Система топливных элементов

Изобретение относится к технологии системы топливных элементов. Техническим результатом является предотвращение избыточной подачи тока, контроль количества циклов заряда/разряда батареи, подавление образования нагнетательного водорода. Система топливных элементов содержит батарею топливных элементов и управляющее устройство. Управляющее устройство увеличивает напряжение в батарее топливных элементов до тех пор, пока не будет достигнуто предварительно заданное условие напряжения, путем подачи на катод окисляющего газа перед запуском подачи тока, если при запуске системы топливных элементов значение, измеренное датчиком температуры, равно или меньше предварительно заданной температуры. Управляющее устройство выполняет резервное управление, при котором заданное значение тока поддерживается постоянным, когда измеренное значение напряжения достигает значения напряжения запуска управления, которое ниже заданного значения напряжения в переходном периоде, и завершает резервное управление, разрешая изменение заданного значения тока, когда измеренное значение напряжения достигает значения разрешающего напряжения, равного или превышающего заданное значение напряжения во время выполнения резервного управления. 2 з.п. ф-лы, 10 ил.

 

ИЗВЕСТНЫЙ УРОВЕНЬ ТЕХНИКИ

1. Область техники, к которой относится изобретение

[0001] Настоящее раскрытие относится к технологии системы топливных элементов.

2. Раскрытие предшествующего уровня техники

[0002] В предшествующем уровне техники известна система топливных элементов, в которой при выполнении операции разогрева количество окисляющего газа, подаваемого на катод, уменьшают в сравнении с обычным режимом производства электроэнергии (например, не рассмотренная японская патентная заявка № 2008-269813 (JP 2008-269813 A)).

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0003] Технология, в соответствии с уровнем техники предусматривает установление ограничения по меньшей мере одного из - величины изменения тока и величины изменения напряжения при изменении рабочей точки батареи топливных элементов во время операции разогрева. Однако, в переходный период до того, как рабочая точка батареи топливных элементов перейдет к целевой рабочей точке, определяемой целевым значением тока и целевым значением напряжения для батареи топливных элементов, подача окисляющего газа может быть недостаточной, а на катоде топливных элементов может образовываться нагнетательный водород. Когда в топливных элементах образуется нагнетательный водород, на поверхность катализатора катода не поступает достаточное количество окисляющего газа вследствие нагнетательного водорода, поэтому весьма вероятно, что образование нагнетательного водорода продолжится. При образовании нагнетательного водорода на катоде концентрация водорода в газе, выделяющемся на катоде, может оказаться высокой. Под «нагнетательным водородом» понимают водород, который образуется на катоде в результате рекомбинации ионов водорода и электронов, проводимых от анода, вследствие недостатка кислорода на катоде во время операции разогрева.

[0004] Настоящее изобретение может быть реализовано в следующем аспекте.

[0005] Первый аспект настоящего раскрытия относится к системе топливных элементов. Система топливных элементов содержит: батарею топливных элементов, содержащую несколько топливных элементов, каждый из которых содержит анод и катод; датчик напряжения, выполненный с возможностью измерения напряжения в батарее топливных элементов; систему подачи окисляющего газа, выполненную с возможностью подачи на катод окисляющего газа, содержащего кислород; систему подачи топливного газа, выполненную с возможностью подачи на анод топливного газа; датчик температуры, выполненный с возможностью измерения температуры относящейся к системе топливных элементов; и управляющее устройство, выполненное с возможностью управления работой системы топливных элементов на основании измеренного значения напряжения, измеренного датчиком напряжения, при этом: управляющее устройство выполнено с возможностью, когда при запуске системы топливных элементов значение, измеренное датчиком температуры, будет равно или ниже предварительно заданной температуры, повышения напряжения в батарее топливных элементов до тех пор, пока не будет достигнуто предварительно заданное условие напряжения, путем инициации срабатывания системы подачи окисляющего газа и подачи окисляющего газа на катод до запуска подачи тока от батареи топливных элементов, и выполнения операции разогрева, при которой температура батареи топливных элементов повышается, путем запуска подачи тока от батареи топливных элементов, когда измеренное значение напряжения соответствует условию напряжения; и управляющее устройство выполнено с возможностью, при выполнении операции разогрева, осуществления резервного управления при котором заданное значение тока поддерживают постоянным, когда измеренное значение напряжение достигает значения напряжения запуска управления, которое меньше заданного значения напряжения, в переходный период от запуска подачи тока до достижения рабочей точкой, определяемой значением напряжения и значением тока батареи топливных элементов, целевой рабочей точки, определяемой целевым значением напряжения и целевым значением тока во время операции разогрева, и прекращения резервного управления путем разрешения изменения заданного значения тока, когда измеренное значение напряжения достигнет разрешающего значения напряжения, равного или превышающего заданное значение напряжения при осуществлении резервного управления. Согласно этому аспекту, операция разогрева может быть выполнена после подачи достаточного количества кислорода на катод каждого топливного элемента, путем запуска подачи тока после того, как измеренное значение напряжения будет удовлетворять предварительно заданному условию напряжения. Следовательно, можно снизить возможность образования нагнетательного водорода, обусловленную нехваткой кислорода на катоде во время операции разогрева. Кроме того, в этом аспекте резервное управление осуществляют, когда измеренное значение напряжения достигает значения напряжения запуска управления, которое ниже заданного значения напряжения, в переходный период. Если измеренное значение напряжения ниже заданного значения напряжения, на катоде недостаточно кислорода. Следовательно, в этом случае недостаток кислорода на катоде можно устранить, поддерживая заданное значение тока постоянным до тех пор, пока измеренное значение напряжения не достигнет разрешающего значения напряжения, равного или превышающего заданное значение напряжения. Таким образом, можно дополнительно подавить образование нагнетательного водорода.

[0006] В вышеописанном аспекте управляющее устройство может быть выполнено с возможностью: осуществления нормального управления током, при котором заданное значение тока повышается до целевого значения тока в пропорции, предварительно заданной в интервале до переключения в переходном периоде, начиная с момента, в который измеренное значение напряжения достигает предварительно заданного значения коммутирующего напряжения, до момента, в который рабочая точка батареи топливных элементов достигает целевой рабочей точки; осуществления управления фактическим напряжением, при котором заданное значение тока устанавливают на основании требуемой генерируемой энергии батареи топливных элементов и измеренного значения напряжения, и подачу тока выполняют таким образом, чтобы значение подаваемого тока достигало установленного заданного значения тока в интервале до переключения в переходном периоде, пока измеренное значение напряжения не достигнет значения коммутирующего напряжения; приостановки нормального управления током и осуществления резервного управления, когда выполняется нормальное управление током, и измеренное значение напряжения достигает значения напряжения запуска управления, и завершения резервного управления и возобновления нормального управления током путем разрешения изменения заданного значения тока, когда измеренное значение напряжения достигает значения разрешающего напряжения. В этом аспекте управление фактическим напряжением осуществляют в интервале до переключения, что позволяет подавить увеличение разности между требуемой генерируемой энергией и фактической генерируемой энергией с одновременным подавлением образования нагнетательного водорода. Следовательно, можно снизить вероятность того, что количество циклов заряда/разряда вторичной батареи превысит допустимое. В интервале после переключения, кроме того, осуществляют нормальное управление током, что позволяет предотвратить избыточную подачу тока. Кроме того, в этом аспекте можно исключить недостаток кислорода на катоде, выполняя резервное управление, когда осуществляется нормальное управление током, и измеренное значение напряжения достигает значения напряжения запуска управления. Таким образом, можно подавить образование нагнетательного водорода.

