Способ модифицирования алюминиево-кремниевых сплавов

Изобретение относится к области цветной металлургии и может быть использовано при производстве алюминиево-кремниевых сплавов. Способ модифицирования алюминиево-кремниевых сплавов включает введение модификатора в расплав, перемешивание и выдержку, при этом в качестве модификатора используют прессовку, полученную из порошков с размером частиц 1-5 мкм, содержащую, мас. %: 40-60 композиционного порошка, состоящего из 28-30 Si и 70-72 Аl2O3, получаемого методом механически активированного самораспространяющегося высокотемпературного синтеза, 35-45 порошка силумина, 5-15 порошка меди или вольфрама. Изобретение позволяет повысить прочность алюминиево-кремниевого сплава в 1,2 раза, пластичность - в 2,5 раза и уменьшить пористость в 2-4 раза. 5 пр., 1 табл.

 

Изобретение относится к области цветной металлургии и может быть использовано при производстве алюминиево-кремниевых сплавов.

Для повышения свойств алюминиевых сплавов проводят их модифицирование для измельчения зерна и эвтектического кремния в литой структуре и производится, как правило, добавлением модификаторов в расплав.

Известны способы модифицирования алюминиево-кремниевых сплавов (силуминов) натрием или стронцием [Никитин В.И., Никитин К.В. Наследственность в литых сплавах // М: Машиностроение-1, 2005], а также способ получения модифицированного силумина с использованием флюса из галоидных солей, содержащих эвтектику KCl-NaCl с добавками NaF, включающий загрузку исходной шихты, содержащей до 40 мас. % оборотных отходов собственного производства или вторичного силумина, в предварительно нагретый солевой расплав модифицирующей смеси, выдержку полученного расплава под слоем солей с последующим извлечением сплава и повторением цикла, причем нагрев солевого расплава осуществляют до 770-790°С, в него последовательно загружают исходную шихту и лигатуру на основе алюминия с легирующими, выбранными из группы медь, кремний, титан, цирконий, причем лигатура Al-Cu содержит 38-40 мас. % меди, лигатура Al-Ti содержит не менее 2 мас. % титана, лигатура Al-Zr содержит не более 0,6 мас. % циркония, и выдерживают полученный расплав при этой температуре в течение 10-30 мин, затем температуру снижают до 710-720°С и вводят магнийсодержащую лигатуру [UA 57584].

Однако способы сложные, включают много операций, фторид натрия является вредным веществом, а модифицирование отдельными лигатурами приводит к неоднородности материала, соответственно, механические свойства невысокие.

Известны также способы модифицирования эвтектических алюминиево-кремниевых сплавов модификаторами, содержащими фосфор в виде лигатуры Cu-10%P, [RU 2348718]. При модифицировании расплавы нагревают выше температуры ликвидуса на 110-140°С или на 250-300°С. После введения модификаторов расплав перемешивают, выдерживают в печи 8-10 минут, затем выпускают из печи в ковш и разливают по литейным формам.

Однако при модифицировании щелочными металлами плохая усвояемость, так как модификатор всплывает, структура слитка неоднородная. А при использовании медно-фосфористой лигатуры изменяется состав алюминиевого сплава. Это ведет к снижению прочности и пластичности материала.

В качестве прототипа выбран способ модифицирования алюминиево-кремниевых сплавов, в котором для измельчения эвтектики вводится не более 0,05% модификатора из ряда Sb, Sr, Na, K, Са, для измельчения сс-твердого раствора вводится не более 0,12% модификатора из ряда Ti, В, Zr, Sc [RU 2576707].

Однако при модифицировании элементами, имеющими невысокую плотность, г/см3 (K - 0,86, Na - 0,97, Са - 1,55, В - 2,46, Sr - 2,63, Sc - 2,99) невозможно получить равномерное распределение модифицирующих элементов в сплаве, что приводит к неравномерной структуре в слитке, соответственно, свойств, а элементами с большей, чем основа сплава плотностью, г/см (Ti - 4,5, Zr - 6,5, Sb - 6,7), связано со сложностью введения в элементарном виде из-за их активности. Кроме того, большое количество введенных элементов приводит к изменению состава материала. Все это приводит к невысокому эффекту модифицирования - образованию остаточной пористости и получению невысоких прочности и пластичности материала.

Техническая задача, которую решает предлагаемое изобретение, заключается в повышении прочности, пластичности алюминиево-кремниевых сплавов за счет снижения пористости, создания однородной мелкозернистой структуры, уменьшения количества примесей.

