Способ неразрушающего контроля прочности оптического волокна

Использование: для неразрушающего контроля прочности оптического волокна. Сущность изобретения заключается в том, что в оптическом волокне создают напряжение с помощью источника акустического воздействия, расположенного вблизи оптического волокна, это же оптическое волокно с подключенной к нему измерительной системой используют как распределенный акустический датчик, с помощью которого регистрируют акустической сигнал в зоне акустического воздействия, по результатам обработки данного сигнала выделяют сигнал акустической эмиссии и сигнал акустического воздействия, причем при одних и тех же условиях измерения предварительно выполняют для образцового оптического волокна, прочность которого известна, а затем для контролируемого оптического волокна, после чего рассчитывают прочность контролируемого оптического волокна, при этом напряжение в оптическом волокне создают источником акустического воздействия, работающим на одной частоте, при обработке регистрируемого сигнала выделяют из него сигнал нелинейной акустической эмиссии на гармониках частоты источника акустического воздействия и рассчитывают прочность контролируемого оптического волокна по определенной формуле. Технический результат: обеспечение возможности уменьшения погрешности при оценке прочности оптического волокна. 1 ил.

 

Изобретение относится к области неразрушающего контроля прочности оптических волокон из плавленого кварцевого стекла.

Известен способ [1, 2] определения прочности оптических волокон из плавленого кварцевого стекла заключающийся в том, что к оптическому волокну прикладывают нагрузку, увеличивают ее до разрушения оптического волокна, на торце оптического волокна в месте разрушения измеряют радиус зеркальной зоны и определяют прочность испытуемого образца оптического волокна по формуле:

, (1)

где R – радиус зеркальной зоны; A – константа; σ – искомая оценка прочности испытуемого образца оптического волокна. Данный метод требует разрушения испытуемого образца оптического волокна.

Известны способы [3-8] определения прочности оптических волокон из плавленого кварцевого стекла заключающийся в том, что к образцу оптического волокна прикладывают нагрузку, увеличивают ее до величины, необходимой для разрушения оптического волокна, измеряют нагрузку на оптическое волокно в момент разрушения и по этой величине оценивают прочность испытуемого образца оптического волокна. Данные методы также требуют разрушения оптического волокна.

Известен способ [9] определения энергии разрушения листового стекла, заключающийся в том, что при разрушении стекла измеряют и записывают сигнал акустической эмиссии, а затем обрабатывают записанный сигнал акустической эмиссии для определения энергии разрушения стекла (или другого параметра). Данный способ относится к разрушающим способам контроля и не предназначен для контроля прочности оптического волокна из плавленого кварцевого стекла.

Известен способ [10] определения прочности пряди оптических волокон, заключающийся в том, что к пряди оптических волокон прикладывают растягивающую нагрузку и контролируют ее, вблизи пряди оптических волокон размещают акустический сенсор, с помощью которого измеряют сигналы акустической эмиссии, увеличивают нагрузку до разрыва оптических волокон в пряди и по результатам измерений нагрузки и сигналов акустической эмиссии при обрывах волокон определяют прочность на разрыв, местоположение и время разрушения для каждого отдельного волокна. Данный способ относится к разрушающим способам контроля прочности оптических волокон.

Известны способы [11-14] определения прочности оптических волокон из плавленого кварцевого стекла, заключающиеся в том, что оптическое волокно перематывается под нагрузкой и по заданным значениям приложенной к волокну нагрузки и интервала времени, в течение которого она приложена, рассчитывают оценки прочности оптического волокна. Данные способы неприменимы для оптических волокон внутри модульных трубок, включенных в конструкцию кабеля и т.п.

Известны способы [15-19] акустического контроля роста трещин в изделиях, заключающиеся в том, что к изделию прикладывают нагрузку, измеряют параметры акустической эмиссии, по которым оценивают глубину трещины. При этом учитывается, что параметр энергии акустической эмиссии прямо пропорционален глубине трещины [18, 19]:

, (2)

Здесь ls – глубина трещины; ps – параметр энергии акустической эмиссии; C – постоянная.