[0007] В вышеописанном аспекте система топливных элементов может дополнительно содержать вторичную батарею, выполненную с возможностью заряда энергией, генерируемой батареей топливных элементов, и разряда упомянутой энергии, а управляющее устройство может быть выполнено с возможностью установки заданного значения напряжения и заданного значения тока таким образом, чтобы рабочая точка батареи топливных элементов находилась на линии постоянной энергии батареи топливных элементов, что указывает на генерируемую энергию, равную требуемой генерируемой энергии батареи топливных элементов, когда обеспечивается перемещение рабочей точки, по меньшей мере, в течение части переходного периода. В этом аспекте заданное значение напряжения и заданное значение тока устанавливают таким образом, чтобы рабочая точка находилась на линии постоянной энергии, когда обеспечивается перемещение рабочей точки в переходном периоде, что позволяет предотвратить отклонение энергии, генерируемой батареей топливных элементов, от требуемой генерируемой энергии. Следовательно, количество циклов заряда/разряда вторичной батареи можно регулировать в определенном диапазоне, подавляя отклонение энергии, генерируемой батареей топливных элементов.

[0008] Настоящее изобретение может быть реализовано в различных формах. Помимо раскрытой выше системы топливных элементов, данное изобретение может быть реализовано в виде способа управления системой топливных элементов, компьютерной программы, посредством которой компьютер осуществляет способ управления, энергонезависимого носителя для хранения информации, на котором записана компьютерная программа, и т. д.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0009] Отличительные признаки, преимущества, техническая и промышленная значимость иллюстративных вариантов осуществления настоящего изобретения раскрыты ниже со ссылкой на сопровождающие чертежи, на которых одинаковые ссылочные позиции относятся к одинаковым элементам, причем:

На ФИГ. 1 схематично изображена конфигурация системы топливных элементов;

На ФИГ. 2 детально изображена конфигурация системы топливных элементов;

На ФИГ. 3 изображена концептуальная схема, иллюстрирующая электрическую конфигурацию системы топливных элементов;

На ФИГ. 4 изображена схема внутренних блоков управляющего устройства;

На ФИГ. 5 изображены температурные характеристики вторичной батареи;

На ФИГ. 6 изображена блок-схема, иллюстрирующая процесс запуска системы топливных элементов;

На ФИГ. 7 изображена блок-схема, иллюстрирующая переходный процесс рабочей точки;

На ФИГ. 8 изображен первый график, иллюстрирующий зависимость между напряжением и током в батарее топливных элементов;

На ФИГ. 9 изображен второй график, иллюстрирующий зависимость между напряжением и током в батарее топливных элементов; и

На ФИГ. 10 изображена блок-схема, иллюстрирующая процесс запуска системы 10 топливных элементов в соответствии со вторым вариантом осуществления.

ПОДРОБНОЕ РАСКРЫТИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

A. Первый вариант осуществления

[0010] На ФИГ. 1 схематично изображена конфигурация системы 10 топливных элементов. Система 10 топливных элементов установлена, например, на электрическом транспортном средстве 12, работающем на топливных элементах, и используется в качестве энергоснабжающего устройства, питающего приводной двигатель электрического транспортного средства 12, работающего на топливных элементах. Система 10 топливных элементов содержит батарею 116 топливных элементов, систему 50 подачи/выпуска топливного газа, систему 30 подачи/выпуска окисляющего газа и систему 70 циркуляции хладагента.

[0011] Батарея 116 топливных элементов содержит несколько топливных элементов 11 и пару концевых клемм 110 и 120. Каждый топливный элемент 11 имеет форму пластины и уложен в батарею в направлении SD, соответствующем направлению толщины. Каждый топливный элемент 11 представляет собой батарею твердополимерных топливных элементов, снабжаемую окисляющим и топливным газом в качестве реакционных газов для выработки энергии в результате электрохимической реакции между кислородом и водородом. В данном варианте осуществления в качестве окисляющего газа используют воздух, содержащий кислород, а в качестве топливного газа используют водород. Каждый топливный элемент 11 представляет собой энергогенерирующий элемент, способный самостоятельно вырабатывать энергию. Каждый топливный элемент 11 содержит мембранно – электродную сборку и два сепаратора, размещенных внутри мембранно – электродной сборки. Мембранно – электродная сборка содержит электролитную мембрану, анод, расположенный на одной поверхности электролитной мембраны, и катод, расположенный на другой поверхности электролитной мембраны. На внешнем периферийном концевом участке каждого топливного элемента 11 предусмотрен открытый участок (не показанный на фигуре), формирующий коллектор Mfa, обеспечивающий поток реакционных газов и отведение отработанных газов, прошедших через энергогенерирующие участки. Коллектор Mfa разветвлен и соединен с энергогенерирующими участками топливных элементов 11. Кроме того, на внешнем периферийном концевом участке каждого топливного элемента 11 предусмотрен открытый участок (не показанный на фигуре), формирующий коллектор Mfb, обеспечивающий поток хладагента.

[0012] Концевые клеммы 110 и 120 расположены на противоположных концевых участках топливных элементов 11 в направлении SD укладки. В частности, первая концевая клемма 110 расположена на первом концевом участке батареи 116 топливных элементов, а вторая концевая клемма 120 расположена на втором концевом участке, находящемся напротив первого концевого участка батареи 116 топливных элементов. На первой концевой клемме 110 имеются открытые участки 115, выполненные в форме сквозных отверстий, формирующих коллекторы Mfa и Mfb. С другой стороны, на второй концевой клемме 120 отсутствуют открытые участки 115, выполненные в форме сквозных отверстий, формирующих коллекторы Mfa и Mfb. Таким образом, топливный газ, окисляющий газ и хладагент подаются и выпускаются только с первой стороны батареи 116 топливных элементов в направлении SD укладки. Топливные элементы 11, расположенные на стороне второго концевого участка, среди нескольких топливных элементов 11, также называют «топливными элементами 11e со стороны концевого участка». В данном варианте осуществления топливные элементы 11e со стороны концевого участка содержат топливный элемент 11, расположенный ближе всего ко второму концевому участку.

[0013] Система 50 подачи/выпуска топливного газа выполняет функцию подачи топливного газа, функцию выпуска топливного газа и функцию циркуляции топливного газа. Функция подачи топливного газа предусматривает подачу топливного газа к анодам топливных элементов 11. Функция выпуска топливного газа является функцией выпуска наружу топливного газа, выпускаемого от анодов топливных элементов 11 (также называемого «отработанным топливным газом»). Функция циркуляции топливного газа является функцией циркуляции топливного газа в системе 10 топливных элементов.

[0014] Система 30 подачи/выпуска окисляющего газа содержит функцию подачи окисляющего газа для подачи окисляющего газа на катоды топливных элементов 11, функцию выпуска окисляющего газа для выпуска наружу окисляющего газа, выпускаемого от катодов топливных элементов 11 (также называемого «отработанным окисляющим газом»), и функцию байпаса для выпуска наружу окисляющего газа в обход топливных элементов 11.

[0015] Система 70 циркуляции хладагента обеспечивает циркуляцию хладагента через батарею 116 топливных элементов для регулировки температуры батареи 116 топливных элементов. Примеры хладагента могут включать низкозамерзающий раствор, например, этиленгликоль, а также жидкость, например, воду.

[0016] На ФИГ. 2 детально изображена конфигурация системы 10 топливных элементов. На ФИГ. 2 стрелками указаны направления топливного газа, окисляющего газа и хладагента, которые подаются в батарею 116 топливных элементов и выпускаются из батареи 116 топливных элементов. Система 10 топливных элементов содержит управляющее устройство 60 дополнительно к батарее 116 топливных элементов, а также описанную выше систему 30 подачи/выпуска окисляющего газа, систему 50 подачи/выпуска топливного газа и систему 70 циркуляции хладагента. Управляющее устройство 60 управляет работой системы 10 топливных элементов. Управляющее устройство 60 будет подробно рассмотрено ниже.

[0017] Система 30 подачи/выпуска окисляющего газа содержит систему 30А подачи окисляющего газа и систему 30В выпуска окисляющего газа. Система 30А подачи окисляющего газа подает окисляющий газ на катоды батареи 116 топливных элементов. Система 30А подачи окисляющего газа содержит канал 302 подачи окисляющего газа, датчик 38 температуры наружного воздуха в качестве датчика температуры, воздухоочиститель 31, компрессор 33, двигатель 34, промежуточный охладитель 35 и первый клапан 36 регулирования давления.

