Способ получения модифицированного активного угля

Изобретение относится к области адсорбционной техники и может быть использовано для получения модифицированных активных углей (МАУ), применяемых для водоочистки технологических стоков предприятий химической и фармацевтической промышленности. Способ включает промывание промышленного АУ дистиллированной водой, обработку малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) 1:100, в течение 24 ч и дальнейший прогрев при температуре 200°С в атмосфере углекислого газа, который подается из баллона через редуктор с усредненным расходом 8-9 л/мин в течение 1 ч. Техническим результатом изобретения является повышение сорбционной емкости активных углей по диметилформамиду, снижение расхода электроэнергии, реагентов, увеличение расхода сточных вод, исключение взрывоопасных реагентов. 3 табл., 3 пр.

 

Изобретение относится к области адсорбционной техники и может быть использовано для получения модифицированных активных углей (МАУ), применяемых для водоочистки технологических стоков предприятий химической и фармацевтической промышленности.

Известен способ получения МАУ, включающий пропитку углей водой или раствором соляной кислоты с концентрацией 1-4 вес. % при соотношении суммарного объема пор угля и воды или кислоты 1,0-(0.7-1,0), а затем обработку угля 9÷15% раствором термоактивной смолы в фурфуроле при весовом соотношении угля и раствора 1,0-(0,35-0,68), выдерживание до сыпучести и термообработку со скоростью подъема температуры 450-900 град/час до 700-900°С с последующей выдержкой при этой температуре в течение 0,2-0,5 ч (РФ патент №2175885).

Недостатком данного способа является использование сложного по составу модифицирующего реагента, а также длительность и трудоемкость процесса модифицирования.

Наиболее близким является способ получения МАУ, включающий обработку малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) - 1:10 в течение 24 часов и дальнейший прогрев при температуре 100°С в течение 1 часа на воздухе, отличающийся тем, что АУ обрабатывают раствором перекиси водорода с массовой долей растворенного вещества 3% при отношении массы угля (г) к объему раствора перекиси водорода (см3) - 1:10 (РФ патент №2696447).

Недостатком данного способа модифицирования является значительный расход реагентов, тепла и электричества, а также взрывоопасные свойства перекиси водорода.

Задачей настоящего изобретения является повышение сорбционной емкости активных углей по диметилформамиду, снижение расхода электроэнергии, реагентов, увеличение расхода сточных вод, исключение взрывоопасных реагентов.

Поставленная задача достигается промыванием промышленного активного угля (АУ) дистиллированной водой, дальнейшей обработкой малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) - 1:100 в течение 24 часов, а затем дальнейший прогрев при температуре 200°С в атмосфере углекислого газа, который подается из баллона через редуктор с усредненным расходом 8-9 л/мин в течение 1 часа. В качестве сравнения использовали промышленный активный уголь марки АГ-5.

Пример 1.

АУ промыли дистиллированной водой и обработали малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) - 1:100 в течение 24 часов, а затем прогрели в течение 30 минут, 1, 2, 3, 6 часов при температуре 200°С в атмосфере углекислого газа, который подается из баллона через редуктор с усредненным расходом 8-9 л/мин.

Далее на модифицированных образцах осуществляли адсорбцию в статических условиях из водных растворов диметилформамида с концентрацией 1 моль/дм3. Полученные данные представлены в таблице 1.

Пример 2.

АУ промыли дистиллированной водой и обработали малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) - 1:100 в течение 24 часов, а затем прогрели в интервале температур: 50,100, 200, 300, 500°С в атмосфере углекислого газа, который подается из баллона через редуктор с усредненным расходом 8-9 л/мин в течение 1 часа.

Далее на модифицированных образцах осуществляли адсорбцию в статических условиях из водных растворов диметилформамида с концентрацией 1 моль/дм3. Полученные данные представлены в таблице 2. Влияние температуры в процессе модифицирования АУ на адсорбцию из водного раствора диметилформамида.

Пример 3.

АУ промыли дистиллированной водой и обработали малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) - 1:100 в течение 24 часов, а затем прогрели при температуре 200°С в атмосфере воздуха (нулевой опыт) и углекислого газа, который подается из баллона через редуктор с усредненным расходом 8-9 л/мин в течение 1 часа.

Далее на модифицированных образцах осуществляли адсорбцию в статических условиях из водных растворов диметилформамида с концентрацией 1 моль/дм3. Полученные данные представлены в таблице 3. Влияние оксида углерода в процессе модифицирования на адсорбцию из водного раствора диметилформамида.