Известно [20-22], что для реализации указанных способов в качестве распределенного акустического сенсора может быть использовано оптическое волокно с подключенной к нему измерительной системой (Distributed Acoustic Sensor – DAS). Однако все вышеперечисленные способы [14-22] не предназначены для контроля прочности оптических волокон из плавленого кварцевого стекла.

Известен способ контроля прочности пряди оптических волокон [23], заключающийся в том, что к пряди оптических волокон прикладывается растягивающая нагрузка, около пряди оптических волокон размещают акустический сенсор, с помощью которого измеряют сигналы акустической эмиссии, по результатам обработки которых оценивают прочность пряди оптических волокон. Данный метод не позволяет определять прочность отдельных оптических волокон.

Известен способ [24] измерения роста дефектов в композитной структуре, заключающийся в том, что к нагруженной композитной структуре подключают датчики нагрузки и датчики акустической эмиссии, измеряют нагрузку и данные акустической эмиссии, по результатам обработки которых оценивают характеристики композитной структуры. Данный способ неразрушающего контроля состояния объекта не предназначен для контроля прочности оптического волокна из плавленого кварцевого стекла. Способ требует непосредственного подключения источника механической нагрузки для создания напряжения от вибрации и/или скручивания к этой композитной структуре. Это сложно реализовать на длине оптического волокна в конструкции кабеля. Данный способ требует подключения к испытуемой композитной структуре датчиков нагрузки и акустических датчиков, что делает устройство для реализации способа достаточно сложным и увеличивает его стоимость. Все это ограничивает область применения данного способа.

От указанных недостатков свободен наиболее близкий к заявляемому способ неразрушающего контроля прочности оптического волокна [25], заключающийся в том, что в тестируемом оптическом волокне создают напряжение с помощью источника акустического воздействия, расположенного вблизи оптического волокна, это же оптическое волокно с подключенной к нему измерительной системой используют как распределенный акустический датчик, с помощью которого регистрируют акустической сигнал в зоне акустического воздействия, по результатам обработки данного сигнала выделяют сигнал акустической эмиссии и сигнал акустического воздействия, причем при одних и тех же условиях измерения предварительно выполняют для образцового оптического волокна, прочность которого известна, а затем для контролируемого оптического волокна, после чего рассчитывают прочность контролируемого оптического волокна по формуле

, (3)

где σ0, σT – оценки прочности образцового и контролируемого оптического волокна, соответственно.

Wa0 , WaT – оценки энергии акустической эмиссии, полученные в результате измерений на образцовом и контролируемом оптических волокнах для зоны акустического воздействия, соответственно;

Ws0 , WsT оценки энергии сигнала акустического воздействия, полученные в результате измерений на образцовом и контролируемом оптических волокнах для зоны акустического воздействия, соответственно;

n – коэффициент коррозии плавленого кварцевого стекла оптического волокна.

Основной недостаток данного способа заключается в том, он не предусматривает при обработке принятого сигнала выделения из сигнала акустической эмиссии полезного сигнала. На тестируемое оптическое волокно, функционирующее как распределенный акустический сенсор помимо предусмотренного способом источника акустического воздействия действуют сторонние источники, которые создают помехи, что приводит к погрешностям искомых оценок прочности оптического волокна. Известно, что наиболее информативной и существенной составляющей результата взаимодействия акустического сигнала с трещинами является нелинейная акустическая эмиссия [26]. Однако данный способ не предусматривает выделения из принимаемого сигнала компонент, соответствующих нелинейной акустической эмиссии. В итоге, это приводит к дополнительным погрешностям оценок прочности оптического волокна, что ограничивает область применения способа.

Сущностью предлагаемого изобретения является расширение области применения.