[0018] Канал 302 подачи окисляющего газа представляет собой трубу, размещенную выше по направлению потока в батарее 116 топливных элементов и соединяющую атмосферу с катодами батареи 116 топливных элементов. Датчик 38 температуры наружного воздуха измеряет температуру, относящуюся к системе 10 топливных элементов. В частности, датчик 38 температуры наружного воздуха измеряет температуру воздуха как окисляющего газа, поступающего в воздухоочиститель 31, то есть температуру наружного воздуха как температуру окружающей среды. Результат измерения датчиком 38 температуры наружного воздуха передается на управляющее устройство 60. Воздухоочиститель 31 предусмотрен в канале 302 подачи окисляющего газа перед компрессором 33 и задерживает инородные вещества в окисляющем газе, поступающем в батарею 116 топливных элементов. Компрессор 33 предусмотрен в канале 302 подачи окисляющего газа перед батареей 116 топливных элементов и выпускает сжатый воздух в сторону катодов по команде управляющего устройства 60. Компрессор 33 приводится в действие от двигателя 34, работающего в соответствии с командами управляющего устройства 60. Промежуточный охладитель 35 установлен в канале 302 подачи окисляющего газа ниже по направлению потока от компрессора 33. Промежуточный охладитель 35 охлаждает окисляющий газ, сжатый компрессором 33 до горячего состояния. Первый клапан 36 регулировки давления выполнен в виде электромагнитного или электрического клапана. Первый клапан 36 регулировки давления регулирует расход окисляющего газа, направляемого из канала 302 подачи окисляющего газа в батарею 116 топливных элементов, при этом степень открытия первого клапана 36 регулировки давления регулируется управляющим устройством 60.

[0019] Система 30В выпуска окисляющего газа отводит наружу окисляющий газ, прошедший через катоды. Система 30В выпуска окисляющего газа содержит канал 308 выпуска окисляющего газа, байпасный канал 306, второй клапан 37 регулировки давления и третий клапан 39 регулировки давления. Канал 308 выпуска окисляющего газа представляет собой трубу, выпускающую наружу окисляющий газ, выпускаемый от катодов батареи 116 топливных элементов (также называемый «отработанным окисляющим газом»), и окисляющий газ, прошедший через байпасный канал 306. Второй клапан 37 регулировки давления выполнен в виде электромагнитного или электрического клапана. Второй клапан 37 регулировки давления регулирует противодавление в канале батареи 116 топливных элементов со стороны катодов, при этом степень открытия второго клапана 37 регулировки давления регулируется управляющим устройством 60. Второй клапан 37 регулировки давления размещен в канале 308 выпуска окисляющего газа перед местом присоединения байпасного канала 306 к каналу 308 выпуска окисляющего газа. Глушитель 310 размещен ниже по потоку на концевом участке канала 308 выпуска окисляющего газа.

[0020] Третий клапан 39 регулировки давления размещен в байпасном канале 306. Третий клапан 39 регулировки давления выполнен в виде электромагнитного или электрического клапана. Третий 39 клапан регулировки давления регулирует расход окисляющего газа, протекающего через байпасный канал 306, при этом степень открытия третьего клапана 39 регулировки давления регулируется управляющим устройством 60. Байпасный канал 306 представляет собой трубу, соединяющую канал 302 подачи окисляющего газа и канал 308 выпуска окисляющего газа в обход батареи 116 топливных элементов.

[0021] Система 50 подачи/выпуска топливного газа содержит систему 50А подачи топливного газа, систему 50В циркуляции топливного газа и систему 50С выпуска топливного газа.

[0022] Система 50А подачи топливного газа подает топливный газ на аноды батареи 116 топливных элементов. Система 50А подачи топливного газа содержит резервуар 51 топливного газа, канал 501 подачи топливного газа, двухпозиционный клапан 52, регулятор 53, инжектор 54 и датчик 59 давления. Резервуар 51 топливного газа содержит, например, газообразный водород под высоким давлением. Канал 501 подачи топливного газа представляет собой трубу, соединяющую резервуар 51 топливного газа с батареей 116 топливных элементов и позволяющую протекать топливному газу, направляемому из резервуара 51 топливного газа в батарею 116 топливных элементов. Двухпозиционный клапан 52, находящийся в открытом положении, позволяет топливному газу, находящемуся в резервуаре 51 топливного газа, протекать вниз по потоку. Регулятор 53 регулирует давление топливного газа выше по потоку от инжектора 54 по командам управляющего устройства 60. Инжектор 54 размещен в канале 501 подачи топливного газа выше по потоку перед местоположением, в котором канал 502 циркуляции топливного газа, который будет рассмотрен ниже, соединяется с каналом 501 подачи топливного газа. Инжектор 54 представляет собой электромагнитный двухпозиционный клапан с периодом изменения положения и временем открытия клапана, установленными управляющей частью 62, и регулирует количество топливного газа, подаваемого в батарею 116 топливных элементов. Датчик 59 давления измеряет внутреннее давление (давление подачи топливного газа) в канале 501 подачи топливного газа ниже по потоку после инжектора 54. Результат измерения поступает на управляющее устройство 60.

[0023] Система 50В циркуляции топливного газа обеспечивает циркуляцию топливного газа, выпускаемого из батареи 116 топливных элементов (также называемого «отработанным топливным газом»), в канал 501 подачи топливного газа. Система 50В циркуляции топливного газа содержит канал 502 циркуляции топливного газа, газожидкостный сепаратор 57, циркуляционный насос 55 и двигатель 56. Канал 502 циркуляции топливного газа представляет собой трубу, соединяющую батарею 116 топливных элементов с каналом 501 подачи топливного газа и позволяющую протекать отработанному топливному газу, направленному в канал 501 подачи топливного газа. Газожидкостный сепаратор 57 предусмотрен в канале 502 циркуляции топливного газа и отделяет жидкую воду от отработанного анодного газа, к которому примешана жидкая вода. Циркуляционный насос 55 приводится в действие двигателем 56 для обеспечения циркуляции отработанного анодного газа по каналу 502 циркуляции топливного газа в направлении канала 501 подачи топливного газа.

[0024] Система 50С выпуска топливного газа отводит наружу отработанный анодный газ и жидкую воду, образующиеся в результате выработки электроэнергии батареей 116 топливных элементов. Система 50С выпуска топливного газа содержит канал 504 выпуска воздуха/воды и клапан 58 выпуска воздуха/воды. Канал 504 выпуска воздуха/воды представляет собой трубу, соединяющую выпускное отверстие газожидкостного сепаратора 57, через которое сбрасывается жидкая вода, с атмосферой.

[0025] Клапан 58 выпуска воздуха/воды размещен в канале 504 выпуска воздуха/воды и открывает и закрывает канал 504 выпуска воздуха/воды. Клапан 58 выпуска воздуха/воды может представлять собой мембранный клапан. В нормальном режиме работы системы 10 топливных элементов управляющее устройство 60 подает команду на открытие клапана 58 выпуска воздуха/воды в предварительно заданное время.

[0026] Система 70 циркуляции хладагента содержит канал 79 циркуляции хладагента, циркуляционный насос 74 хладагента, двигатель 75, радиатор 72, вентилятор 71 радиатора и датчик 73 температуры батареи.

