Способ получения сорбента органических соединений

Изобретение относится к получению сорбентов органических соединений из углеродного остатка, образующегося в процессе пиролиза резиносодержащих отходов. Способ получения сорбента органических соединений включает пиролиз резиносодержащих отходов с получением углеродного остатка, активацию углеродного остатка водяным паром, подаваемым в пиролизную камеру, и охлаждение углеродного остатка с дополнительной его активацией за счет периодической подачи охлаждающей воды. При этом пиролиз проводят при температуре 510-520°С в течение 4 часов, после чего в пиролизную камеру вводят водяной пар через вентиль в количестве 0,1 т на 1 т углеродного остатка для активации углеродного остатка. Далее продолжают пиролиз при той же температуре в течение 2 часов, после чего углеродный остаток охлаждают до температуры 200-220°С водным раствором гидроксида натрия с рН=9-10 расходом 50 л на 1 т углеродного остатка и перманганата калия в концентрации 8-10 г на 1 л раствора в течение 2 часов. Затем пиролизную камеру соединяют с атмосферой, охлаждают естественным путем, извлекают пиролизный остаток, дробят и рассеивают на фракции. Обеспечивается увеличение сорбционной активности углеродного сорбента. 1 ил., 3 табл., 3 пр.

 

Изобретение относится к получению сорбентов органических соединений из углеродного остатка, образующегося в процессе пиролиза резиносодержащих отходов.

Известно изобретение, относящееся к способам получения сорбентов органических соединений из углеродного остатка, образующегося в процессе пиролиза резиносодержащих отходов, в том числе изношенных автомобильных шин. После завершения процесса пиролиза непосредственно в пиролизную камеру подают вначале пар от стороннего источника по крайней мере в течение 10 мин, а затем в несколько ступеней с перерывами не менее 10 мин - охлаждающую воду из расчета не более 0,12 л на 1 кг углеродного остатка. Поданный пар подвергает углеродный остаток предварительной активации, а порционная подача охлаждающей воды одновременно выполняет две функции: увеличение пористой структуры углеродного остатка и постепенное понижение температуры в пиролизной камере до 150-200°С. В течение каждого перерыва между ступенями осуществляется постепенная активация углеродистого остатка паром, образовавшимся на предыдущей ступени охлаждения. Суммарное количество охлаждающей воды на всех ступенях охлаждения, приходящееся на 1 кг углеродного остатка, не превышает 0,5 л. (Патент РФ №2287484).

Сорбент не обладает достаточно высокой эффективностью.

Наиболее близким решением технической задачи к заявленному объекту является способ получения сорбента из углеродного остатка, образующегося в процессе пиролиза резиносодержащих отходов, предусматривающий активацию углеродного остатка водяным паром, подаваемым в пиролизную камеру снизу от стороннего источника в течение не менее 10 мин, охлаждение углеродного остатка от температуры 450-500°С до температуры 150-200°С с дополнительной его активацией за счет периодической подачи сверху в пиролизную камеру воды в несколько ступеней в количестве не менее 0,12 л на 1,0 кг остатка, с перерывами между ступенями не менее 10 мин и суммарном количестве охлаждающей воды на всех ступенях охлаждения, не превышающем 0,5 л на 1 кг углеродного остатка, при этом процесс осуществляют при периодическом изменении давления в пиролизной камере, внутреннее пространство которой связано трубопроводом с одной из полостей нагнетательного пневмоцилиндра, вторая полость которого связана с атмосферой, а поршень со штоком которого жестко соединены со штоком и поршнем силового пневмоцилиндра двухстороннего действия, на 10-30% от номинального давления с периодом, равным 0,5-3,0 мин(патент №2396208).

Сорбент не обладает достаточно высокой эффективностью.

Задачей изобретения является повышение эффективности очистки сточных вод от трудноизвлекаемых органических веществ.

Способ получения сорбента органических соединений, включающий пиролиз резиносодержащих отходов с получением углеродного остатка, активацию углеродного остатка водяным паром, подаваемым в пиролизную камеру, охлаждение углеродного остатка с дополнительной его активацией за счет периодической подачи охлаждающей воды, отличающейся тем, что пиролиз проводят при температуре 510-520°С в течение 4 часов, после чего в пиролизную камеру вводят водяной пар через вентиль в количестве 0,1 т на 1 т углеродного остатка для активации углеродного остатка. Далее продолжают пиролиз при той же температуре в течение 2 часов, после чего углеродный остаток охлаждают до температуры 200-220°С водным раствором гидроксида натрия с рН=9-10 расходом 50 л на 1 т углеродного остатка и перманганата калия в концентрации 8-10 г на 1 л раствора в течение 2 часов, затем пиролизную камеру соединяют с атмосферой, охлаждают естественным путем, извлекают пиролизный остаток, дробят и рассеивают на фракции.

На фиг. 1 представлено устройство для реализации способа.

