Генератор пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки

Изобретение относится к генератору пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки. Генератор содержит герметичный кольцевой контейнер, в котором размещены три зоны, заполненные капиллярной структурой разной пористости. В центральной зоне испарения размещен электронагреватель. Периферийная кольцевая зона конденсации снабжена защитными экранами, установленными с прокладкой из спеченного металлического волокна на наружной боковой и торцевой поверхностях контейнера. Транспортная зона соединяет зоны конденсации и испарения. Генератор пара снабжен холодильником-излучателем, который содержит по меньшей мере три тепловых трубы, выполненные с испарительной и конденсационной поверхностями. Тепловые трубы установлены равномерно по окружности внутренней боковой поверхности контейнера, ограничивающей зону конденсации генератора пара, и своими испарительными поверхностями неразъемно соединены с упомянутой поверхностью контейнера. На конденсационной поверхности каждой тепловой трубы установлена теплоизлучающая пластина. Техническим результатом является увеличение интенсивности активного теплоотвода с боковой внутренней поверхности контейнера, контактирующей с зоной конденсации генератора пара в термоэмиссионном реакторе-преобразователе космической ядерной энергетической установки. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при создании генераторов пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки.

Известен генератор пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки, который представляет собой цилиндрический контейнер, на внутренней поверхности которого размещена капиллярная структура с запасом рабочего тела, а в центре расположен электронагреватель (журнал "Атомная энергия", Москва, т. 71, вып. 5, ноябрь 1991 г., с. 396-402).

Недостатком известного генератора пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки является однократность использования рабочего тела, что приводит к необходимости полного запаса рабочего тела на весь ресурс, а также к возникновению проблем, связанных с выбросом рабочего тела в окружающее космическое пространство.

Известен генератор пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки, содержащий кольцевой контейнер для рабочего тела, заполненный капиллярной структурой и разделенный на зоны испарения, конденсации и транспортную, при этом пористость зоны конденсации больше пористости зон испарения и транспортной, а кольцевой контейнер содержит в зоне конденсации канал для прохода газовых примесей, одна сторона которого соединена с межэлектродными зазорами термоэмиссионных преобразователей, а другая с окружающим пространством, причем к зоне конденсации примыкает участок теплоотвода, а на контейнере в зоне испарения расположено устройство для подвода тепла (журнал "Атомная энергия", Москва, т. 71, вып. 6, декабрь 1991 г., с. 573-575).

Недостатком известного генератора пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки является отсутствие активного теплоотвода с боковой внутренней поверхности контейнера, контактирующей с зоной конденсации генератора пара, что приводит к необходимости увеличения первоначальной загрузки рабочего тела в случае большого ресурса ее работы.

Наиболее близким по назначению и совокупности существенных признаков к настоящему изобретению является генератор пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки, содержащий герметичный кольцевой контейнер, в котором размещены заполненные капиллярной структурой разной пористости центральная зона испарения с электронагревателем, периферийная кольцевая зона конденсации, снабженная защитными экранами, установленными с прокладкой из спеченного металлического волокна на наружной боковой и торцевой поверхностях контейнера, и транспортная зона, соединяющая зоны конденсации и испарения, (патент РФ №2088840, МПК F22B 1/06, опубл. 27.08.1997).

Недостатком известного генератора пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки является отсутствие активного теплоотвода с боковой внутренней поверхности контейнера, контактирующей с зоной конденсации генератора пара, что приводит к необходимости увеличения первоначальной загрузки рабочего тела в случае большого ресурса ее работы.

Технической проблемой настоящего изобретения является создание генератора пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки, который характеризуется сохранением первоначального объема, циркулирующего в реакторе-преобразователе рабочего тела, что обеспечивает длительный ресурс работы космической установки без увеличения объема первоначальной загрузки рабочего тела.

Техническим результатом настоящего изобретения является увеличение интенсивности активного теплоотвода с боковой внутренней поверхности контейнера, контактирующей с зоной конденсации генератора пара.