Эта сущность достигается тем, что согласно способа неразрушающего контроля прочности оптического волокна в оптическом волокне создают напряжение с помощью источника акустического воздействия, расположенного вблизи оптического волокна, это же оптическое волокно с подключенной к нему измерительной системой используют как распределенный акустический датчик, с помощью которого регистрируют акустической сигнал в зоне акустического воздействия, по результатам обработки данного сигнала выделяют сигнал акустической эмиссии и сигнал акустического воздействия, причем при одних и тех же условиях измерения предварительно выполняют для образцового оптического волокна, прочность которого известна, а затем для контролируемого оптического волокна, после чего рассчитывают прочность контролируемого оптического волокна, при этом напряжение в оптическом волокне создают источником акустического воздействия, работающем на одной частоте, при обработке регистрируемого сигнала выделяют из него сигнал нелинейной акустической эмиссии на гармониках частоты источника акустического воздействия и рассчитывают прочность контролируемого оптического волокна по формуле

, (4)

где , – оценки прочности образцового и контролируемого оптического волокна, соответственно;

, – амплитуды регистрируемого сигнала на частоте источника акустического воздействия для образцового и контролируемого оптического волокна, соответственно;

где , – амплитуды регистрируемого сигнала на i-той гармонике частоты источника акустического воздействия для образцового и контролируемого оптического волокна, соответственно;

N – число гармоник частоты источника акустического воздействия, которые можно выделить на спектральной характеристике регистрируемого сигнала на фоне помех.

На фиг. 1 приведена схема варианта реализации заявляемого способа. Устройство включает образцовое оптическое волокно 1, прочность которого σ0 известна, контролируемое оптическое волокно 2, источник акустического воздействия 3, измерительную систему 4 и оптический коммутатор 5. Вход измерительной системы 4 соединен со входом оптического коммутатора 5, первый выход которого подключен к образцовому оптическому волокну 1, а его второй выход к контролируемому оптическому волокну 2, при этом источник акустического воздействия расположен вблизи контролируемого волокна 2 и образцового волокна на расстоянии 0,01 м-10,0 м.

Устройство работает следующим образом. Предварительно измерительная система 4 через оптический коммутатор 5 подключается к образцовому оптическому волокну 1. Источник акустического воздействия 3 формирует акустический сигнал на одной частоте, который воздействует на образцовое оптическое волокно 1. Под акустическим воздействием образцовое оптическое волокно 1 в зоне воздействия изгибается с частотой сигнала акустического воздействия, что создает механические напряжения на изгибах образцового оптического волокна 1. При изгибах образцового оптического волокна 1 микротрещины на его поверхности открываются и закрываются с частотой сигнала акустического воздействия. В результате в напряженном на изгибах образцовом оптическом волокне 1 из-за микротрещин на его поверхности формируется сигнал нелинейной акустической эмиссии, который принимает распределенный акустический датчик из образцового оптического волокна 1, подключенного через оптический коммутатор 5 к измерительной системе 4. В измерительной системе 4 по результатам обработки принимаемых распределенным акустическим датчиком акустических сигналов определяются оценки амплитуд гармоник частоты воздействующего акустического сигнала для образцового оптического волокна 1 в зоне акустического воздействия. Затем измерительная система 4 через оптический коммутатор 5 подключается к контролируемому оптическому волокну 2. Источник акустического воздействия формирует акустический сигнал на той же частоте, который воздействует на контролируемое оптическое волокно 2. Под акустическим воздействием контролируемое оптическое волокно 2 в зоне воздействия изгибается с частотой сигнала акустического воздействия, что создает механические напряжения на изгибах контролируемого оптического волокна 2. При изгибах контролируемого оптического волокна 2 микротрещины на его поверхности открываются и закрываются с частотой сигнала акустического воздействия. В результате в напряженном на изгибах контролируемом оптическом волокне 2 из-за микротрещин на его поверхности формируется сигнал нелинейной акустической эмиссии, который принимает распределенный акустический датчик из контролируемого оптического волокна 2, подключенного через оптический коммутатор 5 к измерительной системе 4. В измерительной системе 4 по результатам обработки принимаемых распределенным акустическим датчиком акустических сигналов определяются оценки амплитуд гармоник частоты воздействующего акустического сигнала для контролируемого оптического волокна 2 в зоне акустического воздействия. После чего, по формуле (4) рассчитывается прочность контролируемого оптического волокна 2.

