Фотоэлектрический преобразователь


H01L31/0512 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2756171:

Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук (RU)

Изобретение относится к солнечной энергетике, в частности, к фотоэлектрическим преобразователям, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Фотоэлектрический преобразователь включает подложку, фоточувствительную А3В5 гетероструктуру с широкозонным окном и контактным слоем GaAs р-типа проводимости, антиотражающее покрытие на поверхности широкозонного окна в местах, свободных от фронтального омического контакта, фронтальный омический контакт на поверхности контактного слоя GaAs, содержащий слои Ag и Au, и тыльный омический контакт. Согласно изобретению фронтальный омический контакт содержит последовательно расположенные первый слой сплава никеля и хрома (NiCr) с содержанием в сплаве хрома (15-50) мас. % толщиной (5-25) нм, слой Ag толщиной (500-5000) нм, второй слой сплава NiCr с содержанием в сплаве хрома (15-50) мас. % толщиной (50-100) нм и слой Аu толщиной (30-100) нм. Фотоэлектрический преобразователь согласно изобретению имеет увеличенную электрическую проводимость контактных шин за счет увеличения адгезии контактных слоев и снижения омических потерь путем уменьшения переходного контактного сопротивления. 3 пр.

 

Изобретение относится к солнечной энергетике, в частности, к фотоэлектрическим преобразователям, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую.

При изготовлении фотоэлектрического преобразователя одним из основных этапов является формирование омических контактов. Снижение переходного контактного сопротивления и увеличение проводимости контактных шин фронтального омического контакта позволяет существенно снизить омические потери и увеличить эффективность преобразования излучения в электроэнергию.

Известен фотоэлектрический преобразователя (см. патент US 9269784, МПК H01L 29/7786, опубликован 23.02.2016), включающий подложку из GaAs, первый полупроводниковый слой, второй полупроводниковый слой, контактный слой и проводящий слой омического контакта, выполненный из слоев металлов следующей группы: Ti, Al, Ni, W, Ge, Pt, Pd, Си или их комбинации, или их сплавов.

Недостатком известного фотоэлектрического преобразователя является малая толщина омического контакта, и, как следствие, низкая электрическая проводимость контакта, что ведет к увеличению омических потерь и снижению мощности преобразуемого излучения.

Известен фотоэлектрический преобразователь (см. патент CN 204375762, МПК H01L 31/0224, H01L 31/18, опубликован 03.06.2015), включающий подложку, одно- или многопереходный элемент GaAs, тыльный омический контакт на тыльной поверхности подложки, широкозонное окно на фронтальной поверхности одно- или многопереходного элемента GaAs, антиотражающее покрытие на поверхности широкозонного окна, контактный слой толщиной (100-500) нм, выращенный локально на поверхности широкозонного окна в соответствии с топологией фронтального омического контакта, фронтальный омический контакт на поверхности контактного слоя толщиной (0,5-5,0) мкм. При этом шины фронтального омического контакта на (1-3) мкм уже, чем область контактного слоя, на которой они расположены. Фронтальный и тыльный омические контакты выполнены из Cr/Au, Cr/Pt/Au, Ti/Au, Ti/Pt/Au, Ti/AI/Au, Ti/AI/Ti/Au, Al/Cr/Au, Au/AuGe/Ni/Au или Au/Ag/Au.

Недостатком известного фотоэлектрического преобразователя является усложненная технология локального выращивания контактного слоя, а также увеличение оптических потерь при формировании контактного слоя шире шин фронтального омического контакта.

Известен фотоэлектрический преобразователь (см. патент CN104733556, МПК H01L 31/0216, H01L 31/18, опубликован 01.02.2017), включающий полупроводниковую гетероструктуру, антиотражающее покрытие, фронтальный омический контакт, полученный путем последовательного электронно-лучевого испарения Ti, Ag, Au общей толщиной не менее 1,5 мкм с использованием технологии взрывной фотолитографии, тыльный омический контакт, полученный путем последовательного электронно-лучевого испарения Ti, Ag, Au общей толщиной не менее 1,5 мкм.

Недостатком известного фотоэлектрического преобразователя является использование дорогостоящей технологии электронно-лучевого испарения, с повышенным расходом драгоценных металлов.

