Оптико-электронная многоканальная головка самонаведения

Изобретение относится к области авиационной техники и касается оптико-электронной многоканальной головки самонаведения (ГСН). Головка самонаведения содержит корпус, внутри которого установлены телевизионный (ТВ) и тепловизионный (ТПВ) каналы с матричными фотоприемными устройствами и объективами, модуль электронной обработки изображений и координатор в виде лазерного индикатора-координатора с объективом. Модуль электронной обработки изображений выполнен с возможностью распознавания как стационарных целей путем сравнения их контурных и текстурных признаков, так и малоразмерных целей путем анализа вектора признаков цели, полученных в оптическом и иинфракрасном диапазонах, а также с возможностью сопровождения цели. Координатор осуществляет самонаведение по пятну лазера-подсветчика, визирные оси ТВ, ТПВ каналов и лазерного индикатора-координатора съюстированы на бесконечность, а модуль электронной обработки изображений, получаемых от ТВ и ТПВ приемных устройств, выполнен с дополнительной возможностью сопровождения цели по пятну лазерного подсвета. Технический результат заключается в повышении надежности работы ГСН и упрощении ее изготовления. 3 ил.

 

Предлагаемое изобретение относится к авиационной технике, в частности к оптико-электронным головкам самонаведения (ГСН), используемым в малогабаритных авиационных средствах поражения, запускаемых с беспилотных летательных аппаратов.

Известна активная ГСН (см. патент РФ на изобретение № 2689276, М.кл. F41G 7/22, опубл. 24.05.2019 г.), которая может быть использована в качестве бортового элемента летательных аппаратов как средство наведения на воздушные цели. Данная ГСН содержит корпус на внешней поверхности которого установлены флюгарки с датчиками их углового положения. Внутри корпуса установлены блок источников излучения и оптическая система линз с полосовым оптическим фильтром, установленным после оптической системы перед фотоприемным устройством. Фотоприемное устройство выполнено в виде решетки фотоприемников, установленных перед фокальной плоскостью оптической системы. Источники излучения имеют расширенную диаграмму направленности. Выходы фотоприемников соединены с платой аналоговой обработки сигналов, содержащей последовательно соединенные блок операционных усилителей и блок пиковых детекторов, многоканальный АЦП, компаратор и ЭВМ. При этом сигнальные входы ЭВМ соединены с сенсорными датчиками углового положения флюгарок, а ее управляющий выход соединен через генератор сильноточных импульсов с входами блока источников излучения.

Однако наличие в данной ГСН блока источников излучения, оптической системы линз с полосовым оптическим фильтром и фотоприемного устройства в виде решетки фотоприемников делают данную ГСН сложной в изготовлении, что снижает надежность ее работы и значительно удорожает ее изготовление.

Известна комбинированная многоканальная ГСН (см. патент РФ на изобретение № 2693028, М.кл. F41G 7/22, опубл. 01.07.2019 г.), содержащая гирокоординатор, внутри наружного карданова подвеса которого установлен оптический блок, содержащий связанные между собой приемники телевизионного (ТВ) и тепловизионного (ТПВ) каналов и объектив, систему стабилизации осей гироскопа, блок обработки видеосигнала от цели, при этом гирокоординатор представляет собой гиростабилизированную платформу (ГСП), карданов подвес которой выполнен двухосным, позволяющем с помощью системы стабилизации осей гирокоординатора стабилизировать изображение по курсу и тангажу, для чего система стабилизации осей гирокоординатора содержит связанные между собой датчики угла, датчики угловой скорости, двигатели стабилизации и электронную плату стабилизации. В оптическом блоке ТВ и ТПВ приемники расположены на одной оптической оси комбинированного объектива, а электронная плата обработки изображения от цели выполнена с возможностью распознавания как стационарных целей путем сравнения их контурных и текстурных признаков, так и малоразмерных целей путем анализа вектора признаков цели, полученных в оптическом и инфракрасном диапазонах, а также с возможностью сопровождения цели с одновременным отслеживанием ее масштаба во времени. Наличие в данной ГСН гирокоординатора в виде гиростабилизированной платформы в кардановом подвесе с системой стабилизации осей гирокоординатора, содержащей датчики угла, датчики угловой скорости, двигатели стабилизации и электронную плату стабилизации, значительно усложняет ГСН, повышает затраты на ее изготовление и снижает надежность ее работы.

