Полиимиды и сополиимиды как диэлектрические материалы



Полиимиды и сополиимиды как диэлектрические материалы
Полиимиды и сополиимиды как диэлектрические материалы
Полиимиды и сополиимиды как диэлектрические материалы
Полиимиды и сополиимиды как диэлектрические материалы
Полиимиды и сополиимиды как диэлектрические материалы

Владельцы патента RU 2751883:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) (RU)

Настоящее изобретение относится к полиимидам и сополиимидам, предназначенным для изготовления диэлектрических материалов, которые могут быть использованы в микроэлектронике. Полиимиды и сополиимиды представляют собой соединения общей формулы:

где x=1, 2; n = 20-100, m = 80-0. Полученные соединения обладают комплексом высоких эксплуатационных характеристик, в том числе гидролитической и термической устойчивостью. 1 табл., 8 пр.

 

Изобретение относится к новым диэлектрическим полимерным материалам, конкретно к полиимидам и сополиимидам на основе диангидрида 3,4,3’,4’-тетракарбоксидифенила (ДФ) и несимметричных алициклосодержащих диаминов, предназначенным для изготовления диэлектрических материалов, обладающих комплексом высоких эксплуатационных характеристик (гидролитическая и термическая устойчивость), которые могут быть использованы в микроэлектронике.

Известны полиимиды на основе ароматических, алифатических, алициклических диаминов и диангидридов тетракарбоновых кислот, которые обладают высокими термическими и электрическими показателями [Бессонов М.П. и др. Полиимиды-класс термостойких полимеров. - Л.; Наука, 1983.-328с.].

Однако их недостатком является сравнительно невысокая устойчивость к действию щелочей и перегретого пара.

Наиболее близкими являются адамантансодержащие полиимиды и сополиимиды на основе диангидрида 3,4,3’,4’-тетракарбоксидифенилоксида (ДФО) и диаминов ряда адамантана на основе 1-аминометил-3-(4`-аминофенил)адамантана, 1-аминоэтил-3-(4`-аминофенил)адамантана и 9,9-бис-(4-аминофенил) флуорена (АФ) [Новаков И.А., Орлинсон Б.С., Брунилин Р.В. Исследование гидролитической устойчивости полиимидов и сополиимидов на основе адамантиленароматических диаминов // Химия и технология элементорганических мономеров и полимерных материалов // Волгоград 1996г.].

Недостатками данных полиимидов являются недостаточно высокие значения приведенной вязкости указанных полимеров, а, следовательно, невозможность получения пленки с высокими физико-механическими показателями, недостаточная растворимость полиимидов, а также то, что синтез мономеров - адамантансодержащих диаминов-осуществляют с использованием адамантансодержащего моноалкиламина [Патент RU № 2068840, МПК С07С211/49, 10.11.1996], получение которого является достаточно многостадийным процессом [Патент US № 3748359, МПК C07C87/40, 24.07.1973]. Таким образом, указанные соединения получают в 7-8 стадий. В то же время 1,4-замещенные диамины синтезируют в 3-4 стадии [Синтез адамантиленароматических диаминов и полиимидов на их основе ХХ XXI Региональная конференция молодых исследователей Волгоградской г. Волгоград, 8-11 ноября 2016 г. области Наход М. А. г. Волгоград, 8-11 ноября 2016 г. Тезисы докладов.], что делает более доступными полимеры на их основе. Известны также (со)полиимиды на основе диангидрида 3,4,3’,4’-тетракарбоксидифенилоксида (ДФО), несимметричных бициклических диаминов: 3-[(2-aминометил)бицикло[2.2.1]гепт-3-ил)анилина и 4-[(2-аминометил)бицикло[2.2.1]гепт-3-ил]анилина и 9,9-бис-(4-аминофенил) флуорена (АФ) [Патент RU № 2409599, МПК C08G73/10, 20.01.2011]. Данные полимеры обладают достаточно высокой гидролитической устойчивостью, а 3-[(2-aминометил)бицикло[2.2.1]гепт-3-ил)анилин и 4-[(2-аминометил)бицикло[2.2.1]гепт-3-ил]анилин получают в 3-4 стадии. Однако данные полиимиды обладают сравнительно невысокой термоокислительной устойчивостью, а значения приведенной вязкости синтезированных полимеров не превышало 0,45 дл/г, что также не позволяет получать пленки на их основе.