[0027] Канал 79 циркуляции хладагента содержит канал 79A подачи хладагента и канал 79B выпуска хладагента. Канал 79А подачи хладагента представляет собой трубу, по которой хладагент поступает в батарею 116 топливных элементов. Канал 79В выпуска хладагента представляет собой трубу, по которой хладагент отводится из батареи 116 топливных элементов. Циркуляционный насос 74 хладагента приводится от двигателя 75 для подачи хладагента по каналу 79А подачи хладагента в батарею 116 топливных элементов. Вентилятор 71 радиатора подает воздух в радиатор 72 для излучения тепла и охлаждения хладагента, протекающего внутри радиатора 72. Датчик 73 температуры батареи измеряет температуру относящуюся к системе 10 топливных элементов. В частности, датчик 73 температуры батареи измеряет температуру хладагента в канале 79B выпуска хладагента. Результат измерения температуры хладагента поступает в управляющее устройство 60. Управляющее устройство 60 управляет работой системы 10 топливных элементов, используя температуру, измеренную датчиком 73 температуры батареи, в качестве температуры батареи 116 топливных элементов. Система 70 циркуляции хладагента может содержать нагреватель, нагревающий хладагент. В альтернативном варианте вместо датчика 38 температуры наружного воздуха можно использовать датчик 73 температуры батареи, описанный в разделе СУЩНОСТЬ ИЗОБРЕТЕНИЯ.

[0028] На ФИГ. 3 изображена концептуальная схема, иллюстрирующая электрическую конфигурацию системы 10 топливных элементов. Система 10 топливных элементов содержит преобразователь 95 постоянного тока в постоянный (FDC), преобразователь 98 постоянного/переменного тока (DC/AC), датчик 91 напряжения и датчик 92 тока.

[0029] Датчик 91 напряжения используют для измерения напряжения батареи 116 топливных элементов. Датчик 91 напряжения подключен к каждому из топливных элементов 11 батареи 116 топливных элементов и измеряет напряжение на каждом из топливных элементов 11. Датчик 91 напряжения передает результат измерения на управляющее устройство 60. Суммарное напряжение батареи 116 топливных элементов получают путем суммирования напряжений всех топливных элементов 11, измеренных датчиком 91 напряжения. В системе 10 топливных элементов вместо датчика 91 напряжения может быть установлен датчик напряжения, измеряющий напряжение на обоих концах батареи 116 топливных элементов. В этом случае измеренные значения напряжения на обоих концах принимают за суммарное напряжение батареи 116 топливных элементов. Датчик 92 тока измеряет значение тока на выходе батареи 116 топливных элементов и передает результат измерения на управляющее устройство 60.

[0030] Преобразователь 95 постоянного тока представляет собой контур, выполненный в качестве преобразователя напряжения постоянного тока (DC/DC). Преобразователь 95 постоянного тока управляет выходным напряжением батареи 116 топливных элементов на основании заданного значения напряжения, передаваемого с управляющего устройства 60. Преобразователь 95 постоянного тока также управляет выходным током батареи 116 топливных элементов на основании заданного значения тока, передаваемого с управляющего устройства 60. Заданное значение тока представляет собой значение в качестве целевого значения тока на выходе батареи 116 топливных элементов и устанавливается управляющим устройством 60. Управляющее устройство 60 генерирует заданное значение тока, вычисляя требуемое значение тока, например, на основании требуемой генерируемой энергии батареи 116 топливных элементов.

[0031] Преобразователь 98 постоянного/переменного тока (DC/AC) подключен к батарее 116 топливных элементов и нагрузке 255, например, приводному двигателю. Преобразователь 98 постоянного/переменного тока преобразует энергию постоянного тока на выходе батареи 116 топливных элементов в энергию переменного тока, подаваемую на нагрузку 255.

[0032] Система 10 топливных элементов дополнительно содержит вторичную батарею 96 и преобразователь 97 постоянного тока батареи (BDC). Вторичная батарея 96 выполнена, например, в виде литий-ионной батареи и служит вспомогательным источником питания. Кроме того, вторичная батарея 96 питает нагрузку 255 и заряжается энергией, вырабатываемой или регенерируемой батареей 116 топливных элементов. Таким образом, вторичную батарею 96 используют для зарядки энергией, генерируемой батареей 116 топливных элементов, и отдачи этой энергии.

[0033] Преобразователь 97 постоянного тока батареи представляет собой контур, выполненный в виде преобразователя постоянного тока (DC/DC) совместно с преобразователем 95 постоянного тока, и управляет зарядом и разрядом вторичной батареи 96, в соответствии с командами от управляющего устройства 60. Преобразователь 97 постоянного тока батареи определяет состояние заряда (уровень заряда: остаточную емкость) вторичной батареи 96 и передает результат измерения на управляющее устройство 60.

[0034] На ФИГ. 4 изображена схема внутренних блоков управляющего устройства 60. Управляющее устройство 60 содержит запоминающую часть 68, состоящую из оперативного запоминающего устройства (RAM) или постоянного запоминающего устройства (ROM), и управляющую часть 62. Управляющая часть 62 управляет работой системы 10 топливных элементов на основании измеренного значения Vt напряжения, измеренного, например, датчиком 91 напряжения.

[0035] Запоминающая часть 68 хранит различные программы, которые должны выполняться управляющей частью 62. Управляющая часть 62 исполняет различные программы, хранящиеся в запоминающей части 68, для функционирования в качестве части 64 управления работой и части 66 определения условия напряжения. Часть 64 управления работой управляет работой системы 10 топливных элементов в соответствии с измеренным значением Vt напряжения и т. д. Часть 66 определения условия напряжения работает, когда выключатель системы 10 топливных элементов переведен в положение запуска системы 10 топливных элементов, и выполняется операция разогрева, при которой температура батареи 116 топливных элементов быстро повышается за счет работы с низким коэффициентом полезного действия. Операция разогрева выполняется, например, тогда, когда значение температуры, измеренное датчиком 38 температуры наружного воздуха, указывает на температуру ниже точки замерзания. Под «операцией разогрева» понимают рабочее состояние, в котором температура батареи 116 топливных элементов повышается за счет использования тепла, вырабатываемого батареей 116 топливных элементов, таким образом, чтобы температура батареи 116 топливных элементов достигла целевой температуры (например, 65°С), заранее определенной как установившееся состояние. В процессе операции разогрева стехиометрический коэффициент окисляющего газа, подаваемого в батарею 116 топливных элементов, устанавливается ниже стехиометрического коэффициента в установившемся состоянии, а потери вырабатываемой энергии в батарее 116 топливных элементов увеличиваются за счет увеличения концентрации кислорода перенапряжения. Под стехиометрическим коэффициентом окисляющего газа понимают отношение количества фактически поданного кислорода к минимальному количеству кислорода, необходимому для генерирования требуемого количества энергии. В настоящем варианте осуществления стехиометрический коэффициент окисляющего газа во время операции разогрева составляет около 1,0. Часть 66 определения условия напряжения определяет, выполняется ли условие напряжения, предварительно заданное для выполнения операции разогрева путем запуска подачи тока, что соответствует получению тока от батареи 116 топливных элементов. Это будет подробно рассмотрено ниже.

[0036] На ФИГ. 5 изображены температурные характеристики вторичной батареи 96. Энергия, доступная для заряда и разряда вторичных батарей, в частности, литий-ионных батарей, резко ограничивается при температурах ниже точки замерзания, в частности -20°С (по Цельсию) и ниже. Следовательно, когда энергия, генерируемая батареей 116 топливных элементов, превышает или не достигает требуемой генерируемой энергии, может оказаться затруднительно зарядить вторичную батарею 96 избыточной энергией или разрядить энергию для восполнения недостатка от вторичной батареи 96. Поэтому, когда измеренное датчиком 38 температуры наружного воздуха значение показывает температуру ниже точки замерзания, в частности -20°С и ниже, предпочтительно управлять системой 10 топливных элементов таким образом, чтобы энергия, генерируемая батареей 116 топливных элементов, существенно не отклонялась от требуемой генерируемой энергии.

[0037] На ФИГ. 6 изображена блок-схема, иллюстрирующая процесс запуска системы 10 топливных элементов. На ФИГ. 7 изображена блок-схема, иллюстрирующая переходный процесс рабочей точки. На ФИГ. 8 изображен первый график, иллюстрирующий зависимость между напряжением (суммарным напряжением) и током батареи 116 топливных элементов с начала процесса запуска до достижения целевой рабочей точки Pg. На ФИГ. 9 изображен второй график, иллюстрирующий зависимость между напряжением (суммарным напряжением) и током батареи 116 топливных элементов с начала процесса запуска до достижения целевой рабочей точки Pg. Пунктирная линия на ФИГ. 8 представляет собой линию PL постоянной энергии, соединяющую рабочие точки, обозначающие одинаковую генерируемую энергию как определенную требуемую генерируемую энергию (например, требуемую генерируемую энергию в заданной рабочей точке Pg) батареи 116 топливных элементов. Процесс запуска, указанный на ФИГ. 6, запускается при включении выключателя системы 10 топливных элементов.