Установка содержит пиролизную камеру 1, в которую по каналу 2 через затвор 3 поступают разрезанные на куски изношенные шины 4. После завершения процесса пиролиза изношенных шин в пиролизную камеру подают воду через вентиль 5, а водяной пар - через вентиль 6. Активированный углеродный остаток из пиролизной камеры удаляют через затвор 7 по каналу 8.

Способ осуществляется следующим образом.

Сырье подают в пиролизную камеру 1 по каналу 2 после открытия затвора 3, затем осуществляется процесс пиролиза. Пиролиз проводят при температуре 510-520°С в течение 4 часов, после чего в пиролизную камеру вводят водяной пар через вентиль 6 в количестве 0,1 т на 1 т углеродного остатка для активации углеродного остатка. Далее продолжают пиролиз при той же температуре в течение 2 часов, после чего углеродный остаток охлаждают до температуры 200-220°С водным раствором гидроксида натрия с рН=9-10 расходом 50 л на 1 т углеродного остатка и перманганата калия в концентрации 8-10 г на 1 л раствора в течение 2 часов.

Щелочной реагент и перманганат калия увеличивают сорбционную активность полученного сорбента.

Пиролизную камеру соединяют с атмосферой, охлаждают естественным путем, извлекают пиролизный остаток, дробят и рассеивают на фракции.

Пример 1. Проводили определение сорбционной активности углеродного остатка по ГОСТ 4453-74 по метиленовому голубому.

Опыты проводились по оптимизации концентрации NaOH в охлаждающей воде. Результаты приведены в таблице 1.

Из таблицы 1 следует, что оптимальным значением является рН 9,0-10,0, так как при меньшем значении падает сорбционная активность, а при большем значении увеличивается расход реагента при низком приросте активности.

Пример 2. Опыты проводили по оптимизации концентрации KMnO4 в охлаждающей воде. Результаты приведены в таблице 2.

Из таблице 2 следует, что оптимальным значением является концентрация KMnO4, равная 8-10 г/л.

Пример 3. Опыты проводили по определению сорбционной активности углеродного остатка по прототипу и изобретению. Результаты приведены в таблице 3.

Из таблице 3 следует, что сорбционная активность углеродного остатка по изобретению выше 2,28 раз, чем по прототипу (среднее значение).

Способ получения сорбента органических соединений, включающий пиролиз резиносодержащих отходов с получением углеродного остатка, активацию углеродного остатка водяным паром, подаваемым в пиролизную камеру, охлаждение углеродного остатка с дополнительной его активацией за счет периодической подачи охлаждающей воды, отличающийся тем, что пиролиз проводят при температуре 510-520°С в течение 4 часов, после чего в пиролизную камеру вводят водяной пар через вентиль в количестве 0,1 т на 1 т углеродного остатка для активации углеродного остатка, далее продолжают пиролиз при той же температуре в течение 2 часов, после чего углеродный остаток охлаждают до температуры 200-220°С водным раствором гидроксида натрия с рН=9,0-10,0 расходом 50 л на 1 т углеродного остатка и перманганата калия в концентрации 8-10 г на 1 л раствора в течение 2 часов, затем пиролизную камеру соединяют с атмосферой, охлаждают естественным путем, извлекают пиролизный остаток, дробят и рассеивают на фракции.



 

Похожие патенты:

Настоящее изобретение относится к газовой промышленности и может быть использовано при транспортировке газообразных энергоносителей на дальние расстояния. Изобретение касается способа транспортирования метано-водородной смеси.

Изобретение относится к технологии нанесения твердых износостойких наноструктурированных покрытий из аморфного алмазоподобного углерода и может быть использовано в металлообработке, машиностроении, медицине, электронике, солнечной энергетике, оптоэлектронике, фотонике, в производстве жидкокристаллических дисплеев, защитных покрытий с высокой твердостью для повышения эксплуатационных свойств поверхности изделий различного функционального назначения.
Изобретение относится к способу изготовления профилированных изделий, включающих углеродные нанотрубки, и к профилированным изделиям, включающим углеродные нанотрубки, получаемым при использовании способа. Способ включает стадии подачи углеродных нанотрубок в кислотной жидкости, представляющей собой серную кислоту и профилирования кислотной жидкости, включающей углеродные нанотрубки, с образованием профилированного изделия.

Изобретение относится к области фотокатализа, а именно к катализаторам и способам их приготовления, и может найти применение в процессах фотокаталитического выделения водорода из водных растворов Na2S/Na2SO3 под действием видимого излучения при комнатной температуре. Описан катализатор для процесса фотокаталитического получения водорода из водного раствора Na2S/Na2SO3 под действием видимого излучения, содержащий твёрдый раствор сульфидов кадмия и марганца с добавлением оксида или гидроксида марганца следующего состава: β-Mn3O4-MnOOH-Cd1-xMnxS, где x = 0,02 – 0,04, и способ его приготовления гидротермальной обработкой предварительно осажденного твердого раствора сульфида марганца и кадмия раствором сульфида натрия через промежуточную стадию образования гидроксидов.