Известен фотоэлектрический преобразователь (см. патент US5330585, МПК H01L 31/0216, опубликован 19.07.1994), включающий подложку n-типа проводимости, фоточувствительную гетероструктуру А3В5 с широкозонным окном и контактным слоем GaAs р-типа проводимости, антиотражающее покрытие на поверхности широкозонного окна в местах свободных от фронтального омического контакта, фронтальный омический контакт на поверхности контактного слоя, состоящий из толстого слоя Ag и тонкого слоя золота Au, и тыльный омический контакт на тыльной поверхности подложки.

Недостатком известного фотоэлектрического преобразователя является плохая адгезия первого слоя Ag фронтального омического контакта к поверхности контактного слоя при отсутствии дополнительного адгезионного подслоя, что ведет к увеличению омических потерь.

Известен фотоэлектрический преобразователь (см. патент CN111524984, МПК H01L 31/0224, H01L 31/0687, H01L 31/18 опубликован 11.08.2020), совпадающий с настоящим решением по наибольшему числу существенных признаков и принятый за прототип. Прототип включает подложку, фоточувствительную А3В5 гетероструктуру с широкозонным окном и контактным слоем GaAs, тыльный омический контакт, выполненный из одного или нескольких слоев из Au, Ni, Ag, Ti и Zn на тыльной поверхности подложки, фронтальный омический контакт, выполненный из одного или нескольких слоев из Ni, Ag, Au, Ti, Ge и Cu на поверхности контактного слоя, антиотражающее покрытие, выполненное из TiO2 или Al2O3.

Недостатком известного фотоэлектрического преобразователя является плохая адгезия первого слоя фронтального омического контакта из-за отсутствия дополнительного слоя между полупроводником и проводящим слоем металла, улучшающего адгезию контакта, что ведет к увеличению переходного контактного сопротивления и омических потерь.

Задачей настоящего технического решения является увеличение электрической проводимости контактных шин фронтального омического контакта за счет увеличения адгезии контактных слоев и снижения омических потерь путем уменьшения переходного контактного сопротивления.

Поставленная задача достигается тем, что фотоэлектрический преобразователь включает подложку n-типа проводимости, фоточувствительную А3В5 гетероструктуру с широкозонным окном и контактным слоем GaAs р-типа проводимости, антиотражающее покрытие на поверхности широкозонного окна в местах свободных от фронтального омического контакта, тыльный омический контакт и фронтальный омический контакт на поверхности контактного слоя GaAs, содержащий слои Ag и Au. Новым в фотоэлектрическом преобразователе является то, что фронтальный омический контакт содержит последовательно расположенные первый слой сплава никеля и хрома (NiCr) с содержанием в сплаве хрома (15-50) мас. % толщиной (5-25) нм, слой Ag толщиной (500-5000) нм, второй слой сплава NiCr с содержанием в сплаве хрома (15-50) мас. % толщиной (50-100) нм и слой Au толщиной (30-100) нм.

После нанесения слоев фронтального и тыльного контактов проводят термообработку фотоэлектрического преобразователя при температуре (390-410)°С в течение (50-70) секунд. Режим термообработки контакта выбирают из условий минимизации удельного переходного сопротивления, а также обеспечения неглубокого залегания границы раздела металл-полупроводник.

Первый слой сплава NiCr необходим для увеличения адгезии и снижения переходного контактного сопротивления фронтального омического контакта к поверхности контактного слоя GaAs р-типа проводимости. Слой Ag обеспечивает увеличение проводимости контакта. Второй слой сплава NiCr является барьерным, обеспечивающим уменьшение диффузии Au из верхнего слоя в слой Ag при проведении термообработки.

Слой Au формируют для защиты поверхности омического контакта от воздействия окружающей среды и для проведения дальнейшего монтажа фотоэлектрического преобразователя.

Содержание хрома в сплаве NiCr менее 15 мас. % ведет к увеличению переходного сопротивления фронтального контакта, при содержании хрома в сплаве NiCr более 50 мас. % заметно ухудшается пластичность напыленного слоя, что может приводить к частичному или полному отрыву контактных площадок при напылении толстых, до 5000 нм, слоев металла или при их последующем вжигании при температуре (390-410)°С.