Проблема, которую необходимо решить данным изобретением, состоит в наличии гирокоординатора со сложной системой стабилизации его осей, значительно усложняющего и удорожающего изготовление ГСН и снижающего надежность ее работы.

Техническим результатом изобретения является повышение надежности работы ГСН, упрощение ее изготовления и снижение затрат на ее изготовление.

Достижение технического результата обеспечивается в предлагаемой оптико-электронной многоканальной ГСН, содержащей корпус, внутри которого установлены ТВ и ТПВ каналы с соответственно ТВ и ТПВ матричными фотоприемными устройствами с объективами, модуль электронной обработки изображений, выполненный с возможностью распознавания как стационарных целей путем сравнения их контурных и текстурных признаков, так и малоразмерных целей путем анализа вектора признаков цели, полученных в оптическом и инфракрасном диапазонах, а также с возможностью сопровождения цели, при этом модуль электронной обработки выходами управления связан с ТВ и ТПВ камерами фотоприемных устройств соответствующих каналов, согласно изобретению содержащей координатор в виде лазерного индикатора-координатора с объективом, осуществляющий самонаведение по пятну лазера-подсветчика, при этом визирные оси ТВ, ТПВ каналов и лазерного индикатора-координатора съюстированы на бесконечность, а модуль электронной обработки изображений, получаемых от ТВ и ТПВ приемных устройств, выполнен с дополнительной возможностью сопровождения цели по пятну лазерного подсвета.

Введение в состав ГСН лазерного индикатора-координатора с объективом обеспечивает возможность более точного прицеливания по отраженному лучу лазерного целеуказателя-подсветчика, при этом входящий в состав модуля электронной обработки изображения центральный вычислительный блок управляет координацией слежения за целью при автосопровождении для каналов ТВ, ТПВ и лазерного индикатора-координатора в соответствии с реализуемыми им алгоритмами «обнаружения» и «автоматического наведения».

В результате, в предлагаемой конструкции ГСН не требуется использования карданова подвеса, гиростабилизированной платформы, а также двигателей стабилизации, датчиков углов, датчиков угловой скорости (или гироскопов), что значительно повышает надежность работы ГСН, упрощает и удешевляет ее изготовление.

Предлагаемое изобретение поясняется чертежами, где на фиг. 1 приведена функциональная схема предлагаемой оптико-электронной многоканальной ГСН, на фиг. 2 приведена блок-схема алгоритма «обнаружения», реализуемого центральным вычислительным блоком, входящим в состав модуля электронной обработки изображения, а на фиг. 3 - блок-схема алгоритма «автоматического наведения», также реализуемого центральным вычислительным блоком.

В соответствии с фиг. 1 предлагаемая ГСН содержит: корпус 1, в котором сформированы ТВ канал 2 с объективом, ТПВ канал 3 с объективом, лазерный индикатор-координатор 4 с объективом, модуль 5 электронной обработки изображения (МЭОИ), в который входят связанные между собой центральный вычислительный блок (ЦВБ) 5,1, преобразователь интерфейсов (ПИ) 5.2,видеоэнкодер (ВЭ) 5.3, блок управления периферией (БУП) 5.4. На фиг. 1 показаны также входящий в ГСН блок 6 вторичных источников питания, обеспечивающий питание блоков ГСН и располагаемой на носителе ГСН системы 7 управления изделием, связанной также с центральным вычислительным блоком 5.1.

Работа предлагаемой оптико-электронной многоканальной ГСН осуществляется следующим образом.

