и размерах пор не приведены.

Таким образом, известные способы изготовления открытопористых материалов на основе полиолефинов, в частности полиэтиленов немногочисленны.

В качестве ближайшего аналога принят способ получения пористого материала, применимый к различным полимерам: модифицированному поливиниловому спирту, альгинату натрия, карбоксиметилцеллюлозе, декстрановым полимерам, фосфоцеллюлозе и др. [патент РФ № 2035476, МПК C08J 9/00, 1995 г.]. Пористый материал получают путем приготовления водного раствора полимерной соли с последующим его замораживанием и удалением водного растворителя. Удаление водного растворителя осуществляют без размораживания замерзших исходных компонентов, после чего проводят обработку полимера раствором кислоты или соли в органическом растворителе, являющимся нерастворителем полимера, с последующим удалением обрабатывающего раствора. Способ характеризуется тем, что удаление водного растворителя осуществляется лиофильной сушкой или криоэкстрапцией.

Недостатком данного метода является ограничение в применимости только к водорастворимым полимерам.

Задачей, на решение которой направлено заявляемое изобретение, является разработка простого и удобного способа получения макропористых полиэтиленов высокой плотности с открытой структурой пор и с заданной порозностью.

Технический результат, который достигается при решении поставленной задачи, выражается в снижении трудоемкости изготовления, простоте аппаратурного оформления и получении материала:

- с заданной порозностью;

- макропористого с возможной мезопористостью (по классификации ИЮПАК) с размерами пор как 100-300 нм, так и группами полостей меньше 70 нм с наличием нитей полиэтилена (на основе SEM);

- с высокими значениями краевых углов по отношению к воде;

- проницаемого по отношению к неполярным органическим соединениям;

- ограниченно проницаемого по отношению к воде.

Поставленная задача решается тем, что способ получения полимерного материала с открытыми порами, включающий приготовление раствора полимера, добавление шаблона, удаление растворителя, формование материала, удаление шаблона, отличается тем, что смешивают полимер, в качестве которого используют полиэтилен высокой плотности, растворитель, в качестве которого используют толуол, и шаблон, в качестве которого используют парафин, при массовых соотношениях полиэтилен : толуол, равном 1:29 и полиэтилен : парафин, равном 1:2-58, при температуре 70-110°С и интенсивности перемешивания 400-600 об/мин до образования гомогенного раствора, полученный раствор охлаждают естественным путем до температуры 20-27°С и отделяют выпавший твердый осадок путем фильтрации, из которого формуют материал и удаляют из него остатки толуола, далее производят удаление парафина экстракцией хлористым метиленом, а после осуществляют сушку от остатков хлористого метилена.

Кроме того, материал формуют механическим путем, получая слои толщиной 4-40 мм.

Кроме того, выпадение твердого осадка происходит при температуре 40-43°С.

Кроме того, остатки толуола из материала удаляют с помощью естественной сушки в течение минимум 24 часов.

Кроме того, остатки толуола из материала удаляют вакуумированием.

Кроме того, парафин из материала с массовым соотношением полиэтилен : парафин 1:2-10 удаляют путем экстракции хлористым метиленом в течение 10-12 часов.

Кроме того, парафин из материала с массовым соотношением полиэтилен : парафин больше чем 1:10 удаляют путем экстракции хлористым метиленом в течение 15-17 часов.

Кроме того, остатки хлористого метилена из материала удаляют с помощью естественной сушки.

Кроме того, остатки хлористого метилена из материала удаляют вакуумированием.

Сопоставительный анализ совокупности существенных признаков предлагаемого технического решения и совокупности существенных признаков прототипа и аналогов свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения решают следующие функциональные задачи.

Признак «в качестве [полимера] используют полиэтилен высокой плотности» описывает тип используемого сырья - многотоннажный, дешевый и широко распространенный полиолефин с большим диапазоном эксплуатационных свойств.

Признак «в качестве [растворителя] используют толуол» описывает тип растворителя для полимера, который должен удовлетворять следующим требованиям:

- полностью растворять полимер при повышенных температурах;

- прекращать растворение и приводить к осаждению полимера и шаблона при температурах в диапазонах, близких или достигающих нормальных значений (20-27°С).

Признак «в качестве [шаблона] используют парафин» описывают тип шаблона, который выступает в качестве структурообразователя и термофиксатора структуры раствора, который отвечает следующим требованиям:

- возможность получения гомогенных смесей с растворителем при определенных условиях;

- меньшая растворяющая способность по отношению к полимеру по сравнению растворителем;

- твердое агрегатное состояние при нормальных условиях;

- доступность и химическая устойчивость.