Изобретение относится к способу создания суспензии на основе детонационного наноалмаза, заключающемуся в равномерном распределении детонационного наноалмаза в трансмиссионном масле, в котором готовят таблетки диаметром 10 мм и высотой 4-5 мм из порошка детонационного наноалмаза с помощью прессформы на прессе усилием около 2000 кг, таблетки размещают в вакуумную печь при остаточном давлении не хуже чем 10-3 мм рт.ст, нагревают таблетки в вакууме со скоростью около 1 град./с до 900-950°С и выдерживают при в этих условиях около 10 минут, охлаждают до комнатной температуры без нарушения вакуума, при комнатной температуре термообработанные в вакууме таблетки помещают в масляную среду до полной пропитки их маслом, пропитанные маслом таблетки диспергируют в вибрационном диспергаторе с ударными телами до равномерной вязкой суспензии, в которой концентрация наноалмаза составляет 10-13 мас.%, а затем разбавляют свежим трансмиссионным маслом, так чтобы содержание наноалмаза составляло 4-5 мас.%.

Изобретение относится к теплогенерирующим установкам, работающим на природном газе, и служит для утилизации вредных газообразных выбросов. В тепловодородном генераторе продуктовые трубопроводы соединены через теплообменник с узлом выделения водорода, состоящим из нескольких адсорберов.
Изобретение относится к технологии производства материала высокой теплопроводности путем постростовой обработки монокристаллов алмаза. Способ характеризуется тем, что предварительно искусственно синтезируют алмаз типа Ib, или Ib+Ia, или Ia+Ib методом высоких давлений и высоких температур (НРНТ) c начальной концентрацией в кристаллической решетке одиночных изолированных атомов азота в позиции замещения (дефектов С) в диапазоне от 1,76·1018 см-3 до 1,4·1020 см-3, а затем подвергают его облучению электронами с энергией от 1 до 5 МэВ и дозой облучения от 1·1018 до 1·1019 см-2, чем вызывают перезарядку части образовавшихся одиночных изолированных вакансий из нейтрального в отрицательное зарядовое состояние и обеспечивают повышение теплопроводности алмаза при температурах в диапазоне 300-340 К.

Изобретение может быть использовано при нанесении теплозащитных покрытий изделий авиационной и космической техники, при получении высокотемпературных керамоматричных композитов, химически и эрозионно стойких материалов. Способ получения нанокомпозитов карбидов ниобия или тантала в углеродной матрице, представляющей собой аморфную и графитизированную фазы, NbC/C и TaC/C, включает осаждение металлов из растворов NbCl5 или TaCl5 в сухих органических растворителях и разложение полученных осадков в форвакууме при 10-2-10-4 Па, нагреве 900-1200°С и выдерживании при этих температурах в течение часа.

Настоящее изобретение относится к электропроводящему полиуретановому композиционному материалу и к способу его получения и может быть использовано при изготовлении изделий и покрытий из полиуретановых композиционных материалов с требуемой электропроводностью. Способ получения электропроводящего полиуретанового композиционного материала путем взаимодействия органических полиизоцианатов (А) с одним или несколькими соединениями, содержащими реакционноспособные по NCO группы, (В) включает в себя стадию смешения концентрата углеродных нанотрубок с соединениями (B) или с полиизоцианатами (A) или со смесью, содержащей органические полиизоцианаты (А) и соединения (В), при вложенной энергии менее 0,5 кВт⋅ч на 1 кг смеси, при содержании углеродных нанотрубок в расчете на сумму масс (А) и (В) менее 0,1 масс.%.

Изобретение относится к области получения карбида железа, в частности к области получения нанопорошков карбида железа без содержания металлического железа газофазными методами, и может быть использовано в таких областях, как электрохимия, катализ, биомедицина. Предложен способ получения нанопорошка карбида железа без содержания металлического железа в свободно-насыпном состоянии со средним размером частиц менее 50 нм, включающий испарение железа из капли расплавленного железа, подвешенной в высокочастотном поле противоточного индуктора в вертикально ориентированном реакторе, захват паров железа от капли непрерывным нисходящим потоком инертного газа-носителя, конденсацию паров железа в наночастицы железа в зоне конденсации, взаимодействие железа с углеродом в газовой фазе в наночастицах железа в зоне реакции ниже по потоку, перенос образовавшихся наночастиц карбида железа потоком газа-носителя в зону охлаждения и улавливание их фильтром, при этом источником углерода служит углеродсодержащий газ, который вводят в поток газа-носителя выше зоны реакции через кольцевой зазор в реакторе.

Изобретение относится к химической промышленности и охране окружающей среды и может быть использовано для очистки сточных вод химических предприятий от ртути. Гранулированный активированный уголь обрабатывают модифицирующим раствором, обеспечивающим получение на его поверхности активного компонента - сульфида марганца (II), в две стадии.
Наверх