[0038] Как показано на ФИГ. 6, управляющая часть 62 определяет наличие запроса на разогрев (этап S10). В данном варианте осуществления управляющая часть 62 определяет наличие запроса на разогрев, когда значение, измеренное датчиком 38 температуры наружного воздуха, соответствует предварительно заданной или более низкой температуре. Предварительно заданная температура может представлять собой, например, температуру замерзания, или может быть ниже температуры замерзания. Если будет установлено отсутствие запроса на разогрев (этап S10: нет), управляющая часть 62 завершает процесс запуска. По завершении процесса запуска, управляющая часть 62 осуществляет обычный процесс генерирования электроэнергии, при котором батарея 116 топливных элементов генерирует энергию, например, в соответствии с запросом от нагрузки 255.

[0039] Если будет установлено наличие запроса на разогрев (этап S10: да), часть 64 управления работой начинает подачу окисляющего газа, содержащего кислород, на катод каждого топливного элемента 11 путем управления системой 30 подачи/выпуска окисляющего газа, содержащей систему 30А подачи окисляющего газа, перед выполнением операции разогрева путем запуска подачи тока (этап S20). Следовательно, напряжение в батарее 116 топливных элементов повышается до тех пор, пока не будет достигнуто предварительно заданное условие напряжения. Кроме того, на этапе S20 управляющая часть 62 начинает подачу топливного газа со скоростью, предварительно заданной для анода каждого топливного элемента 11, путем управления системой 50 подачи/выпуска топливного газа. Кроме того, на этапе S20 управляющая часть 62 запускает циркуляцию хладагента, путем управления работой системы 70 циркуляции хладагента.

[0040] Предварительно заданное условие напряжения устанавливают как условие, при котором рекомбинация водорода на катоде может быть подавлена ионами водорода, проводимыми от анода к катоду каждого топливного элемента 11 и связываемыми с кислородом, присутствующим на катоде при выполнении операции разогрева. То есть, предварительно заданное условие напряжения устанавливают как условие напряжения, при котором можно определить, что существующего кислорода достаточно для связывания с ионами водорода, проводимыми к катоду. В данном варианте осуществления предварительно заданное условие напряжения предусмотрено в соответствии с суммарным значением напряжения батареи 116 топливных элементов, и представляет собой условие, согласно которому измеренное значение Vt напряжения (суммарное измеренное значение напряжения), отражающее суммарное значение напряжения датчика 91 напряжения, превышает предварительно заданное опорное значение Vs напряжения. Опорное значение Vs напряжения равно, например, Vc×Ln. Vc является опорным значением напряжения каждого топливного элемента 11. Ln является количеством топливных элементов 11 в батарее. Vc установлено как значение, при котором может быть определено, что на катоды топливных элементов 11 поступает достаточное количество кислорода, например, 0,88 В и более. Верхний предел для Vc является значением, при котором деградация слоев катализатора топливных элементов 11 может быть подавлена. В данном варианте осуществления Vc равно 0,88 В.

[0041] После этапа S20, часть 66 определения условия напряжения определяет, превысило ли измеренное значение напряжения Vt, измеряемое датчиком 91 напряжения, опорное значение Vs напряжения (этап S30a). Если измеренное значение Vt напряжения равно или меньше опорного значения Vs напряжения (этап S30: нет), часть 64 управления работой переходит к этапу S20, не прерывая процесс. С другой стороны, если измеренное значение Vt напряжения становится выше, чем опорное значение Vs напряжения (этап S30: да), то часть 64 управления работой разрешает подачу тока из батареи 116 топливных элементов (этап S40) и запускает переходный процесс рабочей точки (этап S50). То есть, подача тока в переходном процессе рабочей точки на этапе S50 запускается, когда подача тока разрешена.

[0042] Переходный процесс рабочей точки является частью операции разогрева. Как указано направлением стрелок на ФИГ. 8, переходный процесс рабочей точки является процессом, осуществляемым в течение периода (переходного периода) от запуска подачи тока до достижения рабочей точкой батареи 116 топливных элементов целевой рабочей точки Pg, определяемой целевым значением Vg напряжения и целевым значением Ig тока для батареи 116 топливных элементов. Управляющая часть 62 устанавливает заданное значение напряжения и заданное значение тока таким образом, чтобы рабочая точка, определяемая значением напряжения и значением тока батареи 116 топливных элементов, находилась на линии PL постоянной энергии, обозначающей одинаковую генерируемую энергию, как требуемую генерируемую энергию батареи 116 топливных элементов, когда осуществляется переход рабочей точки, по меньшей мере, в течение части переходного периода. В данном варианте осуществления заданное значение напряжения и заданное значение тока установлены таким образом, чтобы рабочая точка находилась на линии PL постоянной энергии, когда осуществляется переход рабочей точки после того, как измеренное значение Vt напряжения достигло значения Vsw коммутирующего напряжения в переходном периоде. В другом варианте осуществления, заданное значение напряжения и заданное значение тока могут быть установлены таким образом, чтобы рабочая точка находилась на линии PL постоянной энергии, когда осуществляется переход рабочей точки в течение всего переходного периода. После переходного процесса рабочей точки операцию разогрева выполняют до достижения предварительно заданной целевой температуры в заданной рабочей точке Pg.

[0043] Перед описанием деталей переходного процесса рабочей точки на этапе S50, будут раскрыты процессы до разрешения подачи тока на этапе S40 со ссылкой на ФИГ. 9. В момент t0, определяют, что имеется запрос на разогрев и начата подача окисляющего газа на катод каждого топливного элемента 11. При подаче окисляющего газа на катод повышается суммарное напряжение батареи 116 топливных элементов. В данном варианте осуществления, суммарное напряжение батареи 116 топливных элементов становится выше опорного значения Vs напряжения в момент t1. Следовательно, переходный процесс рабочей точки выполняют в момент t1. Как показано на ФИГ. 8, переходный процесс рабочей точки является процессом, выполняемым от запуска подачи тока до достижения целевой рабочей точки Pg. При управлении операцией разогрева, включая переходный процесс рабочей точки, частоту вращения компрессора 33 (ФИГ. 2), предпочтительно, поддерживают постоянной после достижения предварительно заданной целевой частоты вращения, чтобы подавить существенные колебания требуемой генерируемой энергии батареи 116 топливных элементов. Таким образом, при управлении операцией разогрева степень открытия второго клапана 37 регулировки давления или третьего клапана 39 регулировки давления регулируют, чтобы изменять расход окисляющего газа, подаваемого на катод, после достижения компрессором 33 целевой частоты вращения. При управлении операцией разогрева в данном варианте осуществления первый клапан 36 регулировки давления удерживается в полностью открытом состоянии.

[0044] Как показано на ФИГ. 7, часть 64 управления работой осуществляет управление фактическим напряжением в интервале до переключения в рамках переходного периода (этап S52). Под интервалом до переключения понимают интервал до момента, в который измеренное значение Vt напряжения достигнет значения Vsw коммутирующего напряжения. При управлении фактическим напряжением, часть 64 управления работой устанавливает заданное значение тока на основании требуемой генерируемой энергии батареи 116 топливных элементов и измеренного значения Vt напряжения, измеренного датчиком 91 напряжения и являющегося фактическим напряжением батареи 116 топливных элементов. В частности, часть 64 управления работой вычисляет заданное значение тока путем деления требуемой генерируемой энергии на измеренное значение Vt напряжения, после чего устанавливает заданное значение тока. При управлении фактическим напряжением часть 64 управления работой выполняет подачу тока, управляя преобразователем 95 постоянного тока таким образом, чтобы значение подаваемого тока достигло вычисленного заданного значения тока.