Признак «в массовом соотношении полиэтилен : толуол, равном 1:29» описывает соотношение компонентов по массе, которое определено исходя из растворяющей способности и условий процесса.

Признак «в массовом соотношении полиэтилен : парафин, равном 1:2-58» описывает соотношение компонентов по массе и позволяет задавать порозность получаемого материала в пределах не более 1:10.

Задание массового соотношения толуол : парафин (или превышение соотношения полиэтилен : парафин более чем 1:10) позволяет создавать материалы с большой порозностью, однако повышенной контракцией и хрупкостью полученного материала.

Признаки «смешивают полимер, растворитель и шаблон при температуре 70-110°С и интенсивности перемешивания 400-600 об/мин до образования гомогенного раствора» описывают технологию приготовления раствора, при этом минимальная температура 70°С и интенсивность перемешивания 400-600 об/мин обеспечивают растворение в толуоле как полиэтилена, так и парафина.

Признаки «[гомогенный раствор] охлаждают естественным путем до температуры 20-27°С и отделяют выпавший твердый осадок путем фильтрации» описывают процесс удаления части растворителя из раствора.

Признак «формуют материал» и признаки первого и второго зависимых пунктов формулы описывают процесс и режимные характеристики формования материала, а также описывают значение температуры, при которой полиэтилен застывает в растворе, содержащем полиэтилен, парафин и остатки толуола, как следствие, фиксируется структура этого раствора с образованием связанных друг с другом пор и формированием развитой внутренней поверхности, способной сорбировать и пропускать сконденсированные неполярные органические соединения и их смеси.

Признак «удаляют из [материала] остатки толуола», а также признаки третьего и четвертого зависимых пунктов формулы описывают процесс и режимные характеристики удаления остатков толуола.

Признак «производят удаление парафина экстракцией хлористым метиленом, а после осуществляют сушку от остатков хлористого метилена», а также признаки зависимых пунктов формулы с пятого по восьмой описывают процесс и режимные характеристики удаления парафина и остатков хлористого метилена из материала.

Причем растворитель, которым производится удаление парафина, должен удовлетворять следующим требованиям:

- иметь низкую температуру кипения, которая не менее чем на 10°С ниже температуры размягчения полимера;

- иметь значительную растворяющую способность по отношению к шаблону;

- быть инертным по отношению к полимеру при температуре кипения.

На фиг.1 показана структура образца по примеру 1 при 20 мкм.

На фиг.2 показана структура образца по примеру 2 при 2 мкм.

На фиг.3 показана структура образца по примеру 3 при 20 мкм.

На фиг.4 показана структура образца по примеру 4 при 10 мкм.

На фиг.5 показана структура образца по примеру 5 при 10 мкм.

На фиг.6 приведены линейные изотермы адсорбции и десорбции для образца по примеру 1.

На фиг.7. приведены линейные изотермы адсорбции и десорбции для образца по примеру 2.

В качестве исходного сырья используют:

- полиэтилен низкого давления в форме порошка, гранул и т.п. - согласно ГОСТ 16338-85 или ТУ соответствующего производителя;

- толуол - в соответствии с ГОСТ 5789-78;

- твердый парафин - согласно ГОСТ 23683-89.

Заявляемый способ осуществляют в несколько этапов по стандартным методикам на известном оборудовании.

1. Смешивают полиэтилен высокой плотности, толуол и мелко нарезанный парафин в заданном соотношении при температуре 70-110°С и интенсивном перемешивании 400-600 об/мин, в результате в течение 50-55 мин (среднее значение, возможны изменения в сторону увеличения) образуется гомогенный раствор - здесь возможны 2 варианта:

- соединяют все компоненты сразу;

- полиэтилен высокой плотности добавляют в толуол, нагревают при перемешивании, и после растворения вносят парафин, не прекращая нагрев и перемешивание.

Возможно изменение условий процесса, которые задают исходя из необходимости полного растворения полимера, шаблона и достижения полной однородности раствора.

2. Полученный гомогенный раствор охлаждают естественным путем, при этом при температуре 40-43°С происходит выпадение твердого осадка.

Охлажденный до температуры 20-27°С гомогенный раствор фильтруют, чтобы отделить выпавший твердый осадок.

