Солнечный дом

Изобретение относится к гелиоархитектуре и гелиоэнергетике, в частности к солнечным зданиям со встроенными солнечными энергетическими установками для получения электрической энергии и теплоты. В солнечном доме, содержащем ограждающие конструкции стен и крышу с установленными параллельно поверхности крыши отражателями солнечного излучения и установленными в меридиональном направлении двусторонними солнечными модулями в защитной оболочке из стекла с каждой стороны модуля с ориентацией рабочих поверхностей на восток и запад, на одной стороне модуля по всей площади рабочей поверхности в тепловом контакте со стеклянной защитной оболочкой закреплена герметичная камера из прозрачного материала для прокачки прозрачного для солнечного излучения теплоносителя, соединенная с контуром горячего водоснабжения и отопления солнечного дома. Использование солнечного дома увеличивает производство электроэнергии и теплоты и время работы солнечных модулей в утренние и вечерние часы, повышает коэффициент использования установленной мощности гелиотехнических устройств, встроенных в крышу солнечного дома. 4 з.п. ф-лы, 2 ил.

 

Изобретение относится к гелиоархитектуре и гелиоэнергетике, в частности к солнечным зданиям со встроенными солнечными энергетическими установками для получения электрической энергии и теплоты.

Известны солнечные здания, снабженные устройствами для тепло- и электроснабжения, приготовления горячей воды за счет преобразования энергии Солнца. В качестве таких устройств используют солнечные коллекторы и фотоэлектрические модули, которые встраивают в ограждающие конструкции здания, в стены и крышу (Энергоактивные здания. Под редакцией Э.В. Сарнацкого и Н.П. Селиванова, М., Стройиздат 1988, стр. 59-347).

Недостатком известных солнечных домов является низкая концентрация солнечного излучения в солнечных коллекторах и фотоэлектрических модулях, встроенных в ограждающие конструкции здания, и, как следствие, низкая температура теплоносителей в солнечном коллекторе, высокая стоимость солнечных фотоэлектрических модулей.

Наиболее близким по технической сущности к предлагаемому изобретению является солнечный дом, содержащий ограждающие конструкции стен и крышу со встроенными солнечными модулями из скоммутированных солнечных элементов в стеклянной защитной оболочке, на поверхности крыши установлены в несколько рядов в меридиональном направлении двухсторонние солнечные модули с ориентацией рабочих поверхностей на восток и запад, каждый модуль выполнен из скоммутированных параллельно групп солнечных элементов с двухсторонней рабочей поверхностью, каждая группа солнечных элементов состоит из последовательно скоммутированных в меридиональном направлении солнечных элементов и снабжена диодом, на верхних и нижних торцах двухсторонних солнечных модулей закреплены в тепловом контакте со стеклянной защитной оболочкой трубы для прокачки теплоносителя, соединенные с контуром горячего водоснабжения и отопления солнечного дома, на поверхности крыши вокруг двухсторонних солнечных модулей установлены отражатели солнечного излучения (патент РФ №2694066, МПК H02S 10/30, H02S 20/23, F24J 2/42, F24J 2/18, опубл. 09.07.2019 г. Бюл. 19).

Недостатками известного солнечного дома является низкий КПД солнечных модулей, низкий коэффициент использования установленной мощности гелиотехнических устройств, встроенных в крышу солнечного дома.

Задачей предлагаемого изобретения является повышение КПД солнечных модулей, встроенных в крышу солнечного дома, снижение стоимости получаемой электроэнергии и теплоты.

В результате использования предлагаемого солнечного дома увеличивается производство электроэнергии и теплоты и увеличивается время работы солнечных модулей в утренние и вечерние часы, повышается коэффициент использования установленной мощности гелиотехнических устройств, встроенных в крышу солнечного дома, увеличивается эффективность преобразования солнечной энергии, снижаются тепловые потери, увеличивается среднегодовая выработка электроэнергии и тепловой энергии, снижается ее себестоимость за счет того, что на одной стороне солнечного модуля по всей площади рабочей поверхности в тепловом контакте со стеклянной защитной оболочкой закреплена герметичная камера из прозрачного материала для прокачки прозрачного для солнечного излучения теплоносителя, соединенная с контуром горячего водоснабжения и отопления солнечного дома.