Задачей изобретения является разработка новых гидролитически и термически устойчивых диэлектрических материалов на основе адамантансодержащих диаминов и диангидрида ДФ.

Технический результат – расширение ассортимента диэлектрических материалов, диэлектрические полиимиды и сополиимиды, обладающие гидролитической и термической устойчивостью.

Технический результат достигается в полиимидах и сополиимидах общей формулой

,

где x=1, 2; n = 20÷100, m = 80÷0, как гидролитически и термически устойчивых диэлектрических материалах.

Сущностью изобретения являются диэлектрические полиимиды и сополиимиды, обладающие повышенной термической устойчивостью при сохранении гидролитической устойчивости на уровне. Алициклические фрагменты в структуре ароматического полиимида повышают гидролитическую устойчивость полиимидов и сополиимидов, что связано с экранированием реакционных центров объемными гидрофобными фрагментами, затрудняющими их доступность для гидролизующих агентов, а также с тем, что наличие фрагмента адамантана снижает электрофильность карбонильных атомов углерода имидных циклов, а отсутствие шарнирного атома в диангидриде приводит к увеличению термоокислительной устойчивости полимера. Кроме этого более высокие значения приведенной вязкости синтезированных полиимидов свидетельствуют об их высокой молекулярной массе, что приводит к увеличению их гидролитической и термической устойчивости.

Заявленные полиимиды и сополиимиды получены на основе диангидрида 3,4,3’,4’-тетракарбоксидифенила (ДФ), с использованием в качестве диаминов несимметричных 1,4-замещенных адамантансодержащих диаминов 4-[4-(аминометил)трицикло[3.3.1.13,7]декан-1-ил]анилина (1) и 4-[4-(2-аминоэтил)трицикло[3.3.1.13,7]декан-1-ил]анилина (2) и 9,9-бис-(4-аминофенил)флуорена (АФ):

,

где х= 1, 2; n = 20÷100, m = 80÷0.

Синтез полимеров проводили методом одностадийной высокотемпературной полициклизации в растворе. В качестве растворителя в синтезе полимеров использовали 1,2-дихлорбензол. Температуру процесса постепенно поднимали от 20 до 170-175°С. Химическое строение полученных полиимидов подтверждали данными ИК-спектроскопии: наличием полос поглощения в области 750 и 1380 см-1, характерных для пятичленного имидного цикла, а также в области 1740 и 1780 см-1, отвечающих колебаниям карбонильной группы имидного цикла. ИК–спектры сняты на ИК-Фурье спектрометре Nicolet 6700. Соотношение звеньев в полимерах определяется из мольного соотношения загружаемых мономеров и подтверждается исходя из количественного выхода или посредством пересчета непрореагировавших мономеров.

Диэлектрические свойства полученных полиимидов и сополиимидов определяли посредством измерения иммитанса, для чего использовался LCR-метр Е7-21. Базовая погрешность измерения емкости и тангенса угла диэлектрических потерь – не хуже 0,15%. Для поддержания стабилизированной температуры в указанном интервале применена автоматическая печь LBH-T02P производства компании Daihan Scientific Co, Корея. Погрешность поддержания температуры в процессе измерения – не более 0,1 К. Регистрация температуры образца производится платиновым термосопротивлением ТСП-50, подключенным к измерителю MS-8226 DMM производства компании Mustech, Гонконг. Погрешность измерения значения термосопротивления – не более ±0,5%. Токопроводящая паста: фирма изготовитель-Mechanic, марка - DJ912.

Гидролитическую устойчивость синтезированных полимеров исследовали в условиях их деструкции под действием перегретого пара в гетерогенных условиях и оценивали по относительному изменению величин приведенной вязкости (ηпр ) этих полимеров.