Первый слой сплава NiCr толщиной менее 5 нм не обеспечивает улучшение адгезии и уменьшение переходного контактного сопротивления фронтального омического контакта. Толщина первого слоя сплава NiCr более 25 нм технологически нецелесообразна. Формирование слоя Ag толщиной менее 500 нм ведет к снижению проводимости фронтального омического контакта и уменьшению мощности преобразуемого излучения. При толщинах контакта более 5000 нм могут возникнуть напряженные слои, вследствие чего ухудшается адгезия контактной структуры к полупроводнику и его отслаивание. При толщине второго слоя сплава NiCr менее 50 нм происходит усиление диффузии верхнего слоя золота в слой серебра, что усложняет последующий процесс монтажа фотоэлектрического преобразователя путем, например, бондинга токоотводящих контактов. Толщина второго слоя сплава NiCr более 100 нм технологически нецелесообразна. При толщине слоя Au менее 30 нм усложняется процесс монтажа фотопреобразователя. Напыление слоя Au толщиной более 100 нм ведет к нерациональному увеличению стоимости контакта.

Напыление слоев сплава NiCr можно осуществлять магнетронным распылением на постоянном токе в атмосфере аргона или, например, криптона, а напыление слоя серебра и слоя золота можно осуществлять термическим испарением или магнетронным распылением.

Настоящий фотоэлектрический преобразователь включает подложку n-типа проводимости, фоточувствительную А3В5 гетероструктуру с широкозонным окном и контактным слоем GaAs р-типа проводимости, антиотражающее покрытие на поверхности широкозонного окна в местах, свободных от фронтального омического контакта, фронтальный омический контакт на поверхности контактного слоя GaAs и тыльный омический контакт.Фронтальный омический контакт, нанесенный через маску, состоит из первого слоя сплава NiCr с содержанием хрома (15-50) мас. % толщиной (5-25) нм, слоя Ag толщиной (500-5000) нм, второго слоя сплава NiCr с содержанием хрома (15-50) мас. % толщиной (50-100) нм, слоя Au толщиной (30-100) нм. Тыльный омический контакт включает слои, например, сплава золото-германий (AuGe), сплава NiCr и Au.

Фотоэлектрический преобразователь изготавливают следующим способом. На поверхности контактного слоя GaAs р-типа проводимости формируют первую маску фоторезиста с заданной топологией фотоэлектрического преобразователя. Осуществляют локальное травление контактного слоя селективно до поверхности широкозонного окна. Проводят осаждение антиотражающего покрытия на поверхность широкозонного окна и на поверхность первой маски. Удаляют первую маску вместе с осажденным на нее антиотражающим покрытием. Формируют вторую маску, которая может быть выполнена из слоя фоторезиста для напыления фронтального омического контакта толщиной (500-700) нм, либо из слоя фоторезиста с подслоем несветочувствительного материала для напыления фронтального омического контакта толщиной (700-5000) нм. Далее проводят обработку поверхности контактного слоя жидкостным химическим травлением либо ионно-лучевым травлением для увеличения адгезии и снижения переходного контактного сопротивления фронтального омического контакта к поверхности контактного слоя. Формируют фронтальный омический контакт путем последовательного напыления на поверхность контактного слоя p-GaAs, не закрытого второй маской, и на поверхность второй маски первого слоя сплава NiCr с содержанием хрома (15-50) мас. % толщиной (5-25) нм, слоя Ag, толщиной (500-5000) нм, второго слоя сплава NiCr с содержанием хрома (15-50) мас. %, толщиной (50-100) нм, слоя Au толщиной (30-100) нм. Слои сплава NiCr и Ag наносят магнетронным распылением, а слой Au - термическим испарением. Затем удаляют вторую маску вместе с напыленными на нее слоями фронтального омического контакта. Формируют тыльный омический контакт на поверхности подложки n-GaAs напыленем слоев сплава AuGe, сплава NiCr и Au и проводят термообработку при температуре (390-410)°С в течение (50-70) секунд.

Пример 1. Был изготовлен фотоэлектрический преобразователь, включающий подложку GaAs n-типа проводимости, фоточувствительную А3В5 гетероструктуру с широкозонным окном и контактным слоем GaAs р-типа проводимости, антиотражающее покрытие TiOx/SiO2 (при х близком к 2) на поверхности широкозонного окна в местах, свободных от фронтального омического контакта, фронтальный омический контакт и тыльный омический контакт. Фронтальный омический контакт состоял из первого слоя сплава NiCr с содержанием хрома 50 мас. %, толщиной 5 нм, слоя Ag толщиной 500 нм, второго слоя сплава NiCr с содержанием хрома 50 мас. % толщиной 50 нм, слоя Au толщиной 30 нм. Обработка поверхности контактного слоя была выполнена жидкостным химическим травлением в соляной кислоте. Напыление фронтального омического контакта было проведено через маску фоторезиста. Слои сплава NiCr и Ag были нанесены методом магнетронного распыления, а слой золота - методом термического испарения. Тыльный омический контакт на поверхности подложки n-GaAs состоял из слоев сплава AuGe, сплава NiCr и Au. Была проведена термообработка при температуре 390°С в течение 70 секунд.

