Установка для нетермической деаэрации воды

Изобретение относится к теплоэнергетике в области защиты теплообменного оборудования, котлов, трубопроводов и других металлических элементов на электростанциях, в котельных, на промышленных предприятиях при производстве пара, получении горячей воды для водопроводных сетей, получении обессоленной и умягченной воды для подпитки паровых котлов. Установка для нетермической деаэрации воды включает средства для фильтрации обрабатываемой воды, содержащей растворенный кислород, через фильтрующий материал с последующей регенерацией. Средства для фильтрации обрабатываемой воды через фильтрующий материал выполнены в виде двух последовательно соединенных адсорбционных фильтров: фильтра-преаэратора и фильтра-деаэратора, заполненных фильтрующим материалом с высокоразвитой разветвленной открытой пористой структурой. Установка содержит узел приготовления и подачи регенерационного раствора, включающий расходный бак и насос-дозатор для подачи реагента на фильтр, трубопровод подачи водопроводной воды на фильтры и в расходный бак, трубопровод подачи натрий-катионированной воды для регенерации фильтров, трубопровод сброса отработанного регенерационного раствора в смеситель для его разведения до заданной концентрации и трубопровод для подачи деаэрированной воды потребителям. Технический результат: глубокое обескислороживание питательной воды и снижение остаточной концентрации кислорода до нормативных величин, при этом не требуется дополнительный нагрев воды, постоянное использование электроэнергии для бесперебойной работы вакуумных насосов, отсутствует необходимость в постоянном использовании дорогостоящего расходного материала. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к теплоэнергетике в области защиты теплообменного оборудования, котлов, трубопроводов и других металлических элементов на электростанциях, в котельных, на промышленных предприятиях при производстве пара, получении горячей воды для водопроводных сетей, получении обессоленной и умягченной воды для подпитки паровых котлов.

Решаемая изобретением техническая задача заключается необходимости проведения обязательной химводоподготовки воды для приведения ее качества в соответствие с требованиями потребителя путем коррекции ее химических свойств, что позволяет остановить коррозию и образование накипи в котле и трубопроводе всей отопительной системы и продлить срок эксплуатации дорогостоящего оборудования. Химводоподготовка воды в основном сводится к умягчению воды, что предотвращает накипи, а также к деаэрации питательной воды в котельной, которая представляет собой этот технологический процесс водоподготовки для котельных, в результате которого происходит удаление агрессивных газов (кислорода и свободного углекислого газа) из воды, а также хлора, который попадает в теплосеть вместе с водопроводной водой.

Большинство способов обескислороживания воды основаны на термический и вакуумной деаэрации, которая существенно повышает энергозатраты при подготовке воды и требует применения габаритного оборудования.

Атмосферный деаэратор имеет основной недостаток - необходимость нагрева воды до 102-104°С, что невозможно без наличия парового котла, дополнительные потери при энтальпии и выпаривании в результате технологического процесса, как следствие - перерасход газа.

Вакуумный деаэратор в котельной имеет ряд недостатков:

- резкое снижение качества деаэрации при нагрузках деаэратора выше 50%;

- снижение качества деаэрированной воды при переменных нагрузках;

- потери пара на обеспечение вакуума паровыми эжекторами;

- дополнительные расходы электроэнергии на создание вакуума в деаэраторе;

- высокие затраты труда на обслуживание и ремонт деаэраторов.

Реагентная обработка воды (сульфатирование) также имеет недостатки:

- необходимость постоянно покупать реагенты;

- раствор интенсивно поглощает кислород как в воде, так и из окружающего воздуха и через трое суток его нужно менять на новый (что никогда не происходит на практике и в сеть дозируют уже неработающий раствор сульфита натрия);

- скорость вступления в реакцию сульфита натрия с кислородом очень длительна по времени (до 7 минут) и неподготовленная вода полностью проходит через котел, нанося вред, и уже после прохождения вступает в полную реакцию непосредственно в тепловой сети;

- за счет дозированного добавления реагента в воду возрастает минерализация воды, что приводит к электрохимической и биохимической коррозии всей системы отопления.

Для оценки новизны заявленного решения рассмотрим ряд известных технических средств аналогичного назначения, характеризуемых совокупностью сходных с заявленным устройством признаков.