Необходимо отметить, что основная порозность обусловлена действием шаблона, в то время как наличие растворителя позволяет получить дополнительную порозность по механизму термически индуцированного фазового разделения при снижении температуры раствора и осаждении полиэтилена и парафина.

3. Формуют материал при температуре 20-27°С, для чего твердый осадок, содержащий полиэтилен, парафин и остатки толуола, подвергают механической обработке, получая слои толщиной 4-40 мм.

Повторное нагревание недопустимо вследствие нарушения пористой структуры.

4. В случае необходимости для получения гранул пластины нарезают на частицы требуемых размеров и удаляют остатки толуола естественной сушкой или вакуумированием.

5. Удаляют парафин, для чего материал, содержащий полимер и шаблон, в оболочке из нетканого полипропиленового материала помещают в аппарат Сокслета и экстрагируют хлористым метиленом при заданных режимных характеристиках.

Процесс необходимо проводить при отсутствии внешних механических воздействий, в том числе перемешивания, вибрации и т.п., так как может быть нарушена целостность конечного продукта. Рекомендуется использовать удерживающую сетку для избегания потери целостности и минимизации образования материла с размерами менее 3 мм.

Полноту экстракции проверяют гравиметрическим методом, исходя из известного соотношения полиэтилен : парафин.

6. Удаляют остатки хлористого метилена естественной сушкой или вакуумированием до полного испарения растворителя для шаблона.

Авторы использовали полиэтилен марки HD7000F Innoplus by PTT Global Chemical (производства Таиланд) и готовили гомогенный раствор с использованием обратного холодильника.

Соотношение компонентов приведено в таблице 1.

В примерах с соотношением полиэтилен : парафин не более чем 1:10 добавлена пометка о малой концентрации парафина (МК).

В примерах с соотношением полиэтилен : парафин более чем 1:10 дополнительно приведено соотношение толуол : парафин.

Таблица 1

Соотношение компонентов полимерного материала

Пример Масса полиэтилена, г Масса парафина, г Соотношение полиэтилен : парафин Соотношение
толуол : парафин
1 3 86,85 1:29 1:1
2 3 43,14 1:14,5 1:0,5
3 3 173,83 1:58 1:2
4 (МК) 3 30,02 1:10 -
5 (МК) 3 15,08 1:5 -
6 (МК) 3 6,07 1:2 -
7 (МК) 6 12,03 1:2 -
8 (МК) 6 18,12 1:3 -
9 (МК) 6 30,10 1:5 -
10 (МК) 6 42,10 1:7 -

Режимные характеристики получения полимерного материала приведены в таблице 2.

Таблица 2

Режимные характеристики получения полимерного материала

Пример Температура смешивания полиэтилена, толуола и парафина, °С Интенсивность перемешивания, об/мин Толщина отливаемого слоя, мм Температура застывания материала, °С Продолжительность экстракции хлористым метиленом, часы
1 70 600 20 42 16
2 75 550 30 42,5 15
3 80 600 40 43 17
4 (МК) 85 450 15 41 11
5 (МК) 90 500 10 41,5 10,5
6 (МК) 93 400 4 40 10
7 (МК) 95 420 6 40 11,5
8 (МК) 100 450 25 42 10
9 (МК) 105 530 32 42,5 11
10 (МК) 110 580 35 43 12

Далее исследовали полученные образцы.

1. Для определения структуры провели сканирующую электронную микроскопию отдельных образцов на микроскопе Carl Zeiss CrossBeam 1540XB.

Как видно на фиг. 1-5, с увеличением соотношения полиэтилен : парафин возрастает количество вытянутых углублений размером 4-6 мкм, пор, пустот и выступов материала. Помимо этого, увеличивается количество и распределения кластеров пор в диапазоне 2 мкм и менее. Также увеличивается количество нитей полимера. В целом, для данного материала характерна развитая поверхность с наличием значительных углублений в форме «ущелий» и несколько крупных впадин. Наличие неровностей на швах волокон ПЭ и наличию области с очень мелкими порами дает основание предположить о наличии мезопор в данных областях размерами менее 50 нм.

2. Изучили удельную поверхностную площадь, пористость и объем пор на аппарате Autosorb Quantachrome® ASiQwin™ адсорбцией N2 при 77,3 К.

Пробоподготовка осуществлялась при температуре 30°С. Результаты приведены в таблице 3.