Пример 2. Был изготовлен фотоэлектрический преобразователь как в примере 1, со следующими отличиями. Обработка поверхности контактного слоя выполнена методом ионно-лучевого травления. Напыление фронтального омического контакта проведено через двухслойную маску фоторезиста с подслоем несветочувствительного материала. Фронтальный омический контакт включал слои сплава NiCr с содержанием хрома 15 масс. % толщиной 25 нм, слой Ag толщиной 5000 нм, второй слой сплава NiCr толщиной 100 нм и слой Au толщиной 100 нм. Была проведена термообработка при температуре 400°С в течение 60 секунд.

Пример 3. Был изготовлен фотоэлектрический преобразователь как в примере 1, со следующими отличиями. Напыление фронтального омического контакта было проведено через двухслойную маску фоторезиста с подслоем несветочувствительного материала. Фронтальный омический контакт включал слои сплава NiCr с содержанием хрома 50 мас. % толщиной 20 нм, слой Ag толщиной 1200 нм, второго слоя сплава NiCr толщиной 50 нм, слоя Au толщиной 50 нм. Термообработка была проведена при температуре 410°С в течение 50 секунд.

Как показали измерения, настоящий фотоэлектрический преобразователь обладает улучшенной адгезией и сниженным переходным контактным сопротивлением фронтального омического контакта NiCr/Ag/NiCr/Au к контактному слою GaAs р-типа проводимости, составляющим (3-5)⋅106 Ом×см2.

Измерения проводили по методике TLM - transmission line method (см. H.H. Berger. Models for contacts to planar devices. Solid State Electronics, 1972, Vol. 5, pp. 145-158).

Фотоэлектрический преобразователь, включающий подложку n-типа проводимости, фоточувствительную А3В5 гетероструктуру с широкозонным окном и контактным слоем GaAs р-типа проводимости, антиотражающее покрытие на поверхности широкозонного окна в местах, свободных от фронтального омического контакта, фронтальный омический контакт на поверхности контактного слоя GaAs, содержащий слои Ag и Au, и тыльный омический контакт, отличающийся тем, что фронтальный омический контакт содержит последовательно расположенные первый слой сплава никеля и хрома (NiCr) с содержанием в сплаве хрома (15-50) мас. % толщиной (5-25) нм, слой Ag толщиной (500-5000) нм, второй слой сплава NiCr с содержанием в сплаве хрома (15-50) мас. % толщиной (50-100) нм и слой Аu толщиной (30-100) нм.



 

Похожие патенты:

Многопереходный солнечный элемент, содержащий: подложку для выращивания; первый солнечный подэлемент, сформированный поверх или в подложке для выращивания; изменяющийся промежуточный слой, осажденный на первый солнечный подэлемент; и ряд слоев полупроводникового материала, осажденных поверх изменяющегося промежуточного слоя, содержащего множество солнечных подэлементов, включая второй солнечный подэлемент, расположенный поверх и рассогласованный по параметру решетки по отношению к подложке для выращивания и имеющий ширину запрещенной зоны в диапазоне 0,9-1,8 эВ, и по меньшей мере верхний солнечный подэлемент, расположенный поверх второго подэлемента и имеющий содержание алюминия более 30% мольной доли и ширину запрещенной зоны в диапазоне 2,0-2,20 эВ.

Изобретение относится к полупроводниковой технике, и может быть использовано при изготовлении фотопреобразователей. Cпособ обработки полупроводниковых структур с германиевой подложкой включает фиксацию полупроводниковой структуры лицевой стороной на диске-носителе посредством клеевого соединения, утонение подложки, разделение полупроводниковой структуры на чипы, напыление тыльной металлизации с нагревом подложки, снятие металлизированных чипов с диска-носителя, при этом фиксацию полупроводниковой структуры на диске-носителе выполняют на выступах, имеющих вид полос, закрепленных вертикально на диске-носителе, при этом диск-носитель и выступы изготавливают из материалов с близкими к германиевой подложке коэффициентами термического расширения, а выступы располагают с внутренней стороны контура разделения полупроводниковой структуры, фиксацию которой на выступах выполняют посредством эпоксидно-пластизолевой смеси.

