Способ получения фотокаталитического композиционного материала

Изобретение относится к способам получения фотокаталитического материала. Описан способ получения фотокаталитического композиционного материала, включающего золь-гель синтез, заключающийся в смешивании алкоксида титана и растворителя с последующим добавлением в полученный раствор полимерной матрицы с последующим прокаливанием реакционной смеси, с промывкой полученного материала и последующей сушкой до абсолютно сухого состояния, в качестве алкоксида титана используют тетраизопропоксид титана в количестве 0,1-0,5 г, в качестве растворителя используют капроновую кислоту в количестве 10-15 мл, в качестве полимерной матрицы используют эфиры целлюлозы или гидратцеллюлозу в количестве 0,8-1,2 г, прокаливание реакционной смеси осуществляют при температуре 180-200°С в течение 7-8 ч с последующей промывкой путем смены растворителей гексаном, ацетоном, этанолом в количестве 10-20 мл каждого, а сушку осуществляют при комнатной температуре в атмосфере аргона. Технический результат - оптимизация процесса получения фотокаталитического материала. 1 з.п. ф-лы; 1 табл., 46 пр.

 

Изобретение относится к химической промышленности и может быть использовано при очистке сточных вод в производстве пластмасс, например, в производстве ПВХ.

Из уровня техники известен способ получения композиции для получения матрицы с фотокаталитической активностью по патенту RU 2518124 (МПК C09D 5/14, C09D 163/00, C09D 163/02, С08К 5/06, C08L 63/00, C08L 63/02, опубл. 10.06.2014, РФ), включающий золь на основе элементорганического соединения и эпоксидной составляющей, в которой в качестве элементорганического соединения использован алкоксид титана-тетрабутоксититан, а в качестве эпоксидной составляющей диглицидиловый эфир дициклогексилпропана. Недостатком данного изобретения является использование в качестве полимерной матрицы синтетической эпоксидной составляющей, не обладающей нетоксичностью и биоразлагаемостью.

Из уровня техники известен способ получения композиции на основе диоксида титана и оксида алюминия по патенту RU 2574599 (МПК B01J 27/053, B01J 27/055, B01J 21/06, B01J 21/04, B01J 23/04, B01D 53/48, B01D 53/52, B01D 53/86, опубл. 10.02.2016, РФ). Композиция включает оксид алюминия, оксид и/или сульфат щелочноземельного металла, сульфат-ион, диоксид титана. К гидратированному сульфатированному оксиду титана TiOx(SO4)y(OHz)⋅nH2O добавляют оксид или сульфат щелочноземельного металла, перемешивают. Полученную смесь подвергают гидротермальной обработке при температуре 50-120°С в течение 124 часов, высушивают. Для получения высокодисперсного продукта сульфатированный модифицированный гидроксид титана и гидроксид алюминия подвергают механохимической активации, добавляют парообразующие добавки для повышения пористости, связующие, а именно, органические и неорганические кислоты для формирования композиции, сушат до необходимой для формования влажности, формуют, сформованный композит подвергают обжигу при температуре 300-700°С Существенным недостатком данного изобретения является наличие девяти стадий получения композиции.

Из уровня техники известен способ получения фотокаталитического композиционного материала по патенту US 2013/0153483 (МПК B01J 21/06, B01J 19/12, C02F 1/32, B01J 21/08, B01J 21/04, B82Y 30/00, опубл. 20.06.2013 г.), выбранный заявителем в качестве наиболее близкого аналога. Фотокаталитический композиционный материал может быть использован для деградации органических соединений, например, фенола. При синтезе композиционного материала в качестве полимерной матрицы используют полиэтиленгликоль и/или сополимер полиэтиленгликоля с полипропиленгликолем. Способ получения включает гидротермальный синтез золь - гель, получение наноразмерного диоксида титана, смешивание с органическим соединением для придания гидрофобных свойств, приготовление кислотного раствора полимерной матрицы с уксусной или пропионовой кислотой, получение геля термообработкой реакционной смеси, сушку и обжиг геля при температуре 500-900°С. Существенными недостатками данного изобретения являются: 7 стадий получения композиционного материала, высокие температуры термообработки, длительное время получения композиционного материала, использование в качестве полимерной матрицы синтетических полимеров, не являющихся биодеградируемым материалами.

Задачей заявленного технического решения и его техническим результатом является получение фотокаталитического композиционного материала при снижении времени синтеза за счет сокращения числа стадий до четырех, использование в качестве полимерной матрицы биодеградируемого, нетоксического и возобновляемого полимерного материала - эфиров целлюлозы с сохранением фотокаталитической активности.

