Устройство регистрации динамики и состояния ударно нагруженной сферической поверхности лайнера



Устройство регистрации динамики и состояния ударно нагруженной сферической поверхности лайнера
Устройство регистрации динамики и состояния ударно нагруженной сферической поверхности лайнера

Владельцы патента RU 2752060:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") (RU)
Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU)

Изобретение относится к области измерительной техники, а именно к регистрации параметров динамики ударно-индуцированного «пыления» с внутренней поверхности сферического лайнера при исследовании ее состояния/поведения при нагрузке. Устройство регистрации динамики состояния ударно нагруженной сферической поверхности лайнера включает размещенный на основании полусферический заряд взрывчатого вещества (ВВ) и датчики, регистрирующие движение лайнера, который установлен в полости заряда с возможностью формирования герметичного объема, соединенного с системой газоввода. Лайнер установлен примыкающим к заряду ВВ. Герметичный объем сформирован между лайнером и полусферическим кронштейном, закрепленным на основании выпуклостью в сторону лайнера. Система газоввода соединена с насосом для создания разрежения. Дополнительно установлены датчики, основанные на разных физических принципах, для измерения скорости, распределения плотности и массы пылевого потока, вылетающего с поверхности лайнера, а именно коллиматоры, пьезодатчики, коллиматоры с индикаторными экранами, которые закреплены на кронштейне и размещены в герметичном объеме на разных расстояниях от поверхности лайнера. Обеспечивается повышение информативности результатов эксперимента путем прямого определения количественных характеристик процесса ударно-индуцированного «пыления». 1 ил.

 

Изобретение относится к области измерительной техники, а, именно к регистрации параметров динамики ударно-индуцированного «пыления» с внутренней поверхности сферического лайнера разгоняемого энергией взрыва, при исследовании его поведения при нагрузке.

Известно, что при выходе ударной волны на свободную поверхность разгоняемого сферического лайнера, с него может происходить выброс частиц материала, так называемое ударно-индуцированное «пыление». Размеры частиц «пыли» варьируются от единиц до сотен микрон, а их скорость достигает нескольких километров в секунду. На параметры «пылевых» потоков влияет множество факторов - характеристики начальных возмущений на свободной поверхности и внутренние дефекты материала, профиль ударной волны, фазовое состояние материала, наличие газа перед свободной поверхностью и давление в нем. Для исследования динамики движения и состояния поверхности лайнера, в том числе параметров ударно-индуцированного «пыления», используются специально сконструированные макеты.

Так, например, из описания к патенту RU 192997 (публик. 09.10.2019) известно устройство для регистрации динамики ударно нагруженной сферической поверхности лайнера и параметров сжатия газа сходящимся полусферическим лайнером, содержащее основание в виде стального диска, на котором симметрично относительно оси устройства установлен полусферический заряд ВВ, в полости которого установлен стальной лайнер, между лайнером и зарядом ВВ установлена оболочка, выполненная из материала с низким динамическим импедансом, на внутренней и/или наружной поверхностях лайнера и/или оболочки установлены электроконтактные датчики. В основании под лайнером выполнена полость для напуска газа, в которой герметично закреплен полусферический сегмент кварцевого стекла, в основании под выполненной полостью установлены датчики-коллиматоры измерительного приемника, которые установлены симметрично относительно оси устройства по схеме гетеродин-интерферометра, при этом датчики-коллиматоры установлены по нормали и без зазора к поверхности сегмента кварцевого стекла, введены световоды для пирометра, которые установлены в основании по нормали и без зазора к поверхности сегмента кварцевого стекла. По диаграммам скорости W(t) движения внутренней границы металлического лайнера судят о состоянии лайнера (наличие откола, «пыления»), степени чистоты исследуемого газа, симметрии и динамики его движения.

Недостатком этого устройства является отсутствие возможности измерения количественных характеристик потока частиц, а именно распределение плотности и массы потока частиц в направлении его движения.