При предполетной подготовке в ГСН закладывается эталонное изображение цели (как в видимом диапазоне длин волн - ТВ канал 2, так и в длинноволновом диапазоне инфракрасного спектра - ТПВ канал 3 (8…12 мкм). В момент работы ГСН, по каналам ТВ 2 и ТПВ 3 головка самонаведения обнаруживает и распознает объект прицеливания. Так как, конструктивно головка самонаведения выполнена без карданова подвеса, то в момент работы ГСН, удержание объекта прицеливания на продольной оси носителя (совпадающей с оптическими осями ТВ 2, ТПВ 3 каналов и лазерного индикатора-координатора 4 (ЛИК) - автосопровождение цели - выполняется с помощью рулей или иных рулевых поверхностей (агрегатов) носителя. Если цель «подсвечивается» со стороны источником лазерного излучения, то на последнем этапе полета, для увеличения точности попадания, включается в работу лазерный индикатор-координатор 4 (ЛИК). В противном случае процесс полета заканчивается без коррекции ЛИК 4.

Центральный вычислительный блок 5.1, входящий в модуль 5 электронной обработки изображения, реализует алгоритмы обработки видеоизображения, обмен с внешним носителем, управление функциями оптико-электронных систем ТВ 2, ТПВ 3 каналов и ЛИК 4, обмен с внутренней частью оптико-электронных систем. Входящий в модуль 5 электронной обработки изображения преобразователь 5.2 интерфейсов формирует сигналы управления для камер ТВ 2, ТПВ 3 каналов и ЛИК 4, видеоэнкодер 5.3 обеспечивает сжатие видеопотоков, блок 5.4 управления периферией, обеспечивает прием и перекодирование цифровых потоков ТВ 2, ТПВ 3 камер, ЛИК 4 и телеметрии в единый цифровой поток, передаваемый по коаксиальному кабелю в центральный вычислительный блок 5.1.

Выполнение блоков предлагаемой ГСН можно пояснить следующим образом. В ТВ канале 2 использовано фотоприемное устройство модуль 25B1.2XU3 и объектив VIR50500ASD.55.

В ТПВ канале 3 использовано фотоприемное устройство S6IRC-4472 и объектив NA-L-100-1,0-E.

Лазерный индикатор-координатор ЛИК 4 разработан и произведен ПАО «НПП «Импульс», Изделие ЛИК 12Э-066-18.

Центральный вычислительный блок 5.1 выполнен на основе системы на кристалле Altera Arria V SoC.

Преобразователь 5.2 интерфейсов, видеоэнкодер 5.3 и блок 5.4 управления периферией выполнены на ПЛИС серии Altera Cyclone V GX.

Оптико-электронная многоканальная головка самонаведения, содержащая корпус, внутри которого установлены ТВ и ТПВ каналы с соответственно ТВ и ТПВ матричными фотоприемными устройствами с объективами, модуль электронной обработки изображений, выполненный с возможностью распознавания как стационарных целей путем сравнения их контурных и текстурных признаков, так и малоразмерных целей путем анализа вектора признаков цели, полученных в оптическом и инфракрасном диапазонах, а также с возможностью сопровождения цели, при этом модуль электронной обработки выходами управления связан с ТВ и ТПВ камерами фотоприемных устройств соответствующих каналов, отличающаяся тем, что содержит координатор в виде лазерного индикатора-координатора с объективом, осуществляющим самонаведение по пятну лазера-подсветчика, при этом визирные оси ТВ, ТПВ каналов и лазерного индикатора-координатора съюстированы на бесконечность, а модуль электронной обработки изображений, получаемых от ТВ и ТПВ приемных устройств, выполнен с дополнительной возможностью сопровождения цели по пятну лазерного подсвета.



 

Похожие патенты:

Изобретение относится к области военной техники и касается способа повышения помехозащищенности управляемых боеприпасов с лазерной системой наведения. Способ включает в себя использование пространственно-разнесенных лазерного целеуказателя-дальномера и самонаводящегося боеприпаса, подсветку лазерным излучением, определение координат цели лазерным целеуказателем-дальномером и наведение самонаводящегося боеприпаса по отраженному от цели лазерному излучению лазерного целеуказателя-дальномера.