Термическую устойчивость оценивали по температуре 5% потери массы образца полимера. Динамический термогравиметрический анализ образцов полимеров проводили на дериватографе Q-1200 (фирмы МОМ), скорость подъема температуры 10 град/мин., навеска образца 50÷70 мг.

Результаты исследования диэлектрических свойств, а также гидролитической устойчивости и термической устойчивости предлагаемых полиимидов и сополиимидов на основе диангидридов ДФ, алициклосодержащих диаминов (1, 2) и АФ представлены в таблице. Для сравнения были приведены результаты исследований известных полиимидов на основе диангидрида 3,4,3’,4’-тетракарбоксидифенилоксида (ДФО) и диаминов: 1-аминометил-3-(4`-аминофенил)адамантана (3), 1-аминоэтил-3-(4`-аминофенил)адамантана (4), 3-[(2-aминометил)бицикло[2.2.1]гепт-3-ил)анилина (5), 4-[(2-аминометил)бицикло[2.2.1]гепт-3-ил]анилина (6) и 9,9-бис-(4-аминофенил)флуорена (АФ). Также для сравнения в таблице представлены данные по известному электроизоляционному полимерному материалу – промышленному полиимиду ПМ на основе пиромеллитового диангидрида (ПМДА) и 4,4’-диаминодифенилового эфира (7).

Таблица

Алицикло-
содержащий диамин
Содержание диамина АФ, m Диангидрид Диэлектри-ческая проницае-мость ηпрпр. исх** Температура 5% уменьшения массы, °С
Номер диамина n 6 час. 12 час.
1 100 0 ДФ 2.81 1 1 440
1 80 20 ДФ 2.81 0,95 0,80 460
1 50 50 ДФ 2.81 0,93 0,78 470
1 20 80 ДФ 2.81 0,85 0,65 480
2 100 0 ДФ 2.73 1 1 430
2 80 20 ДФ 2.73 0,97 0,84 450
2 50 50 ДФ 2.73 0,94 0,80 460
2 20 80 ДФ 2.73 0,87 0,70 470
3* 100 0 ДФО - 0,97 0,81 380
4* 100 0 ДФО - 1 1 380
5* 100 0 ДФО - 1 0,95 400
6* 100 0 ДФО - 1 0,91 405
-* 0 100 ДФО 3.03 0,80 0,57 500
7*** 100 0 ПМДА 3.50 - - 530

*- для сравнения

**- ηпр измеряли в симм.-тетрахлорэтане при Т=25±0,1°С, гидролиз проводили при 180°С.

***- пленка получена двустадийным способом.

Как следует из представленных в таблице данных представленные диэлектрические материалы - полиимиды и сополиимиды на основе 1,4-замещенных адамантансодержащих диаминов по гидролитической устойчивости и термическим свойствам превосходят известные адамантан- и бициклосодержащие полимеры, обладая при этом большими значениями приведенной вязкости. В то же время они обладают повышенной гидролитической устойчивостью по сравнению с известными полностью ароматическими полиимидами на основе диамина АФ, хотя и несколько уступают последнему по термоокислительной устойчивости.

Пример 1. Синтез полиимидов

В реактор емкостью 10 мл, снабженный барботером для подвода инертного газа и гидрозатвором загружают 0,999.10-3 моль 1,4-замещенного адамантансодержащего диамина 1 или 2, 0,2937г (0,99910-3 моль) диангидрида 3,4,3’,4’-тетракарбоксидифенила и 3,3 мл 1,2-дихлорбензола, концентрация реагентов 0,30 моль/л. Реакционную массу нагревают в течение 1 часа от 20 до 175°С, непрерывно продувая инертным газом для отвода реакционной воды, и выдерживают в этих условиях еще 12 часов. Затем после охлаждения реакционную массу растворяют в хлороформе, выливают в ацетон, выпадший осадок полиимида отфильтровывают, промывают ацетоном, переосаждают из хлороформа. Выход полимера 0,7731 г, 97 % от теоретического, ηпр.=1,20-1,40 дл/г.