Поставленная техническая задача достигается тем, что в способе модифицирования алюминиево-кремниевых сплавов, включающем введение модификатора в расплав, перемешивание и выдержку, модифицирование осуществляют модификатором в виде прессовки из порошков с размером частиц 1-5 мкм состава, мас. %: 40-60 композиционного порошка, состоящего из 28-30% Si и 70-72% Al2O3 (далее Si/Al2O3), получаемого методом механически активированного самораспространяющегося высокотемпературного синтеза (МАСВС), 35-45 порошка силумина, 5-15 порошка меди или вольфрама.

Введение в расплав модификатора в виде прессовок из смеси порошков позволяет в широких пределах варьировать состав смеси, упрощает введение модификатора в расплав и улучшает однородность распределения модификатора по объему сплава.

Метод механически активированного самораспространяющегося высокотемпературного синтеза (МАСВС) позволяет получать композиционные порошки с равномерным распределением ультра- или нанодисперсных составляющих в объеме составов, которые получить другим методом невозможно. В частности, получить композиционный порошок кремния, в котором равномерно распределено 70-72% ультра- и нанодисперсных включений Al2O3 невозможно.

Использование в качестве модификатора композиционного порошка Si/Al2O3, получаемого МАСВС, оказалось очень эффективно благодаря однородному распределению ультрадисперсных частиц оксида алюминия в кремниевой матрице, которая хорошо усваивается расплавом силумина. При этом размер первичного и эвтектического кремния уменьшается в 2,5-3 раза, снижает остаточную пористость сплава, что ведет к повышению его прочности и пластичности.

Дисперсность композиционного порошка Si/Al2O3, получаемого МАСВС, 1-5 мкм обеспечивает хорошее распределение в смеси с порошком силумина, дисперсность которого составляет 100-200 мкм и позволяет получать при прессовании прочные прессовки.

Введение 5-15% меди или вольфрама обусловлено необходимостью утяжеления прессовки модификатора для предотвращения его всплытия при введении в расплав.

Сущность предлагаемого изобретения поясняется в примерах.

Примеры 1-5.

Порошок силумина АК12 в количестве 35-45% смешивали в шаровом смесителе в течение 2 ч с 40-60% композиционного порошка Si/Al2O3 дисперсностью 1-7 мкм, получаемого самораспространяющимся высокотемпературным синтезом с предварительной обработкой в планетарной мельнице в течение 2 мин (МАСВС) и 5-15% меди или вольфрама. Из смеси прессовали заготовки диаметром 30 мм, высотой 20 мм.

Куски силумина плавили в электрической камерной печи сопротивления в графитовом тигле при температуре 750-760°С, при этой температуре делали выдержку в течение 10 мин, удаляли с поверхности расплава шлак, после чего вводили заготовки модификатора, перемешивали расплав и делали выдержку в течение 30 мин. Расплав заливали в песчано-глинистую форму для получения образцов для испытания механических свойств и структуры форму. Образцы подвергали испытаниям на растяжение. Свойства образцов приведены в таблице. Из образцов делали шлифы, травили раствором Келлера и определяли размер выделений первичного и эвтектического кремния. Установлено, что размер первичного и эвтектического кремния уменьшается в 2,5-3 раза и составляет: первичного кремния 6-8 мкм, эвтектического кремния 18-20 мкм.

По способу-прототипу куски силумина, 0,05% Са и 0,12% Ti плавили в электрической камерной печи сопротивления в графитовом тигле при температуре 750-760°С, при этой температуре делали выдержку в течение 10 мин, перемешивали расплав и делали выдержку в течение 30 мин. Расплав заливали в песчано-глинистую форму для получения образцов для испытания механических свойств и структуры форму. Образцы подвергали испытаниям на растяжение. Свойства образцов приведены в таблице. Из образцов делали шлифы, травили раствором Келлера и определяли размер выделений первичного и эвтектического кремния. Установлено, что размер первичного кремния составляет 16-24 мкм, эвтектического кремния 26-32 мкм.

Таким образом, предлагаемое изобретение позволяет повысить прочность алюминиево-кремниевого сплава в 1,2 раза, пластичность - в 2,5 раза, уменьшить пористость в 2-4 раза.