Вышеуказанный технический результат достигается тем, что в солнечном доме, содержащем ограждающие конструкции стен и крышу с установленными параллельно поверхности крыши отражателями солнечного излучения и установленными в меридиональном направлении двусторонними солнечными модулями в защитной оболочке из стекла с каждой стороны модуля с ориентацией рабочих поверхностей на восток и запад, согласно изобретению, на одной стороне модуля по всей площади рабочей поверхности в тепловом контакте со стеклянной защитной оболочкой закреплена герметичная камера из прозрачного материала для прокачки прозрачного для солнечного излучения теплоносителя, соединенная с контуром горячего водоснабжения и отопления солнечного дома.

В варианте солнечного дома камера для прокачки теплоносителя выполнена из закаленного стекла, герметично соединенного по периметру со стеклянной защитной оболочкой солнечного модуля.

В другом варианте солнечного дома камера для прокачки теплоносителя выполнена из пластика, например, из сотового поликарбоната.

Еще в одном варианте солнечного дома в качестве прозрачного для солнечного излучения теплоносителя использована кремний-органическая жидкость, например, на основе полиметилсилоксана.

В варианте солнечного дома в качестве прозрачного для солнечного излучения теплоносителя использована очищенная вода.

Сущность предлагаемого изобретения поясняется чертежами, где на фиг. 1 представлен общий вид солнечного дома, на фиг. 2 представлено поперечное сечение солнечного модуля.

Солнечный дом 1 содержит ограждающие конструкции стен 2 и крышу 3 дома 1, на поверхности крыши 3 установлены в несколько рядов 4 в меридиональном направлении двусторонние солнечные модули 5 с ориентацией рабочих поверхностей на восток и запад, на поверхности крыши 3 вокруг двусторонних солнечных модулей 5 параллельно поверхности крыши 3 установлены отражатели 6 солнечного излучения 7.

На фиг. 2 представлено поперечное сечение двусторонних солнечных модулей 5, которые состоят из защитной оболочки 8 из стекла, последовательно скоммутированных электроизолированных с помощью слоя силиконового геля 9 солнечных элементов 10, на одной стороне модуля по всей площади рабочей поверхности в тепловом контакте со стеклянной защитной оболочкой 8 закреплена герметичная камера 11 из прозрачного материала для прокачки прозрачного для солнечного излучения 7 теплоносителя 12, соединенная с контуром горячего водоснабжения и отопления солнечного дома 1.

Солнечный дом функционирует следующим образом.

На восходе солнечное излучение 7 освещает восточную сторону солнечных модулей 5, установленных на поверхности крыши 3 дома 1 в несколько рядов 4 в меридиональном направлении. Одновременно на восточную сторону поступает солнечное излучение 7, отраженное от зеркальных отражателей 6. На закате солнечные модули 5 преобразуют в электрическую и тепловую энергию солнечное излучение 7, поступающее от Солнца и отраженное от зеркальных отражателей 6 на западную сторону солнечных модулей 5.

Последовательно соединенные электроизолированные солнечные элементы 10 (фиг. 2) расположены таким образом, что, поглощая ту часть солнечного спектра, которая необходима им для фотоэлектрического преобразования и выработки электроэнергии, они, в свою очередь, отдают тепловую энергию для нагрева теплоносителя 12 в герметичной камере 11, закрепленной по всей площади рабочей поверхности в тепловом контакте со стеклянной защитной оболочкой 8. Теплоноситель 12, циркулируя по герметичной камере 11, охлаждает солнечные элементы 10, за счет чего растет эффективность их работы, увеличивается общий КПД солнечных модулей, встроенных в крышу солнечного дома, увеличивается суммарная выработка электроэнергии, а нагретый теплоноситель используется потребителем солнечного дома.