В отличие от известного способа, которым является прототип, в предлагаемом способе при обработке сигнала, принимаемого с помощью оптического волокна как распределенного акустического датчика, выделяют сигнал нелинейной акустической эмиссии на гармониках частоты источника акустического воздействия, работающего на одной частоте. Это позволяет существенно снизить помехи, обусловленные сторонними источниками акустического воздействия, и тем самым повысить точность оценок прочности оптического волокна. А это, в свою очередь, расширяет область применения предлагаемого способа по сравнению с прототипом.

Источники информации

1. Mecholsky J.J., Rice R.W., Freiman S.W. Prediction of Fracture Energy and Flaw Size in Glasses from Measurements of Mirror Size// J. of Amer. Ceram. Soc., v.57(10), pp. 440-443 (1973).

2. Castilone R.J., Glaesemann G.S., Hanson T. A. Relationship Between Mirror Dimensions and Failure Stress for Optical Fibers// Proceedings of SPIE, v.4639, pp.11-20 (2002)

3. Nelson G.J., Matthewson M.J., Lin B. A novel four-point bend test for strength measurement of optical fibers and thin beams. I. Bending analysis // J. of Lightwave Technology, v.14(4), pp. 555-563 (1996).

4. Matthewson M.J., Nelson G.J. A novel four-point bend test for strength measurement of optical fibers and thin beams. II. Statistical analysis // J. of Lightwave Technology, v.14(4), pp. 564-571 (1996).

5. ГОСТ Р МЭК 60793-1-31-2010.

6. ГОСТ Р МЭК 60793-1-33-2014.

7. IEC TR 62048:2014 Optical fibres – Reliability – Power law theory. 2014. 66 p.

8. ITU-T G-series Recommendations – Supplement 59, SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS, Guidance on optical fibre and cable reliability, (02/2018). 21 p.

9. Патент US 2006232403 A1.

10. Jihan S., Siddiqui A. M., Sweet M. A. S. Fracture strength of E-glass fibre strands using acoustic emission // NDT & E International, v.30(6), pp.383–388 1997).

11. Evans A.G., Wiederhorn S.M. Proof testing of ceramic materials an analytical basis for failure prediction // International Journal of Fracture, v. 10(3), pp. 379–392 (1974).

12. Hanson T.A., Glaesemann G.S. Incorporation multi-region crack growth into mechanical reliability predictions for optical fiber // Materials Science, v. 32, pp. 5305–5311 (1997).

13. Semjonov S., Glaesemann G.S. High-Speed Tensile Testing of Optical Fibers – New Understanding for Reliability Prediction. In: Suhir E., Lee Y.C., Wong C.P. (eds) Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, De-sign, Reliability, Packaging. – Springer, Boston, MA, pp. A595-A625 (2007).

14. ГОСТ Р МЭК 60793-1-30-2010.

15. Seo D.-C., Kwon I.-B., Kim C.-Y., Yoon D.-J. Fiber optic acoustic sensors for crack growth diagnostics // Proc. of SPIE, v.7004, pp. 70044T-1-4 (2008).

16. Sial T.R., Jin Y., Juan Z. Crack identification in Beams by Vibration based analysis techniques – A Review // International Journal of Science, Engineering and Technology Research (IJSETR), v.07(10), pp. 2278 -7798 (2018).

17. Патент RU 2659575 C1.

18. Shao Y., Yu Y., Zhang Y., Wei S., Li X. Analysis of acoustic emission signal characteristics based on the crack pattern of stress corrosion cracking// Tenth International Conference on Sensing Technology (ICST), pp. 1-5 (2016).

19. Wang R., Wu Q., Yu F., Okabe Y., Xiong K. Modeling of contact acoustic nonlinearity for evaluating fatigue crack in metal plate// NDT.net Issue: 2018-02, The 9th International Symposium on NDT in Aerospace, pp.1-5 (2017).

20. Muanenda Y. Recent Advances in Distributed Acoustic Sensing Based on Phase-Sensitive Optical Time Domain Reflectometry // Hindawi Journal of Sensors, v. 2018, ID 3897873, 16 p. (2018).