Указанный технический результат достигается тем, что известный генератор пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки, содержащий герметичный кольцевой контейнер, в котором размещены заполненные капиллярной структурой разной пористости центральная зона испарения с электронагревателем, периферийная кольцевая зона конденсации, снабженная защитными экранами, установленными с прокладкой из спеченного металлического волокна на наружной боковой и торцевой поверхностях контейнера, и транспортная зона, соединяющая зоны конденсации и испарения, согласно заявленному изобретению снабжен холодильником-излучателем, который содержит по меньшей мере три тепловые трубы, выполненные с испарительной и конденсационной поверхностями, при этом тепловые трубы установлены равномерно по окружности внутренней боковой поверхности контейнера, ограничивающей зону конденсации генератора пара, а каждая тепловая труба своей испарительной поверхностью неразъемно соединена с упомянутой поверхностью контейнера, при этом на конденсационной поверхности тепловой трубы установлена теплоизлучающая пластина.

Кроме этого, на поверхности защитного экрана выполнено терморегулирующее покрытие со степенью черноты не менее 0,9.

Снабжение генератора пара холодильником-излучателем из нескольких тепловых труб, размещенных равномерно по окружности внутренней боковой поверхности контейнера, ограничивающей зону конденсации генератора пара, позволяет увеличить интенсивность активного теплоотвода с зоны конденсации генератора пара. Выполнение на защитном экране терморегулирующего покрытия со степенью черноты не менее 0,9 также позволяет увеличить теплоотвод с зоны конденсации генератора пара.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлен генератор пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки (общий вид, продольный разрез), а на фиг. 2 изображен генератор пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки (вид по стрелке А).

Генератор пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки, содержит герметичный кольцевой контейнер 1, в котором размещены заполненные капиллярной структурой разной пористости периферийная кольцевая зона конденсации 2, центральная зона испарения 3 и транспортная зона 4, которая соединяет зону конденсации 2 и зону испарения 3. В качестве капиллярной структуры использовано спеченное металловолокно, спрессованное до необходимой пористости. Для создания направленного капиллярного напора пористая структура сформирована так, что размеры пор уменьшаются по направлению от зоны конденсации 2 к зоне испарения 3. Пористость капиллярной структуры зоны конденсации 2 больше пористости капиллярной структуры транспортной зоны 4, а пористость капиллярной структуры транспортной зоны 4 больше пористости капиллярной структуры зоны испарения 3. В транспортной зоне 4 выполнены отверстия 5, ограничивающие ее размеры. В зоне конденсации 2 выполнен канал 6 для прохода газовых примесей, одна сторона которого через патрубок 7 соединена с газоотводными трактами электрогенерирующих каналов (на чертеже не показано), а другая сторона через патрубок 8 соединена с окружающим пространством. Периферийная кольцевая зона конденсации 2 снабжена защитными экранами 9, которые предназначены для защиты от пробоя частицами техногенного происхождения и установлены на передней торцевой и наружной боковой поверхностях контейнера 1. На поверхности защитного экрана 9 выполнено терморегулирующее покрытие со степенью черноты не менее 0,9. На задней торцевой поверхности контейнера 1 расположен патрубок 10, предназначенный для подачи пара рабочего тела из зоны испарения 3 в межэлектродные зазоры электрогенерирующих каналов (на чертеже не показано). В центре зоны испарения 3 установлен электронагреватель 11. Для обеспечения надлежащего теплового режима зоны испарения 3 на наружной поверхности, ограничивающей эту зону, установлен теплоизоляционный экран 12. Необходимое температурное состояние зоны конденсации 2 обеспечено путем организации теплоотвода от контактирующей с ней поверхности контейнера 1. С передней торцевой и наружной боковой поверхностей контейнера 1 теплоотвод происходит излучением тепла в окружающее пространство с поверхности защитного экрана 9, на которой выполнено терморегулирующее покрытие со степенью черноты не менее 0,9. С внутренней боковой стороны контейнера 1, где затруднен теплоотвод излучением, теплоотвод осуществляется с помощью холодильника-излучателя, который выполнен на основе по меньшей мере трех тепловых труб 13. Тепловые трубы 13, выполненные с испарительной и конденсационной поверхностями, установлены равномерно по окружности внутренней боковой поверхности контейнера 1, ограничивающей зону конденсации генератора пара. Каждая тепловая труба 13 своей испарительной поверхностью неразъемно, например, посредством пайки, соединена с упомянутой поверхностью контейнера 1, при этом на конденсационной поверхности тепловой трубы 13 установлена теплоизлучающая пластина 14. Защитный экран 9 снабжен прокладкой 15, которая размещена между защитным экраном 9 и поверхностью контейнера 1.