[0045] После запуска управления фактическим напряжением на этапе S52 часть 66 определения условия напряжения определяет, достигло ли измеренное значение Vt напряжения значения Vsw коммутирующего напряжения (этап S54). Этап S52 выполняется до тех пор, пока измеренное значение Vt напряжения не достигнет значения Vsw коммутирующего напряжения. Если измеренное значение Vt напряжения достигло значения Vsw коммутирующего напряжения, часть 64 управления работой выполняет функцию нормального управления током или функцию резервного управления (этап S56). То есть, функция нормального управления током или функция резервного управления выполняется в интервале после переключения переходного периода, с момента, когда измеренное значение Vt напряжения достигает значения Vsw коммутирующего напряжения, до момента, когда измеренное значение Vt напряжения достигает целевой рабочей точки Pg.

[0046] Резервное управление выполняют с приостановкой нормального управления током при выполнении определенного условия в период после переключения. Значение Vsw коммутирующего напряжения устанавливают на значение, полученное путем прибавления предварительно заданного значения Vad дополнительного напряжения к целевому значению Vg напряжения. Значение Vad дополнительного напряжения, предпочтительно, устанавливают на значение, не ниже значения Vg целевого напряжения даже в случае возникновения избыточной подачи тока. В данном варианте осуществления значение Vad дополнительного напряжения установлено на 66 В.

[0047] При нормальном управлении током управляющая часть 62 увеличивает заданное значение тока до целевого значения Ig тока в предварительно заданной пропорции. Управляющая часть 62 приостанавливает нормальное управление током и выполняет резервное управление, когда измеренное значение Vt напряжения достигает значения Vcs напряжения запуска управления, которое меньше заданного значения напряжения. При резервном управлении управляющая часть 62 сохраняет заданное значение тока постоянным, поддерживая заданное значение тока в момент, когда измеренное значение Vt напряжения достигает значения Vcs напряжения запуска управления. Следовательно, управляющая часть 62 прекращает резервное управление путем разрешения изменения заданного значения тока, когда измеренное значение Vt напряжения достигает значения разрешающего напряжения, равного или превышающего заданное значение напряжения, путем увеличения напряжения батареи 116 топливных элементов. Значение Vcs напряжения запуска управления может быть установлено таким образом, чтобы резервное управление осуществлялось сразу после того, как измеренное значение Vt напряжения опустится ниже заданного значения напряжения, или может быть установлено, чтобы быть меньше, чем заданное значение напряжения на предварительно заданное значение (например, 5 В), с учетом точности измеренного значения Vt напряжения. Кроме того, значение Vp разрешающего напряжения может быть таким же значением, как и заданное значение напряжения или может превышать заданное значение напряжения на определенное значение (например, 5 В) с учетом точности измеренного значения Vt напряжения. При резервном управлении управляющая часть 62 может увеличивать расход окисляющего газа, подаваемого в батарею 116 топливных элементов, путем регулировки степени открытия второго клапана 37 регулировки давления или третьего клапана 39 регулировки давления, показанных на ФИГ. 2. Следовательно, напряжение в батарее 116 топливных элементов может быть увеличено более эффективно. Управляющая часть 62 может возобновить нормальное управление током, разрешив изменение заданного значения тока во время выполнения резервного управления.

[0048] Предполагается, что измеренное значение Vt напряжения достигает значения Vcs напряжения запуска управления, которое ниже значения Vg целевого напряжения в качестве заданного значения напряжения, в момент t3, как показано на ФИГ. 9. В момент t3 измеренное значение It тока датчика 92 тока (ФИГ. 3), не достигает целевого значения Ig тока. В этом случае, измеренное значение Vt напряжения достигает значения Vcs напряжения запуска управления в момент t3, и таким образом управляющая часть 62 приостанавливает нормальное управление током и выполняет резервное управление. То есть, управляющая часть 62 поддерживает заданное значение тока на постоянном значении Ia, поддерживая заданное значение тока в момент t3.

[0049] В момент t4 измеренное значение Vt напряжения достигает разрешающего значения Vp напряжения, которое равно или больше целевого значения Vg напряжения в качестве заданного значения напряжения и, тем самым, управляющая часть 62 завершает резервное управление и возобновляет нормальное управление током. Следовательно, заданное значение тока снова увеличивается в сторону целевой рабочей точки Pg в пропорции, предварительно заданной при нормальном управлении током. Резервное управление осуществляется аналогичным образом в период с t5 по t6 и с t7 по t8.

[0050] Как показано на ФИГ. 7, управляющая часть 62 определяет, достигла ли рабочая точка (измеренное значение It тока и измеренное значение Vt напряжения) батареи 116 топливных элементов целевой рабочей точки Pg (этап S58). Управляющая часть 62 выполняет нормальное управление током или резервное управление до тех пор, пока рабочая точка не достигнет целевой рабочей точки Pg. С другой стороны, когда рабочая точка достигает целевой рабочей точки Pg, управляющая часть 62 завершает переходный процесс рабочей точки. В примере, показанном на ФИГ. 9, рабочая точка достигает целевой рабочей точки Pg в момент t9. По завершении переходного процесса рабочей точки управляющая часть 62 выполняет операцию разогрева в целевой рабочей точке Pg до тех пор, пока батарея 116 топливных элементов не достигнет целевой температуры. Управляющая часть 62 определяет, достигло ли целевой температуры значение, измеренное датчиком 73 температуры батареи (ФИГ. 2) в качестве температуры батареи 116 топливных элементов.

[0051] В раскрытом выше первом варианте осуществления, операция разогрева может быть выполнена после подачи достаточного количества кислорода на катоды батареи 116 топливных элементов путем запуска подачи тока после того, как измеренное значение Vt напряжения будет удовлетворять предварительно заданному условию напряжения. Следовательно, можно снизить возможность образования нагнетательного водорода, обусловленную нехваткой кислорода на катоде во время операции разогрева. Уменьшая возможность образования нагнетательного водорода, можно подавить выделение водорода в атмосферу по каналу 308 выпуска окисляющего газа. Кроме того, в данном варианте осуществления управляющая часть 62 выполняет резервное управление, когда измеренное значение Vt напряжения достигает значения Vcs напряжения запуска управления, которое меньше заданного значения напряжения в переходном периоде. Если измеренное значение Vt напряжения ниже заданного значения напряжения, на катоде недостаточно кислорода. Следовательно, в этом случае управляющая часть 62 может устранить недостаток кислорода на катоде, поддерживая заданное значение тока постоянным до тех пор, пока измеренное значение Vt напряжения не достигнет разрешающего значения Vp напряжения, равного или превышающего заданное значение напряжения. Таким образом, можно дополнительно подавить образование нагнетательного водорода.

[0052] Кроме того, в раскрытом выше первом варианте осуществления управление фактическим напряжением выполняется в период перед переключением, что позволяет подавить увеличение разности между требуемой генерируемой энергией и фактической генерируемой энергией при одновременном подавлении образования нагнетательного водорода. Следовательно, можно снизить вероятность того, что количество циклов заряда/разряда вторичной батареи 96 превысит допустимое. В интервале после переключения дополнительно осуществляют нормальное управление током, что позволяет предотвратить избыточную подачу тока. Кроме того, в этом варианте осуществления, можно исключить недостаток кислорода на катодах, выполняя резервное управление, когда осуществляется нормальное управление током, и измеренное значение Vt напряжения достигает значения Vcs напряжения запуска управления. Таким образом, можно подавить образование нагнетательного водорода.

[0053] Кроме того, в раскрытом выше первом варианте осуществления управляющая часть 62 устанавливает заданное значение напряжения и заданное значение тока таким образом, чтобы рабочая точка находилась на линии PL постоянной энергии, когда вызывается смещение рабочей точки в переходном периоде, что позволяет предотвратить отклонение фактической энергии, генерируемой батареей 116 топливных элементов, от требуемой генерируемой энергии. Следовательно, можно удерживать количество циклов заряда/разряда вторичной батареи 96 в определенном диапазоне и тем самым снизить вероятность того, что количество циклов заряда/разряда вторичной батареи 96 превысит допустимое.