21. He Z., Liu Q., Fan X., Chen D., Wang S., Yang G. A Review on Advances in Fiber-optic Distributed Acoustic Sensors (DAS) // CLEO Pacific Rim 2018, Th2L.1.pdf, 2 p. (2018).

22. Патент RU 2516346 C1.

23. Cowking A., Attou A., Siddiqui A.M., Sweet M.A .S., Hill R. Testing E-glass fibre bundles using acoustic emission // J. Mater. Sci. v. 26, pp.1301–1310 (1991).

24. Патент US 10605783 B2.

25. Патент RU 2743737 С1.

26. Zaitsev V.Yu., Gusev V.É., Castagnéde B. “Interaction of acoustic waves with cracks: Elastic and inelastic nonlinearity mechanisms on different time scales”, Acoustical Physics 51(1), 567–577(2005).

Способ неразрушающего контроля прочности оптического волокна, заключающийся в том, что в оптическом волокне создают напряжение с помощью источника акустического воздействия, расположенного вблизи оптического волокна, это же оптическое волокно с подключенной к нему измерительной системой используют как распределенный акустический датчик, с помощью которого регистрируют акустической сигнал в зоне акустического воздействия, по результатам обработки данного сигнала выделяют сигнал акустической эмиссии и сигнал акустического воздействия, причем при одних и тех же условиях измерения предварительно выполняют для образцового оптического волокна, прочность которого известна, а затем для контролируемого оптического волокна, после чего рассчитывают прочность контролируемого оптического волокна, отличающийся тем, что напряжение в оптическом волокне создают источником акустического воздействия, работающим на одной частоте, при обработке регистрируемого сигнала выделяют из него сигнал нелинейной акустической эмиссии на гармониках частоты источника акустического воздействия и рассчитывают прочность контролируемого оптического волокна по формуле

, (4)

где , – оценки прочности образцового и контролируемого оптического волокна, соответственно;

, – амплитуды регистрируемого сигнала на частоте источника акустического воздействия для образцового и контролируемого оптического волокна, соответственно;

где , – амплитуды регистрируемого сигнала на i-й гармонике частоты источника акустического воздействия для образцового и контролируемого оптического волокна, соответственно;

N – число гармоник частоты источника акустического воздействия, которые можно выделить на спектральной характеристике регистрируемого сигнала на фоне помех.



 

Похожие патенты:

Использование: для проверки работы акустико-эмиссионного датчика. Сущность изобретения заключается в том, что генерируют акустический сигнал источником акустических волн, который акустически связан с устройством управления технологическим процессом, причем источник акустических волн содержит по меньшей мере один из числа двигателя постоянного тока и двигателя для передачи тактильных ощущений; измеряют акустический сигнал акустико-эмиссионным датчиком, функционально связанным с устройством управления технологическим процессом, при этом акустический сигнал сгенерирован источником акустических волн; и определяют с помощью процессора рабочее состояния акустико-эмиссионного датчика на основании сравнения измеренного акустического сигнала с базовым акустическим сигналом.

Изобретение относится к машиностроению и может быть использовано для мониторинга и диагностики технического состояния, оценки остаточного ресурса подшипниковых узлов, зубчатых передач, моторно-осевых подшипников и других подвижных нагруженных узлов экипажной части локомотивов железных дорог. Способ диагностики технического состояния узлов экипажной части локомотива, представляющих собой подшипниковый узел и/или зубчатую передачу заключается в осуществлении непрерывного измерения значений сигналов акустической эмиссии в процессе эксплуатации локомотива при его эксплуатационных нагрузках в режиме реального времени с помощью акустико-эмиссионного датчика (1), установленного на корпусе каждого диагностируемого узла экипажной части локомотива.

Изобретение относится к машиностроению и может быть использовано для мониторинга и диагностики технического состояния, оценки остаточного ресурса подшипниковых узлов, зубчатых передач, генераторов, вспомогательных приводов экипажной части пассажирских вагонов, вращающихся частей систем вентиляции, отопления и кондиционирования, а также других подвижных нагруженных узлов пассажирских вагонов железных дорог.