Генератор пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки работает следующим образом.

В исходном состоянии весь цезий (рабочее тело) находится в кольцевом контейнере 1 в твердом состоянии и заполняет зону конденсации 2, зону испарения 3 и транспортную зону 4. Во время пуска термоэмиссионного реактора-преобразователя производится подача электропитания на электронагреватель 11. При этом цезий в зоне испарения 3 переходит в парообразное состояние. Заданная температура зоны испарения (до 320°С) определяет необходимое давление пара рабочего тела в межэлектродных зазорах электрогенерирующих каналов (до 5 торр). Пар цезия из зоны испарения 3 через патрубок 10 подается в межэлектродные зазоры электрогенерирующих каналов. В электрогенерирующих каналах пар цезия смешивается с газообразными продуктами деления, поступающими из топливного сердечника электрогенерирующих каналов, откуда смесь рабочего тела и газообразных примесей через соответствующие газоотводные тракты электрогенерирующих каналов и патрубок 7 поступает в канал 6, где на поверхности капиллярной структуры рабочее тело конденсируется, проходит по транспортной зоне 4 в зону испарения 3. При этом происходит разделение пара цезия и газообразных примесей, которые через патрубок 8 удаляются в окружающее (космическое) пространство. Конденсация рабочего тела происходит за счет организации надлежащего температурного состояния зоны конденсации 2, вследствие чего обеспечивается необходимый запас цезия в системе для поддержания ее работоспособности в течение всего периода функционирования термоэмиссионного реактора-преобразователя космической ядерной энергетической установки вследствие многократного использования цезия.

1. Генератор пара рабочего тела для термоэмиссионного реактора-преобразователя космической ядерной энергетической установки, содержащий герметичный кольцевой контейнер, в котором размещены заполненные капиллярной структурой разной пористости центральная зона испарения с электронагревателем, периферийная кольцевая зона конденсации, снабженная защитными экранами, установленными с прокладкой из спеченного металлического волокна на наружной боковой и торцевой поверхностях контейнера, и транспортная зона, соединяющая зоны конденсации и испарения, отличающийся тем, что он снабжен холодильником-излучателем, который содержит по меньшей мере три тепловые трубы, выполненные с испарительной и конденсационной поверхностями, при этом тепловые трубы установлены равномерно по окружности внутренней боковой поверхности контейнера, ограничивающей зону конденсации генератора пара, а каждая тепловая труба своей испарительной поверхностью неразъемно соединена с упомянутой поверхностью контейнера, при этом на конденсационной поверхности тепловой трубы установлена теплоизлучающая пластина.

2. Генератор пара рабочего тела по п. 1, отличающийся тем, что на поверхности защитного экрана выполнено терморегулирующее покрытие со степенью черноты не менее 0,9.



 

Похожие патенты:

Группа изобретений относится к области ядерной энергетики с термоэмиссионным преобразованием тепловой энергии в электрическую и может быть использована при создании термоэмиссионных реакторов-преобразователей с замедлителем нейтронов, выполненным из материала на основе гидрида циркония. Замедлитель нейтронов термоэмиссионного реактора-преобразователя содержит пакет элементов из материала на основе гидрида циркония, который размещен в герметичном контейнере, выполненном из монокристаллического оксида алюминия.