Из описания к патенту RU 2699382 (публик. 05.09.2019) известно еще одно устройство для регистрации динамики состояния ударно нагруженной сферической поверхности лайнера путем регистрации движения ударной волны по элементам конструкции (симметрии и динамики движения лайнеров в газовой среде). Устройство содержит размещенные на стальном сплошном основании полусферический заряд ВВ, в основании под лайнером выполнена полость для напуска газа под высоким начальным давлением, в которой герметично закреплено оптическое окно из кварцевого стекла, при этом под зарядом ВВ соосно установлены полусферические прокладка из материала с низким динамическим импедансом и два стальных лайнера, в одном из которых -внутреннем, выполнены отверстия. На прокладке и ближнем к ней лайнере установлены электроконтактные датчики, оптические коллиматоры измерительного приемника установлены в основании по нормали к поверхности окна вплотную к нему. Такое ус тройство в эксперименте позволяет регистрировать время и разновременность начала движения прокладки и ближайшего к ней лайнера, непрерывно регистрировать диаграмму скорости W(t) движения внутренних границ обоих металлических лайнеров. По виду диаграммы судят о скорости, динамике и состоянии лайнеров (наличие откола, «пыления»). Данное устройство выбрано в качестве ближайшего аналога.

Недостатком такого устройства является отсутствие возможности измерения распределения плотности и массы потока частиц в направлении его движения. Определение указанных параметров необходимо, потому что они влияют на степень засорения газа в различных устройствах с использованием его сжатия, а также для создания физико-математической модели процесса ударно-индуцированного «пыления»,с помощью которой косвенно судят о параметрах процесса «пыления».

Техническим результатом заявляемого изобретения является повышение информативности результатов эксперимента путем определения количественных характеристик процесса ударно-индуцированного «пыления».

Указанный технический результат достигается тем, что с помощью заявляемого устройства регистрации динамики ударно нагруженной сферической поверхности лайнера определяют количественные характеристики процесса ударно-индуцированного «пыления». Заявляемое устройство регистрации динамики и состояния ударно нагруженной сферической поверхности лайнера включает размещенный на основании полусферический заряд ВВ и датчики, регистрирующие движение лайнера, который установлен в полости заряда ВВ с возможностью формирования герметичного объема, соединенного с системой газоввода, при этом лайнер установлен примыкающим к заряду ВВ, герметичный объем сформирован между лайнером и полусферическим кронштейном, закрепленным на основании выпуклостью в сторону лайнера, герметичный объем предназначен для создания разрежения, для чего система газоввода соединена с насосом для создания разрежения, кроме того дополнительно установлены датчики, основанные на разных физических принципах, для измерения скорости, распределения плотности и массы пылевого потока, вылетающего с поверхности лайнера, которые закреплены на кронштейне и размещены в герметичном объеме на разных расстояниях от поверхности лайнера.

Установка лайнера примыкающим к заряду ВВ дает возможность формировать процесс ударно-индуцированного «пыления» поверхности лайнера.

Выполнение внутреннего герметичного объема между поверхностью лайнера и полусферическим кронштейном, размещенным выпуклостью в сторону лайнера, позволяет сформировать место радиального размещения датчиков.

Использование датчиков, основанных йа различных физических принципах (пьезодатчики, коллиматоры с индикаторными экранами), установленных на разных расстояниях от внутренней поверхности сферического лайнера, при отсутствии преграды в виде герметизирующего слоя, дает возможность исследовать динамику (скорость) и количественные характеристики пылевого потока (распределение плотности и массы в направлении движения), выбрасываемого со свободной поверхности лайнера. В том числе, можно наблюдать протекание процесса до и после прихода второй ударной волны.

Подключение внутренней полости устройства к системе газоввода насоса для создания разрежения позволяет контролировать давление разрежения внутри устройства, тем самым нивелировать влияние газовой ударной волны на проводимые измерения.

Размещение датчиков на разном расстоянии от поверхности внутреннего лайнера позволяет получить информацию на разных этапах развития исследуемого процесса (нагружение одной, двумя и т.д. ударными волнами).

Свободный объем кронштейна после размещения датчиков заливают компаундом, в качестве дополнительной меры герметизации.