B. Второй вариант осуществления

[0054] На ФИГ. 10 изображена блок-схема, иллюстрирующая процесс запуска системы 10 топливных элементов в соответствии со вторым вариантом осуществления. Отличием от процесса запуска (ФИГ. 6,) в соответствии с раскрытым выше первым вариантом осуществления, является этап S30a. Прочие этапы первого и второго варианта осуществления одинаковы, поэтому им присвоены одинаковые ссылочные обозначения, а описание опущено. Во втором варианте осуществления, предварительно заданное условие напряжения, при котором разрешена подача тока, предполагает, что измеренное значение напряжения топливных элементов 11e со стороны концевого участка превысило предварительно заданное опорное значение напряжения со стороны концевого участка.

[0055] После этапа S20, часть 66 определения условия напряжения определяет, превысило ли измеренное значение напряжения топливных элементов 11e со стороны концевого участка, измеренное датчиком 91 напряжения, предварительно заданное опорное значение Vce напряжения топливных элементов со стороны концевого участка (этап S30a). Опорное значение Vce напряжения топливных элементов со стороны концевого участка устанавливают на значение, которое может соответствовать подаче достаточного количества кислорода на катод топливных элементов 11e со стороны концевого участка, например, 0,8 В. Когда на этапе S30a будет выполнено определение на основании соответствующих измеренных значений напряжения нескольких топливных элементов 11e со стороны концевого участка, управляющая часть 62 определяет, например, превысили ли соответствующие измеренные значения напряжения предварительно заданного количества топливных элементов 11e со стороны концевого участка опорное значение Vce напряжения топливных элементов со стороны концевого участка.

[0056] В раскрытом выше втором варианте осуществления, могут быть достигнуты те же эффекты при той же конфигурации, что и в раскрытом выше первом варианте осуществления. Например, операция разогрева может быть выполнена после подачи достаточного количества кислорода на катод батареи 116 топливных элементов путем запуска подачи тока после того, как измеренное значение напряжения топливных элементов 11e со стороны концевого участка будет удовлетворять предварительно заданному условию напряжения. Следовательно, можно снизить возможность образования нагнетательного водорода, обусловленную нехваткой кислорода на катоде во время операции разогрева. Уменьшая возможность образования нагнетательного водорода, можно подавить выделение водорода в атмосферу по каналу 308 выпуска окисляющего газа. Кроме того, можно дополнительно подавить образование нагнетательного водорода, определив, соответствует ли значение напряжения топливных элементов 11e со стороны концевого участка, которые размещены на стороне второго концевого участка, предварительно заданному условию напряжения, даже если длина батареи 116 топливных элементов в направлении SD укладки настолько велика, что окисляющий газ достигает стороны второго концевого участка по истечении значительного времени. Таким образом, образование нагнетательного водорода можно дополнительно подавить путем определения того, соответствует ли измеренное значение напряжения на топливных элементах 11e со стороны концевого участка предварительно заданному условию напряжения, причем напряжение на топливных элементах 11e со стороны концевого участка растет медленно, даже если напряжение на стороне второго концевого участка батареи 116 топливных элементов, под действием подачи окисляющего газа, увеличивается медленнее, чем на стороне первого концевого участка батареи 116 топливных элементов, поскольку окисляющий газ достигает стороны второго концевого участка позже, чем стороны первого концевого участка.

C. Другие варианты осуществления

C-1. Первый дополнительный вариант осуществления

[0057] В раскрытом выше первом варианте осуществления, топливный газ, окисляющий газ и хладагент подаются и выпускаются только со стороны первого концевого участка батареи 116 топливных элементов системы 10 топливных элементов. Однако настоящее изобретение не ограничивается этим вариантом. Например, топливный газ, окисляющий газ и хладагент можно подавать со стороны первого концевого участка батареи 116 топливных элементов системы 10 топливных элементов и выпускать со стороны второго концевого участка.

C-2. Второй дополнительный вариант осуществления

[0058] Управляющая часть 62 запускает подачу тока, когда суммарное значение напряжения батареи 116 топливных элементов будет соответствовать условию напряжения, указанному в вышеописанном первом варианте осуществления, и запускает подачу тока, когда значение напряжения на топливных элементах 11e со стороны концевого участка будет соответствовать условию напряжения в вышеописанном втором варианте осуществления. Однако настоящее изобретение не ограничивается этим вариантом. Например, подача тока может быть запущена, когда значение напряжения на топливных элементах 11, расположенных на первой стороне батареи 116 топливных элементов, или значение напряжения на топливных элементах 11, расположенных посередине, удовлетворяет условию напряжения.

C-3. Третий дополнительный вариант осуществления

[0059] В каждом из раскрытых выше вариантов осуществления управляющая часть 62 осуществляет управление фактическим напряжением и нормальное управление током в переходном периоде. Однако настоящее изобретение не ограничивается этим вариантом. Например, управляющая часть 62 в переходном периоде может осуществлять только управление фактическим напряжением или нормальное управление током, или может осуществлять иное управление дополнительно к резервному управлению. Кроме того, в переходный период может выполняться, например, управление временным снижением заданного значения тока.

C-4. Четвертый дополнительный вариант осуществления

[0060] В каждом из раскрытых выше вариантов осуществления на этапе 10, показанном на ФИГ. 6, управляющая часть 62 определяет наличие запроса на разогрев, когда значение, измеренное датчиком 38 температуры наружного воздуха, соответствует предварительно заданной или более низкой температуре. Однако настоящее изобретение не ограничивается этим вариантом. Например, управляющая часть 62 может определить наличие запроса на разогрев, когда значение, измеренное датчиком 73 температуры батареи, соответствует предварительно заданной или более низкой температуре.

[0061] Настоящее изобретение не ограничивается раскрытыми выше вариантами осуществления и может быть реализовано в различных конфигурациях без отклонения от объема и смысла настоящего раскрытия. Например, технические характеристики вариантов осуществления, соответствующие техническим характеристикам в каждом аспекте, раскрытом в разделе СУЩНОСТИ ИЗОБРЕТЕНИЯ, могут быть соответствующим образом заменены или объединены для устранения части или всех рассмотренных выше проблем или для достижения части или всех рассмотренных выше эффектов. Кроме того, технические характеристики могут быть при необходимости удалены, если они не указаны как обязательные.

1. Система топливных элементов, содержащая:

батарею топливных элементов, содержащую несколько топливных элементов, каждый из которых содержит анод и катод;

датчик напряжения, выполненный с возможностью измерения напряжения в батарее топливных элементов;

систему подачи окисляющего газа, выполненную с возможностью подачи на катод окисляющего газа, содержащего кислород;

систему подачи топливного газа, выполненную с возможностью подачи на анод топливного газа;

датчик температуры, выполненный с возможностью измерения температуры, относящейся к системе топливных элементов; и

управляющее устройство, выполненное с возможностью управления работой системы топливных элементов на основании измеренного значения напряжения, измеренного датчиком напряжения, при этом:

управляющее устройство выполнено с возможностью, когда при запуске системы топливных элементов значение, измеренное датчиком температуры, будет равно или ниже предварительно заданной температуры,

повышения напряжения в батарее топливных элементов до тех пор, пока не будет достигнуто предварительно заданное условие напряжения, путем инициации срабатывания системы подачи окисляющего газа и подачи окисляющего газа на катод до запуска подачи тока от батареи топливных элементов, и

выполнения операции разогрева, при которой температура батареи топливных элементов повышается, путем запуска подачи тока от батареи топливных элементов, когда измеренное значение напряжения соответствует условию напряжения; и

управляющее устройство выполнено с возможностью, при выполнении операции разогрева,

осуществления резервного управления, при котором заданное значение тока поддерживают постоянным, когда измеренное значение напряжения достигает значения напряжения запуска управления, которое меньше заданного значения напряжения, в переходный период от запуска подачи тока до достижения рабочей точкой, определяемой значением напряжения и значением тока батареи топливных элементов, целевой рабочей точки, определяемой целевым значением напряжения и целевым значением тока во время операции разогрева, и

прекращения резервного управления путем разрешения изменения заданного значения тока, когда измеренное значение напряжения достигает разрешающего значения напряжения, равного или превышающего заданное значение напряжения, при осуществлении резервного управления.