Известен способ получения фильтрующего материала и деаэрации воды по патенту Украины №99903, основанный на фильтровании воды через смесь катионита и анионита, обработанную соединениями железа, щелочью, сульфитом и тиосульфатом натрия.

Недостатком данного способа является использование растворов сульфата железа концентрацией 5-10%, тиосульфата натрия, сульфита натрия и щелочи при обработке смеси катионита и анионита, что приводит к образованию больших объемов жидких отходов, которые сложно утилизировать. Кроме того, вследствие заполнения пор ионообменного материала гидроксидом железа (III) в процессе его использования при обескислороживании воды и повторных регенерациях резко снижается поглотительная способность ионита по кислороду при возрастании количества фильтроциклов. При 3-х-4-x фильтроциклах емкость фильтрующего материала по кислороду снижается в 3-5 раз.

Известна загрузка для биофильтров по патенту РФ №2021214, содержащая плоский пористый элемент, установленный в жесткой рамке, отличающаяся тем, что плоский элемент выполнен из материала редоксид с высокоразвитой разветвленной открытой пористой структурой в форме многоугольных пластин или дисков с отношением площади поверхности Sпов.п пор в плоском элементе к общей площади поверхности плоского элемента Sпов.п.э (2-3)⋅103, при этом отношение толщины δ плоского элемента к его большему характерному размеру а равно 0,05-0,15, рамка выполнена из соединенных между собой корпуса и крышки с окнами на всех их гранях, а плоский пористый элемент установлен в рамке с возможностью поджатая его к опорным площадкам корпуса и крышки.

Известен способ удаления из воды кислорода по патенту РФ №2217382, заключающийся в фильтрации воды, содержащей растворенный кислород, через ионит с последующей регенерацией, характеризующийся тем, что фильтрацию осуществляют через высокоосновный анионит AM гелевой структуры в SO3-форме, а регенерацию отработанного анионита производят раствором сульфита натрия с концентрацией не выше 8%. Время контакта исходной воды с ионитом составляет не менее 7,5 мин.

Данное техническое решение, как наиболее близкое к заявленному по техническому существу и достигаемому результату, принято в качестве его прототипа.

К недостаткам данного метода следует отнести использование концентрированных растворов сульфита натрия при регенерации ионита, что приводит к образованию значительных объемов жидких отходов и значительных потерь сульфита натрия, который при регенерации используется в значительных излишках от стехиометрического количества. Такие растворы загрязнены десорбованными хлоридами или сульфатами, поэтому непригодные для повторного использования.

В основу изобретения поставлена задача повышения эффективности удаления кислорода из воды при фильтровании через анионит в сульфитной форме при снижении потерь сульфита в процессах регенерации анионита, повышение эффективности его использования и минимизации объемов жидких отходов в процессах получения и регенерации фильтрующего материала.

Сущность заявленного технического решения выражается в следующей совокупности существенных признаков, достаточной для решения указанной заявителем технической проблемы и получения обеспечиваемого изобретением технического результата.

Установка для осуществления вышеописанного способа нетермической деаэрации воды, включающая средства для фильтрации обрабатываемой воды, содержащей растворенный кислород, через фильтрующий материал с последующей регенерацией, характеризуется тем, что средства для фильтрации обрабатываемой воды через фильтрующий материал выполнены в виде двух последовательно соединенных адсорбционных фильтров - фильтр-преаэратор и фильтр-деаэратор, заполненных фильтрующим материалом с высокоразвитой разветвленной открытой пористой структурой, кроме того установка содержит узел приготовления и подачи регенерационного раствора, включающий расходный бак и насос-дозатор для подачи реагента на фильтр, трубопровод подачи водопроводной воды на фильтры и в расходный бак, трубопровод подачи натрий-катионированной воды для регенерации фильтров, трубопровод сброса отработанного регенерационного раствора в смеситель для его разведения до заданной концентрации и трубопровод для подачи деаэрированной воды потребителям.

Кроме того, заявленное техническое решение характеризуется наличием ряда дополнительных факультативных признаков, а именно:

- установка снабжена совокупностью пробоотборных средств и манометров для контроля за работой оборудования.