На фиг. схематично изображено заявляемое устройство, где:

1 - заряд ВВ;

2 - лайнер;

3 - кронштейн;

4 - компаунд;

5 - герметизирующие прокладки

В качестве примера конкретного выполнения заявляемого устройства может служить макет для исследования процесса выброса частиц со свободной поверхности лайнера из свинца при ударно-волновом нагружении. Макет включает полусферический заряда ВВ, размещенный на стальном основании, в полости которого осесимметрично установлен лайнер в виде полусферической оболочки из свинца. В основании закреплен полусферический кронштейн выпуклостью в сторону лайнеров. Между поверхностью лайнера и полусферическим кронштейном сформирован внутренний герметичный объем, соединенный с системой газоввода, которая соединена с насосом для создания разрежения. Для обеспечения герметичности установлены прокладки между основанием и кронштейном, и между основанием и лайнером. Во внутреннем герметичном объеме на кронштейне закреплены датчики различных типов на четырех базах измерения. Заподлицо с наружной поверхностью полусферического кронштейна установлены датчики-коллиматоры, а на расстояниях 6, 8 и' 18 мм - пьезодатчики, коллиматоры с индикаторными экранами. Датчики предварительно проходят проверки на герметичность.

В экспериментах регистрируют скорость контактной границы лайнера, скорость, плотность и удельную на единицу поверхности массу пылевого потока. Регистрацию осуществляют следующим образом. При инициировании заряда ВВ 1 формируется сферическая ударная волна, которая выходит на свободную поверхность лайнера 2. В момент выхода ударной волны на поверхность исследуемого лайнера из свинца, с определенной шероховатостью Ra≥0,13, с нее выбрасывается высокоскоростной поток частиц.

Кинематические и динамические параметры данного процесса (скорость свободной поверхности, скорость пылевого потока, скорость индикаторных экранов) регистрируются с помощью датчиков, закрепленных в кронштейне 3, включающем коллиматоры с индикаторными экранами и пьезодатчики. Оценивают (вычисляют) распределения плотностей и масс потока частиц в направлении его движения, с использованием результатов измерений и известных математических вычислений.

Таким образом, заявляемое устройство обеспечивает возможность проведения испытаний по определению количественных характеристик процесса ударно-индуцированного «пыления» сферической поверхности лайнера, разгоняемого энергией взрыва взрывчатого вещества.

Устройство регистрации динамики и состояния ударно нагруженной сферической поверхности лайнера, включающее размещенный на основании полусферический заряд взрывчатого вещества и датчики, регистрирующие движение лайнера, установленного в полости заряда с возможностью формирования герметичного объема, соединенного с системой газоввода, отличающееся тем, что лайнер установлен вплотную примыкающим к заряду, герметичный объем предназначен для создания разрежения и сформирован между лайнером и полусферическим кронштейном, закрепленным на основании выпуклостью в сторону лайнера, в котором дополнительно на разных расстояниях от поверхности лайнера установлены датчики, основанные на различных физических принципах, для измерения скорости, распределения плотности и массы пылевого потока частиц, выбрасываемых с поверхности лайнера, а именно коллиматоры, пьезодатчики, коллиматоры с индикаторными экранами.



 

Похожие патенты:

Изобретение относится к области производства сферических порохов по водно-дисперсионной технологии и предназначено для определения реологических характеристик порохового лака на фазе формирования. Штативный пенетрометр, включающий штатив с лапкой, корпус с измерительной линейкой, цилиндрическую чашу, стержень с упором и индентором, подставку, отличается использованием взаимозаменяемых стержней с упорами и с перфорированными дисками с диаметрами в пределах 25-40 мм с цилиндрическими и коническими отверстиями с диаметром 4 мм, сферами с диаметрами в пределах 12-26 мм и конусами с диаметрами в пределах 7,9-16,6 мм, высотой 20-30 мм и углами при вершинах в пределах 15-45° в зависимости от консистенции порохового лака и глубины погружения стержня с упором и индентором в пороховой лак до 90 мм.

Изобретение относится к области техники взрывных работ и исследования быстропротекающих гидродинамических процессов, в частности к устройствам, обеспечивающим безопасность проведения экспериментов при интенсивных динамических (взрывных) нагрузках, создаваемых нагружающими устройствами, с использованием взрывчатых веществ, например, при проведении исследования ударно-индуцированного «пыления» - выброса частиц при выходе ударной волны на свободную поверхность образца.

Изобретение относится к устройствам для моделирования процессов сжигания твердого, жидкого топлива и их комбинаций. Оно обеспечивает возможность моделирования процесса сжигания топлива в топках котельных агрегатов с возможностью контроля и управления технологическими параметрами в широких диапазонах.