Пример.

Солнечные модули 5 в солнечном доме 1 установлены в шесть рядов 4 в вертикальной плоскости, ориентированной в меридиональном направлении «юг-север». Рабочие поверхности солнечных модулей 5 ориентированы на запад и восток. Размеры солнечных модулей 5: высота 0,6 м, длина 3 м.

В таблице 1 представлены результаты компьютерного моделирования электрической энергии, вырабатываемой предлагаемым солнечным домом по месяцам и в целом за год в кВтч/кВт при различной ориентации солнечные модулей для г. Элиста (Калмыкия) при коэффициенте отражения крыши 0,3 (бетон) и 0,9 (зеркальный отражатель). Отношение эффективности преобразования солнечного излучения тыльной поверхностью к фронтальной поверхности солнечного модуля 5 принималось равным 0,92.

Защитная оболочка 8 солнечных модулей выполнена из закаленного стекла толщиной 2 мм с герметизацией солнечных элементов 10 силиконовым гелем 9. На одной стороне модуля по всей площади рабочей поверхности в тепловом контакте со стеклянной защитной оболочкой 8 закреплена герметичная камера 11 из сотового поликарбоната для прокачки прозрачного для солнечного излучения 7 теплоносителя 12.

Пиковая электрическая мощность солнечного дома составляет 50 кВт, тепловая - 100 кВт.

Использование солнечного дома пиковой мощностью 1 кВт с вертикальными солнечными модулями с ориентацией рабочих поверхностей на восток-запад, позволяет увеличить производство электрической энергии до 2449,2 кВт⋅ч, а производство тепловой энергии до 4898,4 кВт⋅ч на 1 кВт пиковой мощности солнечного дома, что является максимально возможной величиной производства электрической и тепловой энергии для солнечных домов со стационарным расположением солнечных модулей.

1. Солнечный дом, содержащий ограждающие конструкции стен и крышу с установленными параллельно поверхности крыши отражателями солнечного излучения и установленными в меридиональном направлении двусторонними солнечными модулями в защитной оболочке из стекла с каждой стороны модуля с ориентацией рабочих поверхностей на восток и запад, отличающийся тем, что на одной стороне модуля по всей площади рабочей поверхности в тепловом контакте со стеклянной защитной оболочкой закреплена герметичная камера из прозрачного материала для прокачки прозрачного для солнечного излучения теплоносителя, соединенная с контуром горячего водоснабжения и отопления солнечного дома.

2. Солнечный дом по п.1, отличающийся тем, что камера для прокачки теплоносителя выполнена из закаленного стекла, герметично соединенного по периметру со стеклянной защитной оболочкой солнечного модуля.

3. Солнечный дом по п.1, отличающийся тем, что камера для прокачки теплоносителя выполнена из пластика, например из сотового поликарбоната.

4. Солнечный дом по п.1, отличающийся тем, что в качестве прозрачного для солнечного излучения теплоносителя использована кремний-органическая жидкость, например, на основе полиметилсилоксана.

5. Солнечный дом по п.1, отличающийся тем, что в качестве прозрачного для солнечного излучения теплоносителя использована очищенная вода.



 

Похожие патенты:

Изобретение относится к массивам концентраторов солнечной энергии и, в частности, к системам и способам терморегулирования массивов концентраторов солнечной энергии. Раскрыта система терморегулирования для управления температурой селективно отражающей панели.