Поставленная задача и результат достигается тем, что способ получения фотокаталитического композиционного материала, включающего золь-гель синтез, заключающийся в смешивании алкоксида титана и растворителя с последующим добавлением в полученный раствор полимерной матрицы с последующим прокаливанием реакционной смеси, с промывкой полученного материала и последующей сушкой до абсолютно -сухого состояния, отличающийся тем, что в качестве алкоксида титана используют тетраизопропоксид титана в количестве 0,1-0,5 г, в качестве растворителя используют капроновую кислоту в количестве 10-15 мл, в качестве полимерной матрицы используют эфиры целлюлозы в количестве 0,8-1,2 г, прокаливание реакционной смеси осуществляется при температуре 180-200°С в течение 7-8 ч с последующей промывкой путем смены растворителей гексаном, ацетоном, этанолом в количестве 10-20 мл каждым, а сушку осуществляют при комнатной температуре в атмосфере аргона.

В качестве эфиров целлюлозы используют карбоксиметилцеллюлозу или гидратцеллюлозу. Известно, что карбоксиметилцеллюлозу и гидратцеллюлозу используют в качестве флокулянта для очистки сточных вод за счет адсорбции молекул флокулянта на поверхности коллоидных частиц, но в не сочетании с реагентами - тетраизопропоксидом титана и капроновой кислотой, проявляющие фотокаталитические свойства. Только их совместное действие в указанных режимах обеспечивают технический результат заявленного способа.

Пример Реализация способа получения фотокаталитического композиционного материала осуществляется сольвотермальным золь-гель синтезом, заключающегося в приготовление раствора тетраизопропоксида титана в количестве 0,1-0,5 г и капроновой кислоты 10-15 мл, к полученному раствору добавляют эфир целлюлозы: карбоксиметилцеллюлозу или гидратцеллюлозу в количестве 0,8-1 г, реакционную смесь перемешивают, выливают в тефлоновый вкладыш автоклава, помещают в муфельную печь, прокаливают при температуре 180-200°С в течение 7-8 ч. По истечении заданного времени смесь извлекают, отфильтровают на фильтре Шотта, последующей промывкой путем смены растворителей гексаном, ацетоном, этанолом в количестве 10-20 мл каждым. Полученный материал просушивают при комнатной температуре в перчаточном боксе в атмосфере аргона до абсолютно-сухого состояния.

Определение фотокаталитической активности проводят путем фотодеградации органического соединения - муравьиной кислоты. Высушенный фотокаталитический композиционный материал в количестве 10 мг обрабатывают 1-% раствором :KОН в количестве 1 мл и суспендируют в ультразвуковой ванне в течение 10 мин. Суспендированный фотокаталитический композиционный материал помещают в сосуд с муравьиной кислотой концентрацией 5-15%, и просвечивают ртутной лампой со светофильтром, эмитирующим УФ-излучение с длиной волны 365 нм. С интервалом в 30 мин отбирают пробы, измерят рН ионометром марки I - 510 до нейтральной среды.

В таблице 1 представлено влияние режимов получения фотокаталитического нанокомпозиционного материала, соотношение компонентов для его синтеза, влияние капроновой кислоты с полученными результатами фотокаталитической активности.

Из сводной таблицы видно, что только заявленный способ получения фотокаталитического композиционного материала, включающего золь-гель синтез, заключающийся в смешивании тетраизопропоксид титана в количестве 0,-0,5 г и капроновой кислоты в количестве 10-15 мл с последующим добавлением в полученный раствор полимерной матрицы - эфиров целлюлозы в количестве 0,8-1,2 г с последующим прокаливанием реакционной смеси при температуре 180-200°С в течение 7-8 ч, с последующей промывкой путем смены растворителей гексаном, ацетоном, этанолом в количестве 10-20 мл каждым и сушкой, осуществляемой при комнатной температуре в атмосфере аргона обеспечивают описанные выше задачи.

Как видно из табл.1, изменение содержания компонентов, режимов синтеза влияют на величину скорости фотодеградации муравьиной кислоты (примеры 1-46). Наибольшую скорость фотодеградации муравьиной кислоты, а именно 0,702 ч-1 до 0,752 ч-1 (примеры 16-22; 35; 37-44) имеет композиционный материал, содержащий полимерную матрицу в количестве 1 г при прочих равных параметров синтеза: тетраизопропоксид титана в количестве 0,25 г, капроновая кислота в количестве 15 мл при времени синтеза 8 ч при температуре прокаливания 200°С.

Остальные полученные композиты (примеры 1-15; 23-34; 36) также могут быть использованы при очистке сточных вод в производстве пластмасс, например, в производстве ПВХ способом фотокаталитической деградации, скорость которой составляет 0,602-0,690 ч-1; 0,612 - 0,701 ч-1; 0,695 ч-1 достаточной для очистки на уровне использования флокулянтов.