Таблица 3

Показатели удельной поверхностной площади, пористости и объема пор

Пример Удельная поверхностная площадь, м2 Объем пор, см3 Размер пор, нм
1 14,10 0,08207 3,784
2 12,12 0,08720 4,085

Как видно из таблицы 3, при более высоком соотношении полиэтилен : парафин удельная поверхностная площадь немного выше, однако объем и размер пор меньше. Величины практически равнозначны при большой разнице соотношений, что позволяет предположить, что для остальных соотношений значения параметров будут идентичными. В целом, же поверхность является мезопористой и макропористой.

1. Построили линейные изотермы адсорбции и десорбции, представленные на фиг.6 и 7.

Как видно на графиках, они идентичны друг другу с небольшим различием по значениям. Согласно классификации вида кривых изотермы Ленгмюра, для исследуемого пористого ПЭ характерна макропористая структура, что согласуется с данными SEM. Линия насыщения наступает достаточно рано (в районе 4 см3/г), однако при повышении относительного давления, несмотря не десорбцию, продолжается насыщение с достижением полислоев адсорбата.

2. Провели исследование краевого угла по отношению к воде (Θ) методом «плененного пузырька» с последующим измерением на гониометре. Измерения проводились на двух точках для серии образцов одной концентрации.

Также проведены измерения для изделий со свободным застыванием без обработки поверхности и ускоренного застывания, вызванного дополнительным охлаждением на стадии формования изделия. Повторные измерения проводились через краткий промежуток времени - 35 мин.

Перед измерением проводилась механическая обработка поверхности скальпелем до достижения ровной площадки. Полученные данные представлены в таблице 4.

Таблица 4

Значения краевого угла по отношению к воде

Пример Θ, градусы Θ повторный, градусы
1 154 128
2 157 125
3 152 132
4 153 136
5, 9 152 138
6, 7 132,3 124
7 (свободное застывание) 58,6 -
7 (ускоренное застывание) 81 -
8 150 137
8 (неподготовленная поверхность) 144 -
10 151 140
10 (неподготовленная поверхность) 148 -

На основе данных таблицы 4 при обработке поверхности наблюдается увеличение показателя краевого угла. Однако при увеличении соотношения ПЭ : парафин не обнаружено значительного увеличения краевого угла, а основные значения расположены в диапазоне 150-158°. Уменьшение значений при повторных измерениях на тех же участках обусловлено удержанием микрокапель воды на неровностях, в порах, пустотах до полного высушивания материала. Помимо этого, установлено заметное влияние условий формования, при которых при отсутствии формы образуемая поверхность не является шероховатой, что приводит к существенному уменьшению величины краевого угла.

1. Способ получения полимерного материала с открытыми порами, включающий приготовление раствора полимера, добавление шаблона, удаление растворителя, формование материала, удаление шаблона, отличающийся тем, что смешивают полимер, в качестве которого используют полиэтилен высокой плотности, растворитель, в качестве которого используют толуол, и шаблон, в качестве которого используют парафин, при массовых соотношениях полиэтилен : толуол, равном 1:29, и полиэтилен : парафин, равном 1:2-58, при температуре 70-110°С и интенсивности перемешивания 400-600 об/мин до образования гомогенного раствора, полученный раствор охлаждают естественным путем до температуры 20-27°С и отделяют выпавший твердый осадок путем фильтрации, из которого формуют материал и удаляют из него остатки толуола, далее производят удаление парафина экстракцией хлористым метиленом, а после осуществляют сушку от остатков хлористого метилена.

2. Способ по п.1, отличающийся тем, что материал формуют механическим путем, получая слои толщиной 4-40 мм.

3. Способ по п.1, отличающийся тем, что выпадение твердого осадка происходит при температуре 40-43°С.

4. Способ по п.1, отличающийся тем, что остатки толуола из материала удаляют с помощью естественной сушки в течение минимум 24 ч.

5. Способ по п.1, отличающийся тем, что остатки толуола из материала удаляют вакуумированием.

6. Способ по п.1, отличающийся тем, что парафин из материала с массовым соотношением полиэтилен : парафин 1:2-10 удаляют путем экстракции хлористым метиленом в течение 10-12 ч.

7. Способ по п.1, отличающийся тем, что парафин из материала с массовым соотношением полиэтилен : парафин больше чем 1:10 удаляют путем экстракции хлористым метиленом в течение 15-17 ч.

8. Способ по п.1, отличающийся тем, что остатки хлористого метилена из материала удаляют с помощью естественной сушки.