Заявленная совокупность существенных признаков обеспечивает достижение технического результата, который заключается в том, что при использовании заявленной установки достигается глубокое обескислороживание питательной воды и остаточная концентрация кислорода снижается до нормативных величин. При применении данного оборудования очевиден ряд преимуществ, по сравнению с аналогами:

- нет необходимости в дополнительном нагреве воды, по сравнению с атмосферными или вакуумными деаэраторами, что экономит количество потребления газа на 10% и позволяет до 4 раз снизить затраты на деаэрацию подпиточной воды;

- нет необходимости в постоянном использовании электроэнергии для бесперебойной работы вакуумных насосов, по сравнению с вакуумными деаэраторами, что экономит количество потребляемой электроэнергии на 98%;

- отсутствует необходимость в постоянном использовании дорогостоящего расходного материала по сравнению с химическими деаэраторами, что значительно снижает эксплуатационные затраты;

- загрузочный материал в фильтрах - редоксид, требует замены 1 раз в 10 лет, и не является расходным материалом;

- расходный материал для технологического процесса регенерации, является доступным и выпускается на территории РФ;

- применяемые в технологическом процессе реагенты полностью безвредны для человека, при условии соблюдения элементарных мер предосторожности (ГОСТ 6981-94, 55064-2012, 12.1.005-88);

- использование данного оборудования не требует никаких дополнительных мер по очистке стоков. Образующиеся в результате применения оборудования стоки являются нейтральными и соответствуют требованиям санитарно-эпидемиологической службы (ГОСТ 12.4.016 и 12.1.007). Использование данного оборудования не требует установки дополнительной системы вентиляции в связи с отсутствием выделения вредных испарений в процессе эксплуатации оборудования.

Сущность заявляемого технического решения поясняется чертежом, на котором представлена технологическая схема заявленной установки.

На блок-схеме позициями обозначены: 1 - фильтр-преаэратор, 2 - фильтр-деаэратор,, 3 - расходный бак, 4 - насос-дозатор, 5 - смеситель, 6 - трубопровод подачи водопроводной воды на фильтры, 7 - трубопровод подачи натрий-катионированной воды для регенерации фильтров, 8 - трубопровод подачи водопроводной воды в расходный бак, 9 - трубопровод сброса отработанного регенерационного раствора в смеситель для его разведения до заданной концентрации, 10 - трубопровод сброса разведенного отработанного регенерационного раствор в канализацию, 11 - трубопровод для подачи деаэрированной воды потребителям.

Заявленная установка работает следующим образом.

Водопроводную воду в по трубопроводу 8 в расчетном количестве подают в расходный бак 3. В этот же бак засыпают расчетное количество пиросульфита (метабисульфита) натрия. С помощью насоса-дозатора 4 воду в расходном баке 3 рециркулируют до полного растворения метабисульфита натрия. Метабисульфит натрия поступает в цех в мешках весом 25,5 кг. Реагент первого сорта содержит основного компонента 95,0%, второго сорта - 92,5%.

Перед подачей раствора метабисульфита в фильтрах 1 и 2 проводят вспушивание редоксида. Вспушивание проводят при интенсивной подаче воды снизу-вверх по трубопроводу 6. Интенсивность подачи воды qпр.=3-4 дм32с. Время вспушивания 5-7 мин. Раствор метабисульфита натрия подают по трубопроводу 7 и фильтруют последовательно через фильтры 1 и 2 со скоростью 1,5 м/час. Подача раствора из расходного бака 3 в фильтры 1 и 2 осуществляют с помощью насоса-дозатора 4. Отработанный регенерационный раствор по трубопроводу 9 подают в смеситель 5, где его смешивают с водопроводной водой, разводят до уровня минерализации <1000 мг/дм3 и по трубопроводу 10 сбрасывают в канализацию. Трубопровод 11 обеспечивает подачу обработанной деаэрированной воды потребителям. Система трубопроводов и арматуры заявленной установки позволяет осуществить распределение потоков исходной и обработанной воды, регенерационных и промывных растворов в необходимых направлениях при работе установки.