Пример 2. Синтез сополиимидов

n=20, m=80: Аналогичен примеру 1 за исключением использования 1,998.10-4 моль 1,4-замещенного адамантансодержащего диамина 1 или 2, 0,2785 г (7,9910-4 моль) 9,9-бис-(4-аминофенил)флуорена, и 0,2937 г (0,999.10-3 моль) диангидрида 3,4,3’,4’-тетракарбоксидифенила. Концентрация реагентов 0,30 моль/л. Реакционную массу нагревают в течение 1 часа от 20 до 175°С, непрерывно продувая инертным газом для отвода реакционной воды, и выдерживают в этих условиях еще 12 часов. Затем после охлаждения реакционную массу растворяют в хлороформе, выливают в ацетон, выпадший осадок полиимида отфильтровывают, промывают ацетоном, переосаждают из хлороформа. Выход полимера количественный, ηпр.=1,39 дл/г.

Полиимиды при изменении соотношения m и n получают аналогичным образом с учетом пересчета загрузки ингредиентов.

Полиимидные пленки получали методом полива на стеклянную подложку 13% раствора полимера в симм.-тетрахлорэтане и последующем выдерживанием пленки при 80°С в вакуумном шкафу в течении 1 часа.

Таким образом, заявленные полиимиды и сополиимиды на основе диангидрида 3,4,3’,4’-тетракарбоксидифенила (ДФ), с использованием в качестве диаминов несимметричных 1,4-замещенных адамантансодержащих диаминов 4-[4-(аминометил)трицикло[3.3.1.13,7]декан-1-ил]анилина и 4-[4-(2-аминоэтил)трицикло[3.3.1.13,7]декан-1-ил]анилина и 9,9-бис-(4-аминофенил)флуорена (АФ) являются диэлектрическими материалами, обладающими гидролитической и термической устойчивостью.

Полиимиды и сополиимиды общей формулы

,

где x=1, 2; n = 20-100, m = 80-0, как гидролитически и термически устойчивые диэлектрические материалы.



 

Похожие патенты:

Настоящее изобретение относится к вариантам способов получения соли разветвлённого олигогексаметиленгуанидина (ОГМГ). Соль разветвлённого олигогексаметиленгуанидина имеет общую формулу (I): (I), где R представляет или , а n1, n2 и n3 равны 1-3, z равно 0,15-1,10 при среднечисловой молекулярной массе Mn в интервале от 850 до 1500 Да, выбранной из гидрохлорида, гидросукцината, гидроцитрата, гидросалицилата, гидросульфосалицилата, имеющей чистоту, достаточную для её применения в качестве фармацевтической субстанции.

Настоящее изобретение относится к отверждаемой композиции для изготовления композиционных материалов и покрытий, способу ее получения, отвержденному готовому продукту и способу получения препрега или жгутового препрега. Отверждаемая композиция включает (а) бисфенол-А-бензоксазиновую смолу, (b) активный разбавитель – 3,4-эпоксициклогексилметил-3,4′-эпоксициклогексанкарбоксилат и (с) растворимый полиимид, полученный взаимодействием 5(6)-амино-1(4′-аминофенил)-1,1,3-триметилиндана с диангидридом бензофенонтетракарбоновой кислоты.

Изобретение относится к биоцидному веществу, которое может найти применение для борьбы с патогенными микроорганизмами в медицине, ветеринарии, текстильной и строительной индустрии. Биоцидное вещество представляет собой производное полигуанидингидрохлорида, полученное взаимодействием гуанидингидрохлорида с 2-метил-1,5-пентаметилендиамином при перемешивании при температуре 140-200°С в течение 2-4 ч до достижения рН 7-8.