Способ модифицирования алюминиево-кремниевых сплавов, включающий введение модификатора в расплав, перемешивание и выдержку, отличающийся тем, что модифицирование осуществляют модификатором в виде прессовки из порошков с размером частиц 1-5 мкм состава, мас. %: 40-60 композиционного порошка, состоящего из 28-30% Si и 70-72% Al2O3, полученного методом механически активированного самораспространяющегося высокотемпературного синтеза, 35-45 порошка силумина, 5-15 порошка меди или вольфрама.



 

Похожие патенты:

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении отливок сложной формы, предназначенных для изготовления нагруженных деталей, в том числе ответственного назначения. Литейный сплав на основе алюминия содержит, мас.%: Si 5,0-12,0, Cu 3,0-4,0, Sn 0,04-0,20, Fe 0,1-0,6, Mn 0,15-0,5, алюминий и примеси - остальное, при этом сплав имеет температуру ликвидуса не выше 630°С, температуру равновесного солидуса не ниже 515°С и структуру после термообработки, содержащую алюминиевую матрицу с микротвердостью не менее 130 HV и эвтектические кристаллы кремния и фазы Al15(Fe,Mn)3Si2.

Изобретение относится к области металлургии, а именно к модифицированию алюминиево-кремниевых сплавов доэвтектического, эвтектического и заэвтектического составов, и может быть использовано в технологии приготовления алюминиево-кремниевых сплавов для получения фасонных отливок. Способ модифицирования алюминиево-кремниевых сплавов включает введение в расплав флюса, содержащего, мас.
Изделие из алюминиевого сплава включает пару внешних областей и внутреннюю область, расположенную между этими внешними областями. Первая концентрация эвтектикообразующих легирующих элементов во внутренней области меньше, чем вторая концентрация эвтектикообразующих легирующих элементов в каждой из внешних областей, при этом изделие из алюминиевого сплава имеет значение степени плоскостной анизотропии дельта r от 0 до 0,10.

Изобретение относится к сплавам на основе алюминия для алюминиевых листов и профилей и может быть использовано при изготовлении боковых панелей фюзеляжа, в том числе применяемых в изделиях авиационной техники военного назначения. Сплав на основе алюминия содержит, мас.

Изобретение относится к металлургии литейных сплавов на основе алюминия и может быть использовано при изготовлении фасонных отливок сложной формы литьем под низким давлением, таких как автомобильные диски колес. Сплав содержит, мас.

Изобретение относится к области металлургии и может быть использовано при получении литых доэвтектических, эвтектических и заэвтектических алюминиево-кремниевых сплавов (силуминов). При выплавке указанных сплавов в качестве модификатора используют шунгит.
Изобретение относится к области металлургии и может быть использовано при приготовлении литых алюминия, доэвтектических, эвтектических и заэвтектических алюминиево-кремниевых сплавов (силуминов). Способ включает модифицирование расплава углеродом в количестве 0,05-0,5% от массы шихты при температуре 740-800°C, углерод вводится в несвязанном виде в наноструктурном состоянии или аморфном состоянии.

Изобретение относится к области металлургии, в частности к бор-содержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании, в частности, с высоким уровнем поглощения при нейтронном излучении.

Изобретение относится к многослойной трубе и ее применению. Многослойная труба включает металлическую трубу с внутренней поверхностью и внешней поверхностью, первый полимерный слой, связанный с внешней поверхностью, и, предпочтительно, второй полимерный слой, связанный с внутренней поверхностью, и при этом металлическая труба изготовлена из алюминиевого сплава, содержащего, вес.%: Si от 1,5 до 2,45, Fe от 0,5 до 1,2, Mn от 0,5 до 1,2, Cu от 0,3 до 1, Mg от 0,04 до 0,3, Ti<0,25, Zn<1,2 и другие примеси или случайные элементы <0,05 каждого, включая Cr<0,05 и Zr<0,05, всего <0,25, а остальное - алюминий.

Изобретение относится к литейному и металлургическому производству, в частности к получению псевдолигатуры для модифицирования алюминиевых сплавов. Способ включает смешивание в планетарной мельнице полученного по технологии самораспространяющегося высокотемпературного синтеза ультрадисперсного порошка карбида титана, содержащего соли хлорида калия и натрия, с порошком основы, содержащим алюминий и медь, в соотношении 9:1, и прессование полученной композиции.

Изобретение относится к порошковой металлургии, в частности к спеченным фрикционным материалам на основе меди для работы в узлах трения машин и механизмов в условиях наличия смазки. Спеченный фрикционный материал на основе меди, содержащий, мас.%: олово 4-7, графит 9-12, порошок железа 27-30, порошок нитрида алюминия 1-3, медь - остальное.
Наверх