Таким образом, в отличие от ближайшего аналога получения фотокаталитического композиционного материала, заявленный способ имеет существенное преимущество в том, что осуществляется получение композита при снижение времени синтеза за счет сокращения числа стадий до четырех, использование в качестве полимерной матрицы биодеградируемого, нетоксического и возобновляемого полимерного материала - производных целлюлозы (карбоксиметилцеллюлозы, гидратцеллюлозы) с высокой фотокаталитической активностью.

1. Способ получения фотокаталитического композиционного материала, включающего золь-гель синтез, заключающийся в смешивании алкоксида титана и растворителя с последующим добавлением в полученный раствор полимерной матрицы с последующим прокаливанием реакционной смеси, с промывкой полученного материала и последующей сушкой до абсолютно сухого состояния, отличающийся тем, что в качестве алкоксида титана используют тетраизопропоксид титана в количестве 0,1-0,5 г, в качестве растворителя используют капроновую кислоту в количестве 10-15 мл, в качестве полимерной матрицы используют эфиры целлюлозы или гидратцеллюлозу в количестве 0,8-1,2 г, прокаливание реакционной смеси осуществляют при температуре 180-200°С в течение 7-8 ч с последующей промывкой путем смены растворителей гексаном, ацетоном, этанолом в количестве 10-20 мл каждого, а сушку осуществляют при комнатной температуре в атмосфере аргона.

2. Способ получения фотокаталитического композиционного материала по п. 1, отличающийся тем, что в качестве эфиров целлюлозы используют карбоксиметилцеллюлозу.



 

Похожие патенты:

Изобретение относится к цеолитам RHO, которые могут быть использованы в качестве кинетически селективных адсорбентов для кислорода и/или азота, а также для удаления низких уровней N2 из Ar и удаления CO2 из метана. Раскрыты цеолиты RHO с соотношением Si/Al от 3,2 до 4,5 и содержанием непротонных внерешеточных катионов, причем цеолиты содержат не более 1 протона на элементарную ячейку, и при этом размер, количество и заряд внерешеточных катионов, которые присутствуют в цеолите, таковы, что требуется 1 или меньшее количество непротонных внерешеточных катионов на элементарную ячейку для занятия положений 8-членного кольца.

Изобретение относится к технологии приготовления катализаторов, предназначенных для осуществления гетерогенно-каталитических реакций, протекающих в неподвижном (стационарном) слое катализатора, например в трубчатых реакторах. Описан катализатор для гетерогенных реакций, включающих глубокое окисление углеводородов, гетерогенно-катализируемый процесс парциального газофазного окисления пропилена до акриловой кислоты, получение муравьиной кислоты в виде формованной гранулы, имеющей форму «кольцо-блок», «кольцо в кольце», включающий каталитический элемент, отличающийся тем, что внутри гранулы выполнено осесимметрично центральное сквозное отверстие, имеющее в поперечном сечении квадрат или круг, которые связаны с помощью осесимметричных перегородок с внутренней поверхностью наружного кольца гранулы с образованием сквозных отверстий некруглого поперечного сечения, все внутренние стенки отверстий имеют одинаковую толщину 1,5-3,5 мм, при этом отношение значений внешней поверхности гранулы к значениям ее объема составляет 2,5-6,0 см-1, каталитический элемент включает соединение одного или более элементов, выбранных из K, Ва, Al, Si, V, Ti, Cr, Μn, Fe, Co, Ni, Cu, Zn, Mo.

Способ относится к области химии и может быть использован для получения катализатора для окислительной димеризации метана. Описан способ получения катализатора для окислительной димеризации метана в системе Bi2O3-SiO2, включающий предварительное механическое смешивание исходных порошков оксида висмута Bi2O3 и оксида кремния SiO2, нагревание полученной смеси в платиновом тигле до заданной температуры, отличающийся тем, что чистота исходных компонентов должна быть не ниже классификации «химически чистый» для Bi2O3 и не ниже «чистый для анализа» для SiO2, далее смесь исходных компонентов нагревается до 1100-1180°С, выдерживается 15-60 минут, затем расплав охлаждается до температуры 1040±10°С, выдерживается 15-60 минут, после чего подвергается закалке, обеспечивающей получение аморфного состояния материала и исключающей любой контакт охлаждаемого расплава с посторонними веществами, кроме чистой платины, с последующим нагревом полученного аморфного материала в реакции окислительной димеризации метана до температур 780-800°С.