Заявленная установка для удаления кислорода из воды основана на использовании фильтрующих материалов с высокоразвитой разветвленной открытой пористой структурой, например, редоксида или сорбента «Оксисорб», которые эффективно поглощает кислород из воды при низких температурах (от 10 до 30°С) и имеет емкость по кислороду в 2-3 раза выше по сравнению с другими материалами.

Использование в установке предварительных узлов деаэрации при низких температурах позволяет повысить длительность фильтроцикла в 3-4 раза в сравнении с аналогами. Объем деаэрированной воды на загрузке объемом 1 м3 достигает 40-80 тыс. м3.

Оригинальность фильтрующей загрузки в преаэраторе состоит в том, что в процессе ее использования нет необходимости в регенерации используемых сорбентов.

Используемые сорбенты обеспечивают полное удаление кислорода из воды при низких температурах, эффективно связывает растворенный в воде кислород, углекислый газ, а разработанный новый способ его регенерации обеспечивает полное восстановление его емкости по кислороду.

Заявленная установка может быть реализована с использованием известного оборудования, технических и технологических средств и эффективно использована для удаления из воды растворенных газов, и, тем самым, предотвращения развития коррозионных процессов металлических конструкций энергетического оборудования и тепловых сетей теплотрасс (защита котлов и тепловых сетей от коррозии).

1. Установка для нетермической деаэрации воды, включающая средства для фильтрации обрабатываемой воды, содержащей растворенный кислород, через фильтрующий материал с последующей регенерацией, отличающаяся тем, что средства для фильтрации обрабатываемой воды через фильтрующий материал выполнены в виде двух последовательно соединенных адсорбционных фильтров - фильтр-преаэратор и фильтр-деаэратор, заполненных фильтрующим материалом с высокоразвитой разветвленной открытой пористой структурой, кроме того установка содержит узел приготовления и подачи регенерационного раствора, включающий расходный бак и насос-дозатор для подачи реагента на фильтр, трубопровод подачи водопроводной воды на фильтры и в расходный бак, трубопровод подачи натрий-катионированной воды для регенерации фильтров, трубопровод сброса отработанного регенерационного раствора в смеситель для его разведения до заданной концентрации и трубопровод для подачи деаэрированной воды потребителям.

2. Установка по п. 1, отличающаяся тем, что она снабжена совокупностью пробоотборных средств и манометров для контроля за работой оборудования.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики. Центробежно-капельный деаэратор, содержащий цилиндрический корпус с верхней и нижней торцевыми крышками, с тангенциальными патрубками подвода деаэрируемой жидкости, сепаратор, соединенный с корпусом посредством отверстий в корпусе, трубу отвода выпара, с устройством для диспергирования жидкости, при этом труба отвода выпара выполнена из двух коаксиально расположенных трубопроводов – внешнего и внутреннего трубопровода, при этом внешний трубопровод соединен с сепаратором, обеспечивая забор выпара из сепаратора, а внутренний трубопровод проходит через весь деаэратор и соединен с ёмкостью устройства для диспергирования, осуществляя забор выпара из упомянутой ёмкости.

Изобретение относится к способу очистки сточных вод от фенолов и гидроксипроизводных фенолов путем гидротермального окисления растворов в присутствии пероксида водорода. Способ характеризуется тем, что очистку проводят в реакторе проточного типа при рабочем давлении 10 МПа и температурах 165-235°С, растворы и окислитель с молярным отношением Н2О2:производные фенола не ниже 13 прокачивают через рабочую зону реактора восходящим потоком с помощью дозирующих насосов, смешение растворов происходит в нижней части реактора в зоне нагрева.

Изобретение относится к экологической очистке, в частности к биоэкологическому микроэнергетическому устройству плавучего острова и способу очистки водоемов со сточными и пахучими водами с его использованием. Способ включает размещение плавучего биоэкологического микроэнергетического устройства плавучего острова на поверхности водоема со сточными и пахучими водами.

Изобретение относится к очистке дренажных стоков и может быть использовано в водоохранных мероприятиях при получении дополнительных объемов чистой воды для оросительной мелиорации. Способ очистки дренажного стока рисовой оросительной системы включает пропускание дренажного стока через фильтрующую кассету с сорбентом, установленную в русле сбросного канала оросительной системы.