9. Способ по п.1, отличающийся тем, что остатки хлористого метилена из материала удаляют вакуумированием.



 

Похожие патенты:

Изобретение относится к полиэтиленовой композиции, пригодной для производства различных видов формованных изделий. Описана полиэтиленовая композиция для производства формованных полых изделий, содержащая A) 30-70 мас.% гомополимера или сополимера этилена с плотностью, равной или превышающей 0,960 г/см3, и индексом текучести расплава MIE, составляющим от 2 до 20 г/10 мин, измеренным в соответствии с ISO 1133 при 190°C и с массой груза 2,16 кг, В) 30-70 мас.% сополимера этилена, имеющего индекс MIE ниже, чем индекс MIE из пункта A), при этом указанная композиция обладает следующими признаками: 1) плотность, составляющая от 0,940 до 0,955 г/см3, предпочтительно от 0,940 до 0,951 г/см3, определенная в соответствии с ISO 1183 при 23°C; 2) соотношение MIF/MIP, составляющее от 12 до 40, в частности от 15 до 38 или от 17 до 35, где MIF представляет собой индекс текучести расплава при 190°С и с массой груза 21,60 кг, а MIP представляет собой индекс текучести расплава при 190°С и с массой груза 5 кг, определенные согласно стандарту ISO 1133-1; 3) значение Mz, составляющее от 500000 до 3500000 г/моль, предпочтительно от 800000 до 3300000 г/моль, в частности от 800000 до 3000000 г/моль, где Mz представляет собой z-среднюю молекулярную массу, измеренную методом ГПХ; 4) вязкость η0,02, составляющая от 80000 до 300000 Па⋅с или от 85000 до 250000 Па⋅с, где η0.02 представляет собой комплексную динамическую вязкость при угловой частоте 0,02 рад/с, измеренную ротационным коническим вискозиметром при температуре 190°C; 5) индекс HMWcopo, составляющий от 1 до 15, предпочтительно от 1 до 14, в частности от 1 до 10 или от 1 до 9, где индекс HMWcopo определяется в соответствии со следующей формулой: HMWcopo = (η0,02 x tmaxDSC)/(10^5), где η0,02 представляет собой комплексную динамическую вязкость расплава в Па⋅с, измеренную в ротационном коническом вискозиметре при температуре 190°C в условиях сдвига с приложенной угловой частотой 0,02 рад/с, tmaxDSC представляет собой время в минутах, необходимое для достижения максимального значения теплового потока кристаллизации при температуре 124°C в спокойном состоянии, измеренное в изотермическом режиме прибором дифференциальной сканирующей калориметрии; 6) соотношение Mz/Mw*ПДЦР, составляющее менее чем 6,4, предпочтительно равное или меньшее чем 6,0, в частности равное или меньшее чем 5,9, где ПДЦР представляет собой отношение измеренного среднеквадратичного радиуса инерции макромолекулы Rg, измеренного способом GPC-MALLS, к среднеквадратичному радиусу инерции макромолекулы для линейного ПЭ, имеющего ту же молекулярную массу в 1000000 г/моль.

Изобретение относится к минерально-полимерным композиционным материалам на основе термопластичных полимеров, работающих в условиях повышенной влажности и переменных температур обладающим улучшенными эксплуатационными свойствами. Описана полимерная композиция для изготовления строительных материалов, которая включает полиэтилен низкого давления, хризотил-асбест и модифицирующие добавки при следующем соотношении компонентов в мас.%: полиэтилен низкого давления - 26,12, хризотил-асбест - 67,41, антиоксидант - 1,13, пигмент - 1,68, полиэтиленовый воск - 1,13, стеариновая кислота - 1,4, полиэтилен хлорированный - 1,13.
Изобретение относится к многослойной ёмкости для транспортировки опасных веществ. Ёмкость содержит: первый слой, представляющий собой внутренний слой, выполненный из полиэтилена высокой плотности (HDPE); барьерный слой, представляющий собой промежуточный слой, расположенный между первым слоем и вторым слоем, выполненный из смеси полимеров, содержащий от 78 до 92 мас.% гомополимера этилена, представляющего собой полиэтилен высокой плотности, от 3 до 10 мас.% гомополимера полиамида, от 5 до 10 мас.% привитого малеиновым ангидридом полиэтилена (MAgPE) и от 0 до 2 мас.% снимающего статическое электричество соединения к общему весу состава смеси полимеров, необязательно, в комбинации с подходящими добавками; и второй слой, представляющий собой наружный слой, содержащий HDPE.