Настоящее изобретение относится к способу получения соли полиаспарагиновой кислоты и применению соли полиаспарагиновой кислоты. Данный способ включает стадии: (a) обеспечение в реакторе контактирования компонентов смеси, содержащей: аспарагиновую кислоту, от 3 до 10 мол.% кислотного катализатора и необязательно воду; (b) нагревание смеси согласно (а) при охлаждении обратным холодильником без отгонки воды при температуре реакции от 100 до 220°С до степени превращения аспарагиновой кислоты по меньшей мере 1%; (c) поликонденсацию реакционной массы согласно (b) при одновременной отгонке воды при температуре от 170 до 250°С; (d) гидролиз продуктов поликонденсации согласно (с) при добавлении основания.

Изобретение относится к новым азотсодержащим соединениям, относящимся к семейству полиаминов, к вариантам способа получения азотсодержащих соединений и их применению в способе селективного удаления H2S из газового потока. Азотсодержащее соединение имеет нижеуказанную формулу (I), в которой n означает целое число в интервале от 0 до 30, R1 отвечает формуле (g1)-(g4), R2 отвечает формуле (g5) в которой R6 означает атом водорода, алкильный или гидроксиалкильный радикал, содержащий от 1 до 6 атомов углерода, R7 означает алкильный или гидроксиалкильный радикал, содержащий от 1 до 6 атомов углерода, радикалы R6 и R7 могут быть соединены между собой ковалентной связью или гетероатомом, образуя гетероцикл с 5, 6, 7 и 8 атомами, при этом R6 не является атомом водорода.

Изобретение относится к способу получения солей разветвленного олигогексаметиленгуанидина (ОГМГ), выбранных из гидросукцината, гидрохлорида, гидроцитрата, гидросалицилата, гидросульфосалицилата, имеющих степень чистоты, достаточную для их применения в качестве фармацевтической субстанции. Способ включает синтез технического гидрохлорида ОГМГ (ОГМГ-ГХ), представленного указанной ниже общей формулой, где R представляет n1, n2 и n3 равны 1-3, z равно 0,15-1,10, при среднечисловой молекулярной массе Мn в интервале от приблизительно 600 до 1100, поликонденсацией гексаметилендиамина (ГМДА) с гидрохлоридом гуанидина (ГГХ) при мольном соотношении от 1,0:1,0 до 1,0:1,2 и минимальной температуре реакции 180°С.

Настоящее изобретение относится к покрытиям с низким коэффициентом трения, наносимым на стеклянные контейнеры, такие как упаковка лекарственных средств. Техническим результатом является повышение стойкости к механическому повреждению.

Изобретение относится к устойчивым к хлору фильтрационным мембранам, содержащим N-алкилзамещенные производные полианилина, для применения, например, для очистки воды и к способам их получения и применения. 6 н.

Изобретение относится к термостойким полифторароматическим полиимидным и сополиимидным матрицам, которые предназначены для нелинейно-оптических полимерных материалов, к способу получения полиимидных и сополиимидных матриц, а также к способу получения нелинейно-оптических материалов с высокой температурно-временной стабильностью свойств.

Изобретение относится к очистке загрязненных металлических поверхностей. Очистку осуществляют с применением композиции, содержащей по меньшей мере один алкоксилированный полиэтиленимин (В) с полидисперсностью Q=Mw/Mn в интервале от 3,5 до 10 и средней молекулярной массой Mw в интервале от 2500 до 1500000 г/моль, причем алкоксилированный полиэтиленимин (В) содержит основную цепь и алкиленоксидные звенья в массовом отношении в интервале от 1:2 до 1:50.

Настоящее изобретение относится к отверждаемой композиции для изготовления композиционных материалов и покрытий, способу ее получения, отвержденному готовому продукту и способу получения препрега или жгутового препрега. Отверждаемая композиция включает (а) бисфенол-А-бензоксазиновую смолу, (b) активный разбавитель – 3,4-эпоксициклогексилметил-3,4′-эпоксициклогексанкарбоксилат и (с) растворимый полиимид, полученный взаимодействием 5(6)-амино-1(4′-аминофенил)-1,1,3-триметилиндана с диангидридом бензофенонтетракарбоновой кислоты.
Наверх