В результате проведенных исследований были выбраны следующие условия модифицирования, включающий промывание промышленного активного угля (АУ) дистиллированной водой, обработку малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) - 1:100 в течение 24 часов и дальнейший прогрев при температуре 200°С в течение 1 часа в атмосфере углекислого газа, который подается из баллона через редуктор с усредненным расходом 8-9 л/мин.

Извлечение диметилформамида полученными сорбентами возрастает на 46,7%. Полученный модифицированный активный уголь, может применяться для очистки технологических сточных вод предприятий химической и фармацевтической промышленности от диметилформамида.

Способ получения модифицированного активного угля, включающий промывание промышленного активного угля (АУ) дистиллированной водой, обработку малоконцентрированным стоком производства ε-капролактама, содержащим ε-капролактам до 0,5 г/дм3 и сульфат аммония до 0,2 г/дм3 при отношении массы угля (г) к объему сточных вод (см3) 1:100, в течение 24 ч и дальнейший прогрев при температуре 200°С в течение 1 ч в атмосфере углекислого газа, который подается из баллона через редуктор с усредненным расходом 8-9 л/мин.



 

Похожие патенты:

Изобретение относится к способу получения графена. Способ включает предварительное измельчение природного графита до фракции до 1 мм, помещение измельченного графита в аппарат вихревого слоя и активацию в течение 6-20 мин, при этом соотношение массовых частей графита к массовым частям ферромагнитных частиц равно 1:(0,5-2).

Изобретение относится к электрохимическому способу получения карбида молибдена электролизом, согласно которому электролиз ведут в расплаве электролита, при следующем соотношении компонентов, моль %,: К2СО3 43,0 - 45,0, Na2CO3 43,0 - 45,0, Li2CO3 1,0 - 4,5, Li2MoO4 9,0-9,5, при температурах в интервале 1073-1173К и плотности тока 0,5÷3,0 А/см2.

Изобретение относится к фотокаталитическим процессам выделения водорода, разложения органических соединений для очистки воздуха и другим фотохимическим процессам, а именно изобретение относится к композитному мезопористому фотокатализатору, состоящему из носителя, содержащего, % масс.: упорядоченный мезопористый оксид кремния МСМ-41 30,0-75,0, алюмосиликатные нанотрубки 25,0-70,0, и нанесенного на носитель сульфида кадмия в виде квантовых точек, содержащих переходный металл, выбранный из ряда Ni, Со, Cu, Pt, Ru, Ag, Au в виде нанокластеров, при этом количество сульфида кадмия составляет 5,0-20,0% от массы фотокатализатора, количество переходного металла, выбранного из ряда Ni, Со, Cu, составляет 1,0-5,0% от массы фотокатализатора, количество переходного металла, выбранного из ряда Pt, Ru, Ag, Au, составляет 0,01-1,0% от массы фотокатализатора, а упорядоченный мезопористый оксид кремния МСМ-41 и алюмосиликатные нанотрубки представляют собой иерархический мезопористый композит.

Изобретение может быть использовано при изготовлении монокристаллического и поликристаллического алмаза, алмазных порошков и кубического нитрида бора. Используют ячейку высокого давления (ЯВД), содержащую корпус, в котором размещен нагреватель, имеющий, например, цилиндрическую форму и запертый сверху и снизу токоведущими шайбами.

Изобретение относится к области криогенной технике и может быть использовано в водородных криогенных системах и установках, а также в стендовых и лабораторных системах, где проводятся исследования и испытания колонн низкотемпературной ректификации газовой смеси. Водородная криогенная система с колонной низкотемпературной ректификации газовой смеси включает газгольдер, компрессор, блок очистки от масла, рампу технического водорода, рампу чистого водорода, блок низкотемпературной очистки низкого давления и водородный ожижитель, выполненный в виде предварительного четырехпоточного теплообменника из спаянных трубок, азотной ванны с трубчатым теплообменником, основного трехпоточного теплообменника из спаянных трубок, дроссельного вентиля и сборника жидкого водорода, размещенных в вакуумном сосуде, при этом сборник жидкого водорода и основной теплообменник соединены криогенными трубопроводами с ванной жидкого водорода, в которую встроена колонна низкотемпературной ректификации газовой смеси, размещенные в автономном вакуумном кожухе, при этом основной теплообменник с дроссельным вентилем установлены в вакуумном кожухе, где размещена ванна жидкого водорода с колонной, и соединены с ванной жидкого водорода, а предварительный теплообменник и азотная ванна - в блоке с порошково-вакуумной изоляцией, при этом теплообменники выполнены витые двухпоточными из трубок, оребренных проволокой, а в азотной ванне после трубчатого теплообменника встроен адсорбер, который соединен с основным теплообменником, а также через дополнительный теплообменник подключен к рампе чистого водорода, а кроме того, компрессор для сжатия водорода выполнен без смазки и с регулируемой производительностью, а на выходе обратного потока водорода из предварительного теплообменника установлен вакуумный насос.