Использование: для контроля неисправностей в подшипниках роторного оборудования. Сущность изобретения заключается в том, что система эксплуатационного контроля неисправностей в подшипниках роторного оборудования, регистрирующая сигналы акустической эмиссии, полученные с датчиков, установленных на подшипниковый узел, содержит аналого-цифровой преобразователь для подключения к одному из датчиков акустической эмиссии через мультиплексор, периодически опрашивающий датчики акустической эмиссии, энергонезависимую память, а также микропроцессор и канал передачи данных для синхронизации с интегральной матрицей состояния оборудования, программно-сопряженные между собой и реализованные на программируемой логической интегральной схеме, причём микропроцессор формирует огибающую обнаруженного датчиком сигнала акустической эмиссии, выполняет частотное преобразование Хартли, разложение сигнала по Гильберту и регистрацию длительности, величины и количества пиков для выявления циклических закономерностей и определения размера и характеристик дефектов в подшипнике.

Использование: для детектирования и измерения параметров сигналов акустической эмиссии посредством волоконно-оптической системы. Сущность изобретения заключается в том, что волоконно-оптическая система детектирования и измерения параметров сигналов акустической эмиссии содержит два лазерных диода, подключенных к мультиплексору DWDM, выход которого подключен к оптоволоконному делителю, каждый выход которого подключен к первому порту оптического циркулятора, а ко второму порту указанного циркулятора подключен волоконно-оптический датчик, представляющий собой волоконный интерферометр, выход оптического циркулятора подключен к DWDM демультиплексору, выходы указанного демультиплексора соединены с входами двух оптоволоконных фотоприемников, причем рабочие длины волн лазерных диодов выбираются так, чтобы разность их значений составляла не менее одного периода стандартной сетки частот DWDM, при этом разность длин плеч интерферометра подбирается таким образом, чтобы при воздействии на него гармонических механических колебаний в рабочем диапазоне частот разность фаз сигналов напряжения на выходах оптоволоконных фотоприемников составляла π/2.

Использование: для неразрушающего акустико-эмиссионного контроля. Сущность изобретения заключается в том, что устройство акустико-эмиссионного датчика со встроенным акустическим генератором, содержит акустический приемник; акустический генератор, расположенный рядом с акустическим приемником; корпус, акустический генератор и акустический приемник, расположенные в корпусе; закрепляющий состав в корпусе, чтобы по меньшей мере частично герметизировать акустический генератор и акустический приемник; и износостойкую пластину, находящуюся в акустической связи с акустическим приемником и с акустическим генератором, при этом износостойкая пластина выполнена с возможностью передачи акустической энергии во время испытания от акустического генератора к акустическому приемнику через конструкцию, с которой соединена износостойкая пластина, и при этом износостойкая пластина содержит первую акустическую изоляцию, чтобы препятствовать передаче акустической энергии от акустического генератора к акустическому приемнику через износостойкую пластину, причем акустический генератор содержит вторую акустическую изоляцию, чтобы препятствовать передаче акустической энергии от акустического генератора в закрепляющий состав внутри корпуса.

Использование: для оценки износостойкости тонкослойных керамических покрытий с применением метода акустической эмиссии. Сущность изобретения заключается в том, что осуществляют трение между стальным контртелом и испытываемым тонкослойным керамическим покрытием, отличие заключается в том, что при помощи индентора на покрытии формируют две дорожки трения - экспериментально оцениваемая и калибровочная, при формировании дорожек трения фиксируют акустическую эмиссию, вычисляют коэффициент пропорциональности, соответствующий данному конкретному материалу покрытия, вычисляют массу изношенного материала экспериментальной дорожки трения, ее среднюю глубину и изношенный объем при отсутствии разрушения покрытия, определяют относительную износостойкость покрытия.