2. Система топливных элементов по п. 1, в которой

управляющее устройство выполнено с возможностью:

осуществления нормального управления током, при котором заданное значение тока повышается до целевого значения тока в пропорции, предварительно заданной в интервале до переключения в переходном периоде, начиная с момента, в который измеренное значение напряжения достигает предварительно заданного значения коммутирующего напряжения, до момента, в который рабочая точка батареи топливных элементов достигает целевой рабочей точки;

осуществления управления фактическим напряжением, при котором заданное значение тока устанавливается на основании требуемой генерируемой энергии батареи топливных элементов и измеренного значения напряжения, и подачу тока выполняют таким образом, чтобы значение подаваемого тока достигало установленного заданного значения тока в интервале до переключения в переходном периоде, пока измеренное значение напряжения не достигнет значения коммутирующего напряжения; и

приостановки нормального управления током и осуществления резервного управления, когда выполняется нормальное управление током, и измеренное значение напряжения достигает значения напряжения запуска управления, а также завершения резервного управления и возобновления нормального управления током путем разрешения изменения заданного значения тока, когда измеренное значение напряжения достигнет значения разрешающего напряжения.

3. Система топливных элементов по п. 1 или 2, дополнительно содержащая вторичную батарею, выполненную с возможностью заряда энергией, генерируемой батареей топливных элементов, и разряда упомянутой энергии, при этом управляющее устройство выполнено с возможностью установки заданного значения напряжения и заданного значения тока таким образом, чтобы рабочая точка батареи топливных элементов находилась на линии постоянной энергии батареи топливных элементов, что указывает на генерируемую энергию, равную требуемой генерируемой энергии батареи топливных элементов, когда обеспечивается перемещение рабочей точки по меньшей мере в течение части переходного периода.



 

Похожие патенты:

Изобретение относится к твердооксидным топливным элементам на основе планарных мембранно-электродных блоков. В блоках топливных элементов металлические биполярные интерконнекторы заменены напечатанными на 3D-принтере керамическими пластинами, которые образуют газораспределительные каналы, формируют каркас батареи и обеспечивают возможность монополярной коммутации мембранно-электродных блоков тонкими металлическими листами с токопроводящими защитными покрытиями.

Изобретение относится к мономерной композиции и к способу получения фторированного полимера, с помощью которой может быть получен фторированный полимер с высокой молекулярной массой. Мономерная композиция включает особый циклический мономер и ингибитор полимеризации, при этом ингибитор полимеризации представляет собой ингибитор полимеризации, который удовлетворяет следующим требованиям: (a) представляет собой 6-членный ненасыщенный циклический углеводород, имеющий от 1 до 4 заместителей, (b) имеет в качестве заместителя по меньшей мере один тип заместителя, выбранный из группы, состоящей из трет-бутильной группы, метильной группы, изопропенильной группы, оксогруппы и гидроксигруппы, (c) в случае, когда ингибитор полимеризации имеет оксогруппу в качестве одного типа заместителя, один или более других заместителей, отличных от оксогруппы, представляют собой трет-бутильную группу и метильную группу, и (d) в случае, когда ингибитор полимеризации имеет гидроксигруппу в качестве заместителя, число гидроксигрупп равно одной.
Изобретение относится к области электротехники, а именно к защитному покрытию металлических биполярных пластин топливных элементов с твердым полимерным электролитом. Защитное покрытие биполярных пластин топливных элементов с твердым полимерным электролитом выполнено на основе проводящих полимеров, являющихся побочным продуктом переработки гексозосодержащей биомассы в 5-гидроксиметилфурфурол.

Изобретение относится к области электротехники, а именно к химическим источникам тока, в частности к биполярным пластинам топливных элементов и способам их изготовления. Биполярная пластина представляет собой металлическую пластину, состоящую из катодной и анодной частей, симметричных относительно своих центров.

Изобретение относится к топливному элементу и способу его изготовления. Топливный элемент содержит узел мембранных электродов с электродами, расположенными на обеих поверхностях электролитной мембраны, газодиффузионный слой, уложенный на одну из поверхностей узла мембранных электродов, каркас из полимера, установленный на одну из поверхностей узла мембранных электродов таким образом, чтобы он окружал внешнюю периферийную поверхность газодиффузионного слоя на некотором удалении от внешней периферийной поверхности газодиффузионного слоя, и лист полимера, расположенный между газодиффузионным слоем и каркасом из полимера с одной стороны и узлом мембранных электродов с другой стороны с целью заполнения промежутка между внутренней периферийной поверхностью каркаса из полимера и внешней периферийной поверхностью газодиффузионного слоя.

Изобретение относится к анодам твердооксидных топливных элементов, к композициям, используемым при изготовлении анодов, к способам изготовления анодов. Анод для твердооксидного топливного элемента содержит: матрицу, содержащую легированный оксид металла; и электрокатализатор, причем электрокатализатор содержит пористые частицы, поддерживаемые матрицей, причем пористые частицы содержат каталитический материал парового риформинга, заключенный внутри пор пористых частиц.

Изобретение относится к области электротехники, а именно к элементам батарей среднетемпературных электрохимических устройств для получения электроэнергии, и может быть использовано для создания твердооксидных топливных элементов (ТОТЭ). Ячейка содержит несущий электролит в виде трубчатой основы из допированного скандата лантана La1-хSrхScO3-δ со спекающей добавкой оксида кобальта или оксида никеля до 1 масс.

Изобретение относится к области водородной энергетики, в частности к разработке химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования. Предложено применение железоорганического соединения - дифенилферроцена в качестве жидкого органического носителя водорода.

Изобретение относится к ячейке топливного элемента. Согласно изобретению ячейка топливного элемента содержит связующий слой; между первым сепаратором и внешним периферийным краевым участком первого газодиффузионного слоя расположен связующий слой, соединяющий первый сепаратор с внешним периферийным краевым участком; между первым сепаратором и внешним периферийным краевым участком мембранно-электродной сборки расположен связующий слой, соединенный с внешним периферийным краевым участком мембранно-электродной сборки; и между первым сепаратором и несущим каркасом и/или между вторым сепаратором и несущим каркасом расположен связующий слой, соединяющий несущий каркас и сепаратор.

Изобретение относится к ячейке топливного элемента. Согласно изобретению ячейка топливного элемента содержит первый газодиффузионный слой, уложенный на первую поверхность мембранно-электродной сборки таким образом, чтобы его внешний периферийный краевой участок выступал от первой поверхности мембранно-электродной сборки.

Изобретение относится к энергетической и электрохимической отраслям промышленности и может найти применение при производстве водородно-воздушных топливных элементов с мембранно-электродными блоками на основе протонообменных мембран. Батарея топливных элементов включает две концевые пластины с зонами под стягивающие элементы, одну монополярную и не менее двух биполярных пластин с мембранно-электродными блоками, при этом зоны под стягивающие элементы представляют собой продольные (и поперечные) выемки по краям одной из плоскостей каждой концевой пластины. Техническим результатом является оптимизация параметров устройства за счет снижения его общих габаритов при сохранении его удельных мощностных (на единицу объема и массы устройства) и эксплуатационных характеристик. Оптимизация параметров осуществляется, в частности, путем увеличения активной области биполярных пластин за счет создания определенной (предпочтительной) конфигурации проточных каналов для газа окислителя, а также путем использования определенной системы сборки (стяжки) батареи. 2 н. и 10 з.п. ф-лы, 9 ил.
Наверх