Изобретение может быть использовано при очистке выхлопных газов двигателей внутреннего сгорания. Предложен смешанный оксид циркония, церия, лантана и необязательно по меньшей мере одного редкоземельного элемента, отличного от церия и лантана (РЗЭ), также содержащий гафний.

Изобретение относится к устройствам и к их использованию. Описан способ модификации катализатора на основе молекулярного сита в устройстве для модификации катализатора на основе молекулярного сита, включающий введение катализатора на основе молекулярного сита, на основе молекулярного сита HZSM-5 и HZSM-11 и модификатора в модифицирующий блок, соответственно, через питающий блок, причем катализатор модифицируют посредством модификатора в модифицирующем блоке и затем выпускают в охлаждающий блок для охлаждения до температуры, составляющей менее чем 50°C, и затем охлаждаемый модифицированный катализатор перемещают в любое устройство для хранения, причем модификацию осуществляют в атмосфере инертного газа при температуре в диапазоне от 150 до 600°C в течение времени модификации в диапазоне от 0 до 10 ч; модификатор представляет собой по меньшей мере один модификатор, выбранный из фосфорного реагента, силилирующего реагента и толуола.

Изобретение относится к области гетерогенного катализа, конкретнее к способу изомеризации на гетерогенном катализаторе - AlCl3 (нанесенном на силикагель) эндо-тетрагидродициклопентадиена в экзо-тетрагидродициклопентадиен, который, в свою очередь, является важнейшим компонентом жидкого высокоэнергетического топлива типа JP-10.

Изобретение относится к способам получения катализаторов. Описан способ получения катализатора риформинга бензиновых фракций путем пропитки сформованных гранул носителя на основе оксида алюминия растворами, содержащими соединения платины и хлорид аммония, возможно уксусную и/или щавелевую кислоту, возможно промотор, последующей сушки и прокаливания гранул при температуре 450-650°С, причем содержание хлорида аммония в пропиточном растворе составляет 1-5 мас.%.

Изобретение относится к способу производства сотового керамического катализатора, содержащего по меньшей мере поровые каталитически неактивные ячейки, образующие пористую структуру, встроенную в матрицу, включающую неорганические частицы, при этом указанные каталитически неактивные ячейки, по меньшей мере частично, окружены активным граничным слоем, содержащим каталитически активный материал, при этом способ включает стадии, на которых: а) обеспечивают функциональные частицы, включающие каталитически неактивный порообразователь в качестве опоры, имеющий размер частиц в диапазоне от 10 до 200 мкм, окруженный слоем каталитически активного материала; b) функциональные частицы подвергают обработке с использованием неорганических частиц, содержащих связующий компонент, образующий керамическую матрицу, выбранный из глин, оксидов металлов или золей на основе оксида алюминия, оксида кремния или оксида титана, с получением каталитической композиции; с) из указанной каталитической композиции путем экструзии формируют формованный массив и d) указанный формованный массив подвергают тепловой обработке с получением сотового керамического катализатора, при этом указанные поровые каталитически неактивные ячейки образованы упомянутым порообразователем, присутствующим в функциональных частицах, и имеют размер в диапазоне от 10 до 200 мкм, а указанный активный граничный слой содержит каталитически активный материал слоя функциональных частиц.

Группа изобретений относится к цеолитсодержащим материалам и их использованию в качестве катализаторов. Предложен катализатор дегидрирования пропана на основе модифицированного платиной, оловом и щелочным металлом алюмосиликатного цеолита структуры MFI с мольным отношением SiO2/Al2O3 от 25 до 130, содержащего 0,25-0,75% платины, 0,5-2,0% олова.

Группа изобретений относится к катализатору дегидрирования пропана и способу получения пропилена. Описан катализатор для дегидрирования пропана, включающий модифицированный платиной и несколькими металлами-промоторами алюмосиликатный цеолит ZSM-5 в H-, NH4- или Na-форме с мольным отношением SiO2/Al2O3 от 50 до 130, причем катализатор содержит 0,1-0,5 мас.

Изобретение относится к цеолитам RHO, которые могут быть использованы в качестве кинетически селективных адсорбентов для кислорода и/или азота, а также для удаления низких уровней N2 из Ar и удаления CO2 из метана. Раскрыты цеолиты RHO с соотношением Si/Al от 3,2 до 4,5 и содержанием непротонных внерешеточных катионов, причем цеолиты содержат не более 1 протона на элементарную ячейку, и при этом размер, количество и заряд внерешеточных катионов, которые присутствуют в цеолите, таковы, что требуется 1 или меньшее количество непротонных внерешеточных катионов на элементарную ячейку для занятия положений 8-членного кольца.
Наверх