Изобретение относится к области получения диоксида углерода для поизводства кальцинированной соды аммиачным методом. Отходящие газы цементного производства, содержащие 16-22% об.

Изобретение относится к способу, включающему экзотермическую каталитическую реакцию синтез-газа. Способ синтеза, включающий паровой риформинг газообразного углеводородного сырья, экзотермическую реакцию полученного синтез-газа, отведение тепла из указанной экзотермической реакции, при этом получают пар, использование указанного пара в качестве входящего тепла в паровой риформинг, где паровой риформинг включает: а) формирование смеси, содержащей пар и углеводороды по меньшей мере на стадии добавления первого водного потока в углеводородное сырье, б) нагревание указанной смеси с использованием непрямого теплообмена с синтез-газом, в) риформинг указанной смеси после указанной стадии нагревания б).
Изобретение относится к области получения графена, модифицированного атомами азота, который находит применение в электронных устройствах для запасания энергии, таких как суперконденсаторы, литий-ионные аккумуляторы. Для приготовления графена, модифицированного атомами азота, нагревают дисперсный простой или смешанный оксид металлов II группы в проточном реакторе в течение 20-30 мин в токе инертного газа при расходе 15-20 л/ч до 650-700°С.

Изобретение относится к способу получения водорода. Способ получения водорода, в котором осуществляют воздействие электромагнитного излучения на жидкую композицию, содержащую углеводород, в присутствии твердого катализатора, где катализатор содержит частицы по меньшей мере одного металла, содержащие один или более элементов, выбранных из Fе, Ni и Со, и бескислородную керамику, причем электромагнитное излучение представляет собой микроволновое излучение.

Изобретение относится к химической промышленности. Сначала фуллерен С60 с чистотой 97-99% смешивают с гидроксидом натрия в соотношении 1:20 и полученную смесь соединяют с перекисью водорода до прекращения реакции.

Изобретение относится к нанотехнологии, микро- и наноэлектронике, космической и военной технике и может быть использовано при получении материалов с повышенной прочностью, при изготовлении микро- и наноразмерных интегральных схем или транзисторов, ресиверов, полевых эмиттеров, «космического лифта». Структура для выращивания нанотрубок не имеет волновода и содержит подложку с лицевой и тыльной сторонами; сырьевые атомы, расположенные поверх лицевой стороны и способные высвобождаться и мигрировать в результате поглощения электромагнитного излучения; каталитический слой, обеспечивающий возможность образовывать по меньшей мере одну нанотрубку из сырьевых атомов поверх лицевой стороны подложки. Сырьевые атомы выбраны из углерода, кремния, бора и азота, алюминия и азота, а также галлия и азота, и могут находиться в расположенном поверх лицевой стороны подложки сырьевом слое или в резервуаре сырьевых атомов. Материал каталитического слоя выбран из железа, никеля, кобальта, меди, золота, серебра, платины, палладия, марганца, хрома, олова, магния, алюминия, иттрия, ванадия, молибдена, рения или их сплавов. Подложка может дополнительно содержать источник электромагнитного излучения, включающий светоизлучающий диод или лазер, а также усилитель электромагнитного излучения. Указанная структура может дополнительно содержать слой, включающий как сырьевые атомы, так и катализатор. Для получения указанной структуры поверх лицевой стороны подложки размещают сырьевой слой, а на его лицевой стороне - каталитический слой. В случае наличия источника электромагнитного излучения и усилителя их формируют под сырьевым слоем. Изобретение позволяет значительно снизить температуру, при которой выращивают длинные нанотрубки, поскольку не требует применения газофазного осаждения и горячих газообразных предшественников углерода, а также повысить качество выращиваемых нанотрубок за счёт исключения нежелательных побочных реакций и образования аморфного углерода. 2 н. и 13 з.п. ф-лы, 9 ил.
Наверх