Изобретение относится к технологии функциональных материалов, конкретно к технологии оптически прозрачных оксидных полупроводников, применяемых в оптоэлектронике, фотовольтаике и плазмонике. Согласно изобретению предложен способ получения нанодисперсного оксида кадмия, допированного литием, включающий получение исходной смеси путем растворения карбоната кадмия и карбоната лития, взятых в стехиометрическом соотношении, в 10%-ной муравьиной кислоте, взятой в количестве 5,6 мл раствора кислоты на 1 г суммарного количества карбоната кадмия и карбоната лития, упаривание полученной смеси при температуре 50-60 °С до получения сухого остатка и отжиг при температуре 300-320 °С в течение 0,5 часа на первой стадии и при фиксированном значении температуры, находящейся в интервале 500-900 °С, в течение 1 часа на второй стадии.

Изобретение относится к массивам концентраторов солнечной энергии и, в частности, к системам и способам терморегулирования массивов концентраторов солнечной энергии. Раскрыта система терморегулирования для управления температурой селективно отражающей панели.

Изобретение относится к области полупроводниковой микроэлектроники, а именно к технологии изготовления жестких зондовых головок, предназначенных для осуществления электрической связи контактных площадок кристаллов БИС с внешними схемами контроля и измерения параметров БИС. Задачей изобретения является разработка способа сборки ЖЗГ, предназначенных для контроля кристаллов с любым расположением контактных площадок, в том числе по всей поверхности кристалла, при сохранении одинаковых длин вылета зондов по всей ЖЗГ.

Изобретение относится к многопереходному солнечному элементу. Сущность: многопереходный солнечный элемент (MJ) в форме стопки, который включает стопку (ST), состоящую из самого нижнего субэлемента (С1), по меньшей мере одного среднего субэлемента (С2) и самого верхнего субэлемента (С3), причем каждый из субэлементов (C1, С2, С3) имеет эмиттер (E1, Е2, Е3) и базу (B1, В2, В3), по меньшей мере самый верхний субэлемент (С3) состоит из III-V-полупроводникового материала или включает III-V-полупроводниковый материал и эмиттер (Е3) самого верхнего субэлемента (С3) включает сверхрешетку (SL).

В конкретных вариантах осуществления изобретения частицы (100) печатают с образованием участков на подложке (300). Каждая область поверхности подложки имеет участок с частицами (102), подвергнутыми восстановительной обработке, и участок с частицами (103), подвергнутыми окислительной обработке, при этом эти участки имеют фотогальваническую активность противоположной полярности.

Изобретение относится к области микроэлектроники и может быть использовано в изготовлении матричных фоточувствительных элементов (МФЧЭ) на квантовых ямах (QWIP). Способ формирования меза-элементов матричных фоточувствительных элементов на квантовых ямах включает ионное травление аргоном, при этом осуществляют ионное травление аргоном структур из чередующихся слоев AlxGa1-xAs при x=0,27 и слоев квантовых ям из GaAs:Si до нижнего контактного слоя GaAs n+, при этом время, необходимое для ионного травления указанных структур с известными значениями толщин слоев на требуемую глубину, определяют как сумму времени ионного травления слоев квантовых ям GaAs:Si и слоев AlxGa1-xAs при x=0,27, определяемых по известным значениям скорости травления этих слоев.

Изобретение относится к автономным энергетическим системам, предназначенным для электроснабжения объектов, удаленных от централизованных электрических сетей. Техническим результатом является повышение обеспечения потребителей электроэнергией с необходимой мощностью при любых температурах в периоды отсутствия или недостатка генерации электроэнергии от фотоэлектрической батареи и ветроустановки.

Изобретение может быть использовано в оптических элементах из оптической керамики для коммутации элементов электрических схем оптико-электронных приборов, в том числе космического назначения, создания контактных электродов и электрообогрева входных окон из оптической керамики. Электропроводящее покрытие содержит нанесенные на подложку из керамики адгезионный, токопроводящий и контактный слои.

Изобретение относится к массивам концентраторов солнечной энергии и, в частности, к системам и способам терморегулирования массивов концентраторов солнечной энергии. Раскрыта система терморегулирования для управления температурой селективно отражающей панели.
Наверх