Изобретение относится к области горного дела и взрывным работам, и может быть использовано для определения оптимальных параметров буровзрывных работ при проходке горных выработок и очистной отбойке на горнодобывающем предприятии. Способ определения затухания детонации характеризуется заряжанием взрывчатого вещества в оболочку, подрывом и определением величины полноты инициирования заряда.

Изобретение описывает стандартные образцы для метрологического обеспечения испытаний по измерению химической стабильности топлив для реактивных двигателей, содержащие химически чистые углеводороды, характеризующиеся тем, что содержат декалин, 1-децен и н-ундекан при следующем соотношении компонентов, % масс.: декалин 48-67, 1-децен 2-18 и н-ундекан - остальное.

Предложен способ подготовки проб нефтепромысловых химреагентов для определения хлорорганических соединений и органически связанного хлора, включающий отбор пробы исследуемого образца, введение растворителя, выполнение экстрагирования хлорсодержащих соединений из экстракционной смеси с последующим расслоением экстракционной смеси на неполярную и полярную фазы, отбор аликвоты экстракта растворителя для последующего анализа и определение отсутствия или наличия соединений хлора в аликвоте растворителя, при обнаружении соединений хлора повторную экстракцию с определением хлора в полярной фазе до момента полного отсутствия в ней хлора, при достижении отсутствия соединений хлора в полярной фазе отбор аликвоты неполярной фазы для последующего определения содержания хлора в аликвоте неполярной фазы.

Использование: для определения количества присадки «Агидол-1» в дизельных топливах. Сущность изобретения заключается в том, что осуществляют отбор пробы, хроматографическое разделение на колонке Kromasil 100-3,5 С-18, имеющей длину 100 мм и диаметр 3,5 мм, УФ-детектирование на длине волны 210 нм, идентификацию пика, соответствующего определяемому компоненту «Агидол-1», последующее определение площади пика и по построенному в координатах площадь пика - концентрация присадки калибровочному графику нахождение количества присадки «Агидол-1», при этом перед хроматографическим разделением пробу дизельного топлива смешивают с изопропиловым спиртом в соотношении 1:9.

Изобретение относится к области неразрушающего контроля и диагностики оптическими методами и касается устройства для исследования процесса горения нанопорошков металлов или их смесей. Устройство содержит инициирующий лазер, две цифровые камеры и лазерный усилитель яркости, на оптической оси которого с одной стороны последовательно расположены собирающая линза и вогнутое зеркало, вдоль оптической оси которого расположен линейный транслятор, на котором размещен объект исследования.
Изобретение относится к области нефтехимии, нефтепродуктообеспечения и к средствам борьбы с хищениями и фальсификацией нефтепродуктов. Изобретение касается способа маркировки нефтепродуктов, заключающегося во введении в массу нефтепродукта маркера, представляющего собой органическое соединение, с последующим его детектированием.

Изобретение относится к области испытания топлив на стендовых установках, в частности, для оценки низкотемпературной прокачиваемости топлив для дизельных двигателей. Установка содержит размещенные в термокамере топливный бак с датчиком температуры, соединенные последовательно по потоку исследуемого топлива топливоподкачивающий насос с электроприводом, сменные фильтры грубой и тонкой очистки, датчик расхода топлива через фильтр тонкой очистки, датчики давления, расположенные до и после фильтра тонкой очистки, датчик температуры исследуемого топлива, циркуляционный контур для перемешивания топлива в баке при охлаждении и блок информационно-управляющей системы, обеспечивающий сбор информации от измерительной аппаратуры и управление исполнительным оборудованием, размещенный вне термокамеры, в которую дополнительно введены электромагнитные клапаны для автоматизированного управления прокачкой топлива по независимым трассам, имитатор гидравлического сопротивления топливной системы, топливный насос высокого давления с управляемым электроприводом, топливные форсунки с мерной емкостью, датчик давления, расположенный перед фильтром грубой очистки, два датчика давления на выходе насоса высокого давления перед соответствующими топливными форсунками, два дополнительных встроенных датчика температуры топлива в баке и датчик расхода топлива на входе в топливный бак по циркуляционному контуру.

Изобретение относится к области измерительной техники и может быть использовано для экспериментальных исследований показателей горючести защитных покрытий. Заявленное устройство представляет собой испытательную машину, состоящую из камеры горения, зафиксированной на опорах.
Наверх