Изобретение относится к строительной и мебельной промышленности, а именно к способу получения полимерной композиции на основе полиэтилена и органического наполнителя, и может быть использовано для производства изделий инженерно-технического назначения методами экструзии и компрессионного формования. В способе получения полимерной композиции измельченные стеклянные отходы и полиэтилен низкого давления компаундируют при температуре плавления полиэтилена до постоянного значения температуры компаундирования и после этого вносят органический наполнитель в виде соломы злаковых культур, при следующем соотношении компонентов, мас.%: полиэтилен низкого давления 45-50, измельченные стеклянные отходы с размером частиц менее 3 мкм 5-15, органический наполнитель - солома злаковых культур с размером частиц менее 50 мкм - остальное.

Группа изобретений относится к пленкам, содержащим этиленовую полимерную композицию, где этиленовые полимерные композиции содержат однородно разветвленный первый этиленовый полимерный компонент и однородно разветвленный второй этиленовый полимерный компонент с более высокой плотностью, чем первый этиленовый полимерный компонент.

Изобретение относится к способу получения полимерного композиционного материала на основе сверхвысокомолекулярного полиэтилена (СВМПЭ). Материал содержит в качестве модификатора наполненный органомодифицированный клиноптилолит, для чего предварительно выполняют адсорбцию цетилтриметиламмония бромида на поверхности клиноптилолита путем выдержки отобранной фракции клиноптилолита 10-50 мкм в водном растворе цетилтриметиламмония бромида при температуре 25±1°С в течение 96±4 часов, с последующей промывкой и сушкой клиноптилолита при температуре 80±1°С в течение 1±0,1 часа.
Изобретение относится к способу получения конструкционного материала, который может найти широкое применение в строительстве, в области приборостроения, в частности для получения корпусов, кожухов, стоек, ячеек измерительных приборов, а также в производстве бронепластин. Способ получения конструкционного материала заключается в том, что расплав термопластичного полимера в виде сверхвысокомолекулярного полиэтилена с молекулярным весом 1-9 млн г/моль и песок перемешивают.

Изобретение относится к композиции, которая может быть использована для получения внешних оболочек кабелей, включая силовые кабели, кабели связи, а также к кабелю, полученному из этой композиции, к способу получения композиции, а также к применению катализатора в способе получения композиции. Композиция изоляции кабеля содержит мультимодальный олефиновый сополимер, который имеет плотность от 0,935 до 0,960 г/см3 и MFR2 (скорость течения расплава) от 2,2 до 10,0 г/10 мин.
Настоящее изобретение относится к композиции мультимодального полиэтилена, содержащей: (А) от 30 до 65 массовых частей среднемолекулярного полиэтилена, характеризующегося среднемассовой молекулярной массой (Mw) в диапазоне от более, чем 90000 до 150000 г/моль; (В) от 15 до 35 массовых частей, первого сверхвысокомолекулярного полиэтилена, характеризующегося среднемассовой молекулярной массой (Mw) в диапазоне от более, чем 1000000 до 5000000 г/моль; и (С) от 10 до 60 массовых частей второго сверхвысокомолекулярного полиэтилена, характеризующегося среднемассовой молекулярной массой (Mw) в диапазоне от более, чем 1000000 до 5000000 г/моль, причем ударная прочность по Шарпи при 23°С для композиции мультимодального полиэтилена составляет, по меньшей мере, 70 кДж/м2, предпочтительно находится в диапазоне от 70 до 120 кДж/м2, а также к листу, содержащему композицию мультимодального полиэтилена, и к использованию листа в качестве облицовки, профилей, детали машин или промышленной детали.

Изобретение имеет отношение к газопроницаемой микропористой мембране для передачи запаха и способу ее получения. Мембрана содержит микропористую мембрану, содержащую первую сторону и вторую сторону, противоположную первой стороне, где мембрана содержит термопластический органический полимер, содержащий полиолефин.

Изобретение относится к композициям для изоляционного слоя на проводе или кабеле. Предложен провод или кабель, содержащий проводник, покрытый изоляционной композицией, где указанная изоляционная композиция содержит i) полиэтиленовый сополимер, имеющий температуру плавления 105°С или менее, и ii) светостабилизатор на основе стерически затрудненного амина (HALS), содержащий по меньшей мере одну 2,2,6,6-тетраметилпиперидинильную группу, присутствующую в количестве от 0,5 до 1,5 мас.
Наверх