Изобретение относится к электротехнике, в частности к электрическим машинам с постоянными магнитами и солнечными модулями. В предлагаемом магнитоэлектрическом генераторе, содержащем ротор с осью вращения с двумя скользящими контактами и постоянные магниты, ротор выполнен в виде цилиндра из электроизоляционного материала, на цилиндрической поверхности ротора параллельно его оси закреплены n секций из m изолированных плоских двойных ленточных проводников, плоскости которых перпендикулярны плоскости осевого сечения ротора, каждый изолированный плоский двойной ленточный проводник в секции состоит из двух изолированных друг от друга плоских ленточных проводников, соединенных последовательно, расположенных параллельно друг к другу в одной плоскости и установленных в плотном контакте между торцами постоянных магнитов, которые ориентированы по отношению друг к другу противоположными парами полюсов, все m изолированных плоских двойных ленточных проводников в n секциях соединены последовательно и образуют электрическую обмотку ротора, выводы электрической обмотки ротора присоединены к скользящим контактам, установленным вокруг оси ротора на его торце.

Изобретение относится к области авиации. Складной дирижабль-самолет содержит мягкую оболочку с камерами, выполненную в виде крыла большого удлинения с дозвуковым аэродинамическим профилем, два надувных киля с двумя рулями направления, один руль высоты, две силовые установки, состоящие из электромоторов и флюгируемых воздушных винтов, солнечные батареи, расположенные на верхней поверхности упомянутого крыла, связной и командный блоки управления, а также контейнер для полезной нагрузки.

Изобретение относится к солнечной энергетике, а именно к устройству гелиостата. Технический результат заключается в увеличении срока службы модулей, эффективности преобразования энергии излучения в электрическую, а также в обеспечении позиционирования устройства на Солнце, защиты от неблагоприятных условий окружающей среды, очистки и охлаждения.

Изобретение относится к электротехнике, в частности к двигателям постоянного тока с постоянным магнитом, использующим солнечный фотоэлектрический генератор для питания обмотки ротора. Технический результат заключается в более полном использовании энергии солнечных элементов и увеличении их напряжения, а также в снижении потерь в роторе за счёт исключения скользящих контактов, увеличения количества постоянных магнитов, изменения конфигурации магнитного поля и использования импульсного питания электрических обмоток.

Изобретение относится к области электротехники. Технический результат заключается в повышении эффективности выработки электроэнергии.

Изобретение относится к области электротехники, в частности к автономному мобильному устройству (1), предназначенному для генерирования, аккумулирования и распределения электроэнергии. Технический результат заключается в повышении надежности электроснабжения потребителей.

Изобретение относится к гелиотехнике, к системам и установкам энергообеспечения, использующим возобновляемые и невозобновляемые источники энергии, и может быть использовано для теплоснабжения и электроснабжения различных потребителей. Гелиогеотермальный энергокомплекс включает фотоэлектрические модули (солнечная электрическая станция) ФЭМ, подключенную в комплексе с дизель-генераторной установкой ДГУ и аккумуляторными батареями АКБ, теплового насоса ТН, солнечного вакуумного коллектора СВК.

Изобретение относится к электротехнике, к электрическим машинам и предназначено для суммирования механической энергии ветра, световой энергии Солнца, с предварительным преобразованием ее фотоэлектрическими преобразователями в электрическую энергию постоянного тока и тепловой Земли или Солнца, с предварительным преобразованием ее тепловым преобразователем в электрическую энергию постоянного тока с одновременным преобразованием полученной суммарной энергии в электрическую энергию постоянного тока высокого качества, и может быть использовано для генерирования электрической энергии постоянного тока для нужд, например, фермерских хозяйств.

Изобретение относится к области сельского хозяйства для использования в качестве основного или резервного электроснабжения электроэнергией технологических установок в отдаленных районах страны, использующих тепловую энергию солнечного излучения. Гелиотермоэлектрический электрогенератор снабжен баком-аккумулятором, в котором расположен теплообменник, соединенный через запорный вентиль, соединенный с блоком управления, прямым и обратным трубопроводами с приемной трубкой солнечного концентратора, термоэлектрической сборкой, блоком управления и аккумулятором.

Изобретение относится к массивам концентраторов солнечной энергии и, в частности, к системам и способам терморегулирования массивов концентраторов солнечной энергии. Раскрыта система терморегулирования для управления температурой селективно отражающей панели.
Наверх