Изобретение может быть использовано при очистке воды в химической и фармацевтической промышленности. Способ непрерывного получения озонированной воды включает впрыскивание подкисляющего агента в струю подаваемой воды под давлением для поддержания рН ниже 7 и подачу воды под давлением в колонну растворения для образования кислой воды под давлением.

Изобретение относится к аппарату для электролиза воды или водных растворов с получением анолита и католита. Аппарат содержит цилиндрический корпус, закрытый с торцевых сторон двумя торцевыми крышками, катод в виде внутренней цилиндрической поверхности корпуса, стержневые аноды, продольно установленные внутри корпуса, и ионообменные диафрагмы, продольно расположенные в корпусе между анодами и катодом с образованием анодного пространства между диафрагмами и анодами и катодного пространства между диафрагмами и катодом, а также входы воды в анодное и катодное пространства, выход анолита из анодного пространства и выход католита из катодного пространства.

Изобретение относится к области водоподготовки. Система получения сверхчистой воды включает: регуляторы давления (1, 16), модуль предварительной очистки воды (2), состоящий из фильтра механической очистки, комбинированного фильтра с гранулированным активированным углем и фильтрующей средой KDF, фильтра со спрессованным угольным блоком; электромагнитные клапаны (3, 9, 18, 19, 30, 31), насосы мембранные (4, 21), датчики электропроводности (5, 7), мембранный блок (6), обратные клапаны (8, 17, 20), накопительную емкость (10), фильтр для связи накопительной емкости с окружающей средой (11), тензометрическую платформу (12), датчик температуры (13), датчик давления (14), комбинированные картриджи (22, 26), заполненные активированным углем и ионообменными смолами смешанного типа, фотокаталитический реактор (23), мембранный стерилизующий картридж финишной очистки (27), кондуктометрический датчик (28), датчик расхода (29), точку отбора (34) сверхчистой воды с резьбой для крепления стандартных бутылей (32), стерилизующую капсулу (33) из фторопласта 0,2 мкм для связи емкости бутыли с окружающей средой.

Изобретение относится к способу генерирования содержащей ультрамелкие пузырьки жидкости, а также к устройству для производства содержащей ультрамелкие пузырьки жидкости. Устройство содержит: расходный резервуар, выполненный с возможностью накапливать жидкость в положении, включающем заданную область; нагревательный элемент, выполненный с возможностью генерировать ультрамелкие пузырьки в жидкости путем нагревания жидкости в упомянутой заданной области так, чтобы инициировать пленочное кипение в жидкости; напорную камеру, включающую в себя по меньшей мере часть упомянутой заданной области; канал подачи для подачи жидкости в напорную камеру; и отверстие выброса, сообщающееся с напорной камерой.

Изобретение относится к способам термического обезвреживания загрязненных промышленных и бытовых сточных вод, в том числе вредными веществами. Установка содержит горелку для получения теплоносителя и пенный аппарат-испаритель, содержащий вертикальный корпус круглого или прямоугольного поперечного сечения с патрубками подвода испаряемых сточных вод и теплоносителя и отвода отходящего газа и паров испаренной воды в атмосферу.

Изобретение относится к технологии неорганических веществ и может быть использовано при получении растворов хлоридов железа, применяемых в качестве коагулянтов для очистки сточных и питьевых вод, а также осаждения твердых взвесей из минеральных суспензий при очистке больших объемов высокомутной воды. Коагулянт получают путем обработки окалины процесса термической обработки металла хлорсодержащим реагентом.

Изобретение относится к области теплоэнергетики. Центробежно-капельный деаэратор, содержащий цилиндрический корпус с верхней и нижней торцевыми крышками, с тангенциальными патрубками подвода деаэрируемой жидкости, сепаратор, соединенный с корпусом посредством отверстий в корпусе, трубу отвода выпара, с устройством для диспергирования жидкости, при этом труба отвода выпара выполнена из двух коаксиально расположенных трубопроводов – внешнего и внутреннего трубопровода, при этом внешний трубопровод соединен с сепаратором, обеспечивая забор выпара из сепаратора, а внутренний трубопровод проходит через весь деаэратор и соединен с ёмкостью устройства для диспергирования, осуществляя забор выпара из упомянутой ёмкости.
Наверх