Изобретение относится к области преобразования тепловой энергии в электрическую и может быть использовано при создании термоэмиссионного реактора-преобразователя с жидкометаллическим или водяным теплоносителем. Технический результат - снижение вероятности попадания теплоносителя в электрогенерирующие каналы, возможность уменьшения температуры теплоносителя и возможность увеличения напряжения на токовыводах.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к источникам паров рабочего тела для термоэмиссионных преобразователей (ТЭП), и может быть использовано в составе цезиевых систем термоэмиссионных ядерных энергетических установок, термоэмиссионных электрогенерирующих каналов и сборок, ТЭП, установок для исследований и испытаний подобных устройств.

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом на номинальный режим.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе систем тепловой защиты и бортовых источников электрической энергии гиперзвуковых летательных аппаратов (ГЛА). Назначением этого ТЭП является получение электроэнергии в сочетании с эффективным охлаждением элементов конструкции ГЛА, таких как передние кромки крыльев, рулевых поверхностей и т.д.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям, и может быть использовано в составе бортовых источников электрической энергии для летательных аппаратов с прямоточными воздушно-реактивными двигателями. Технический результат изобретения - уменьшение осевых габаритов преобразователя, позволяющее разместить его между стенками камеры сгорания двигателя.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к использованию термоэмиссионных преобразователей (ТЭП) в составе систем тепловой защиты высокоскоростных летательных аппаратов (ВЛА). Согласно изобретению в термоэмиссионном преобразователе с цилиндрическими коаксиальными катодом и анодом, содержащим металлокерамические узлы для взаимной изоляции катода и анода и сильфонные узлы, компенсирующие различие тепловых расширений этих электродов, катод выполнен в виде трубы из тугоплавкого металла, обтекаемой в поперечном направлении гиперзвуковым воздушным потоком, снабженной жаростойким покрытием по всей наружной поверхности и слоем теплоизоляции на участке этой поверхности, не обтекаемом потоком.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе бортовых источников электрической энергии для высокоскоростных летательных аппаратов (ВЛА) с прямоточными воздушно-реактивными двигателями (ПВРД).

Изобретение относится к способу реакторных испытаний высокотемпературных вентилируемых твэлов в составе ампульного облучательного устройства и может быть использовано при разработке конструкции и обосновании ресурса высокотемпературных, например, термоэмиссионных твэлов космической ЯЭУ. В ампульном облучательном устройстве размещают пары твэлов натурных диаметральных размеров базовой конструкции с одинаковыми сердечниками из диоксида урана и оболочками из разных материалов: монокристаллического молибдена и из вольфрама или жаропрочного сплава тугоплавких металлов, обладающего скоростью ползучести, равной 10-4-10-3 от скорости ползучести монокристаллического молибдена.

Изобретение относится к космической атомной энергетике, к разработке способов прогнозирования работоспособности термоэмиссионных электрогенерирующих элементов при их создании и наземной отработке. Способ прогнозирования работоспособности термоэмиссионного электрогенерирующего элемента с вентилируемым твэлом включает его установку в составе электрогенерирующего канала в реактор, контроль тепловой мощности твэла электрогенерирующего элемента при неизменной тепловой мощности реактора, оценку температуры эмиттерной оболочки и контроль величины активности газов вентилируемого твэла на выходе из электрогенерирующего канала.

Изобретение относится к модульным вертикальным парогенераторам с изолированным защитным кожухом для оборудования ядерной энергетики, работающего с реактором на быстрых нейронах. Предлагаемый модульный вертикальный парогенератор сконструирован так, что модули парогенератора (1), оборудованные снаружи в области входной доски трубок (2) и выходной доски трубок (3) гибкими переходами (4), и трубопровод пара (5), коллектор пара (6), также оборудованные гибким переходом (4), трубопровод подачи воды (7) и коллектор подачи воды (8), также оборудованные гибким переходом (4), размещены внутри герметичного по отношению к окружающей среде и теплоизолированного защитного кожуха (9), а соединительный трубопровод теплоносителя (10), коллектор теплоносителя (11), выходной трубопровод теплоносителя (12) и входная камера (13) и выходная камера (14) размещены вне защитного кожуха (9).
Наверх