Использование: для контроля физико-механических свойств взрывачатых материалов (ВВ) по сигналам акустической эмиссии. Сущность изобретения заключается в том, что осуществляют подготовку испытуемых образцов из исследуемого материала, которые подвергают механическим воздействиям в сочетании с синхронным регистрированием показателей контролирующих приборов и построением соответствующих графиков зависимостей величин деформаций от величин воздействующих нагрузок и времени, при этом первоначально подвергают испытаниям подготовленные образцы из материала взрывчатых веществ (ВВ), аналогичного исследуемому заданного состава, на основе результатов испытаний которых формируют базу данных (БД) критических нагрузок, соответствующих полному разрушению образцов данного материала, затем производят комплексное нагружение исследуемых независимых групп образцов ВВ механическим воздействиям последовательно усилий растяжения на одни группы образцов и усилий сжатия на другие группы образцов, проводя нагружение в этих группах в возрастающем режиме до момента, соответствующего максимальному значению активности АЭ, составляющей величину не более 55% от критической нагрузки, определенной по БД критических нагрузок, параллельно с нагружением контрольных образцов снимают показания регистрирующих приборов и строят графики зависимости акустико-эмиссионных параметров от времени нагружения и диаграммы деформирования, на основе построенных упомянутых графиков определяют максимальные значения активности АЭ, момента времени, соответствующего этому значению, нагрузку и деформацию образца, на основе полученных данных определяют искомые механические показатели испытуемых образцов ВВ.
Использование: для прогнозирования критической неисправности движущегося узла по акустико-эмиссионным данным. Сущность изобретения заключается в том, что вблизи анализируемых узлов прикрепляют по меньшей мере два датчика, улавливающих сигналы акустической эмиссии, полученные в ходе штатной работы узлов акустические сигналы от датчиков сохраняют и считают эталонными, улавливают акустические сигналы от датчиков при последующей работе движущихся узлов, сравнивают полученные на предыдущей стадии акустические сигналы с эталонными сигналами, по разнице вида акустических сигналов, сравненных на предыдущей стадии, делают вывод об отклонении функционирования движущихся узлов от эталонного, при этом по времени приема сходных акустических сигналов от датчиков определяют местонахождение предполагаемого дефекта в узле, а по характеру акустического сигнала определяют тип предполагаемого дефекта, анализируют изменение во времени разницы акустических сигналов от эталонного, получая скорость изменений, и вычисляют время наступления критической неисправности узла и ее тип, вычисленное время сообщают эксплуатирующему движущиеся узлы, осуществляя профилактику образования дефектов, данные предыдущих этапов используют для прогнозирования состояния данных или аналогичных движущихся узлов в будущем времени.
Использование: для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций посредством акустико-эмиссионного сбора данных. Сущность изобретения заключается в том, что на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих акустические сигналы, получаемые от динамически развивающихся дефектов в конструкции, а также по меньше мере один датчик виброперемещения, по меньше мере один датчик наклона конструкции и по меньшей мере один датчик линейного перемещения конструкции; полученные акустические сигналы от датчиков, а также сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения, полученные на предыдущей стадии, сохраняют; по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта; сохраненные акустические сигналы разделяют по меньшей мере на четыре группы по их источнику: пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии, активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии, критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения считают критическими или закритическими, если хотя бы один из них выходит за заранее установленные рамки либо выход за установленные рамки имеет высокое значение.

Использование: для контроля состояния смотровых устройств на трассе волоконно-оптической кабельной линии. Сущность изобретения заключается в том, что акустическим сигналом зондируют ограниченное разделом сред пространство в смотровом устройстве, принимают акустический сигнал, запоминают этот сигнал при нормальном состоянии смотрового устройства в качестве образцового и впоследствии сравнивают образцовый сигнал с сигналами, измеряемыми в дальнейшем, и по результатам совместной обработки этих сигналов судят о количественных показателях в изменениях в условиях распространения акустической волны в наблюдаемом пространстве, при этом измеряют акустический сигнал в ограниченном пространстве в смотровом устройстве, используя в качестве акустического сенсора оптическое волокно кабеля волоконно-оптической кабельной линии, проложенного в смотровом устройстве, и по количественным показателям изменений в условиях распространения акустической волны в наблюдаемом пространстве в смотровом устройстве оценивают состояние смотрового устройства.
Наверх