Изобретение относится к способам дистанционного управления беспилотными летательными аппаратами, выполняющими перелеты на большие дальности - до нескольких тысяч километров. Способ дистанционной коррекции полетного задания беспилотного летательного аппарата включает подготовку полетных заданий и организацию контура дистанционного управления для изменения участков траектории полета беспилотного летательного аппарата.

Способ наведения на цель реактивной системы, при котором используют ЭВМ, устройства наведения, беспилотный летательный аппарат, (БЛА) пульт управления реактивной системой и беспилотным летательным аппаратом, радиостанцию для связи реактивной системы с БЛА, фотокамеру на БЛА. Для повышения точности попадания осуществляют пристрелочный выстрел реактивным снарядом, вес и размеры которого соответствуют боевому, фиксируют координаты дымового облака.

Изобретение относится к способам целеуказания по направлению системе наведения управляемого объекта и может быть использовано при создании новых и модернизации существующих способов и устройств целеуказания по направлению в системах наведения управляемых объектов - как дистанционно пилотируемых (беспилотных) летательных аппаратов, так и в пилотируемой авиации.

Изобретение относится к способу сопровождения беспилотным летательным аппаратом (БПЛА) наземного объекта, перемещающемуся по некоторому маршруту. Для сопровождения наземного объекта на нем размещают оптический маркер, а на борту БПЛА устанавливают видеокамеру.

Изобретение относится к способу управления беспилотным летательным аппаратом (БПЛА). Для управления БПЛА размещают оптический маркер на наземном материальном объекте.

Изобретение относится к области военной техники и может быть использовано при проведении полигонных испытаний как существующих, так и перспективных самоприцеливающихся боевых элементов (СПБЭ), и позволяет проводить оценку функционирования перспективного СПБЭ по движущимся имитаторам цели. Комплекс функционально состоит из испытательной площадки, представляющей собой стационарную площадку, на которой имеется семь параллельных узкоколейных железнодорожных путей (направлений), с первого по седьмой пути предназначены для имитации движения объектов бронированной техники при переходе в наступление, четвертый путь дополнительно позволяет имитировать движение колонны на марше, в качестве движущегося имитатора цели выступает ж/д платформа, на которую установлен металлический лист толщиной 2-3 мм с размером 3000×6000 м и тепловой имитатор цели, движение ж/д платформ осуществляется с помощью радиоуправляемого электродвигателя.

Изобретение относится к области получения изображений и касается инструмента получения изображений для контроля целеуказания. Инструмент содержит объектив, матричный датчик изображения и фильтр.

Изобретение относится к области радиолокации. Способ определения угла между оптической осью антенного устройства и продольной осью РЛС зенитного комплекса заключается в наведении линии визирования лазерного визира, закрепленного на базовом шасси РЛС, вдоль его продольной оси, проецировании горизонтальной линии визирования визира на плоскость, жестко связанную с вращающейся частью антенного устройства и перпендикулярную оптической оси антенного устройства, наведении горизонтальной лини визирования поворотом визира до отображения ее на всей длине плоскости.

Изобретение относится к способам поражения групповых целей крылатыми ракетами. Получают информацию о координатах цели, осуществляют подготовку ракет к пуску, вводят в БСУ ракет полетное задание, производят пуск ракет, осуществляют управление полетом, подключают к БСУ навигационную аппаратуру привязки и корреляционную подсистему управления по контуру рельефа местности, наводят ракету на цель, попадают в нее и поражают.

Изобретение относится к области военной техники и касается способа повышения помехозащищенности управляемых боеприпасов с лазерной системой наведения. Способ включает в себя использование пространственно-разнесенных лазерного целеуказателя-дальномера и самонаводящегося боеприпаса, подсветку лазерным излучением, определение координат цели лазерным целеуказателем-дальномером и наведение самонаводящегося боеприпаса по отраженному от цели лазерному излучению лазерного целеуказателя-дальномера.
Наверх