Способ изготовления модуля солнечных элементов



Способ изготовления модуля солнечных элементов
Способ изготовления модуля солнечных элементов
H01L31/00 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2760378:

Акционерное общество "Сатурн" (АО "Сатурн") (RU)

Изобретение относится к электротехнике, в частности к способам изготовления модулей высокоэффективных солнечных элементов на струнном каркасе в солнечных батареях космических аппаратов. Технический результат, достигаемый предлагаемым способом изготовления модуля солнечных элементов, заключается в увеличении срока эксплуатации, повышении надежности солнечной батареи и сокращении объема ремонтных работ за счет обеспечения прочности клеевого соединения силиконового наполнителя с тыльной металлизацией солнечных элементов и защитной подложкой. Достигается вышеуказанный технический результат тем, что в предложенном способе изготовления модуля солнечных элементов, включающем нанесение силиконового наполнителя на лицевую и тыльную стороны солнечных элементов, приклеивание на силиконовый наполнитель защитной подложки, выполнение вакуумной дегазации, перед нанесением силиконового наполнителя на тыльной стороне солнечного элемента формируют трехслойное адгезионное покрытие путем последовательного нанесения капельным распылением эпоксидного клея, силиконового компаунда СИЭЛ и промоутера адгезии, причем после нанесения слоя силиконового компаунда СИЭЛ выполняют термообработку при температуре 150÷180°С. 4 ил.

 

Изобретение относится к электротехнике, в частности к способам изготовления модулей высокоэффективных солнечных элементов на струнном каркасе в солнечных батареях космических аппаратов.

Известен способ изготовления полупроводникового устройства-модуля солнечного элемента и способ его инкапсуляции (патент Японии JP 2007527109, опубл. 20.09.2007 г.), принятый за аналог, в котором полученный модуль солнечных элементов включает в себя один или несколько солнечных элементов и жесткую или гибкую верхнюю пластину и/или подложку, имеющую герметизирующий материал, представляющий собой отверждаемый жидкий силиконовый инкапсулирующий материал. Композиция инкапсулирующего материала состоит по меньшей мере из жидкого диорганополисилоксана, сшивающего реагента в виде полиорганосилоксана, катализатора гидросилирования и может дополнительно содержать промоутер адгезии. Способ изготовления (герметизации) модуля солнечных элементов включает стадию равномерного нанесения жидкого силиконового герметизирующего материала в заданном количестве путем распыления, покрытия или распределения материала, а также стадию отверждения герметизирующего материала тепловым или инфракрасным излучением.

Недостаток данного способа герметизации модуля солнечных элементов-аналога заключается в недостаточной адгезии клеевого покрытия на основе отверждаемой силиконовой пленки к химически инертной поверхности Au тыльного контакта Cr/Au/Ag/Au высокоэффективных трехкаскадных фотопреобразователей со структурой GalnP/GalnAs/Ge, в результате при вакуумировании с нагревом формируются скрытые полости и происходит деградация солнечных элементов.

Признаки аналога, общие с предлагаемым способом изготовления модуля солнечных элементов: нанесение силиконового наполнителя на лицевую и тыльную стороны солнечных элементов, приклеивание на силиконовый наполнитель защитной подложки, выполнение дегазации с нагревом.

Известен модуль солнечных элементов и метод его изготовления, принятый за прототип (ЕР 2234172 А1, опубл. 29.09.2010 г.), включающий прозрачную стеклянную панель; солнечные элементы, соединенные между собой с помощью металлических шин; тыльную защитную подложку; силиконовый наполнитель и герметизирующий компаунд, причем модуль изготавливается путем размещения солнечных элементов на стеклянной панели, формирования по периметру солнечной панели слоя герметизирующего компаунда, заливки силиконового наполнителя, компрессии тыльной защитной подложки к слою герметизирующего компаунда с одновременным заполнением внутреннего пространства модуля силиконовым наполнителем и последующим выполнением вакуумной дегазации. В качестве силиконового наполнителя применяют силиконовый герметик, полимеризующийся в гель при комнатной температуре, и имеющий широкий температурный интервал эксплуатации от -70°С до +300°С. В качестве герметизирующего компаунда используют силиконовые смолы со связующим компонентом на основе изобутилена, обладающие хорошей адгезией к стеклянной панели и защитной подложке.

Недостаток прототипа, применительно к изготовлению модуля из высокоэффективных трехкаскадных элементов GalnP/GalnAs/Ge, выращенных на германиевой подложке с тыльным контактом Cr/Au/Ag/Au, заключается в нарушении герметичности клеевого соединения солнечных элементов с защитной подложкой из-за недостаточной адгезии полимеризованного силиконового наполнителя к химически инертной поверхности слоя золота, при этом в процессе вакуумной дегазации силиконового наполнителя избыточное внутреннее давление может вызывать повреждение солнечных элементов.

Признаки прототипа, общие с предлагаемым способом изготовления модуля солнечных элементов следующие: нанесение силиконового наполнителя на лицевую и тыльную стороны солнечных элементов, приклеивание на силиконовый наполнитель защитной подложки, выполнение вакуумной дегазации.

Технический результат, достигаемый предлагаемым способом изготовления модуля солнечных элементов, заключается в увеличении срока эксплуатации, повышении надежности солнечной батареи и сокращении объема ремонтных работ за счет обеспечения прочности клеевого соединения защитной подложки с тыльной металлизацией солнечных элементов.

Отличительные признаки, обеспечивающие соответствие предлагаемого способа изготовления модуля солнечных элементов критерию «новизна», следующие: перед нанесением силиконового наполнителя на тыльной стороне солнечного элемента формируют трехслойное адгезионное покрытие путем последовательного нанесения капельным распылением эпоксидного клея, силиконового компаунда СИЭЛ и промоутера адгезии, причем после нанесения слоя силиконового компаунда СИЭЛ выполняют термообработку при температуре 150÷180°С.

Нанесение эпоксидного клея капельным распылением необходимо для создания слоя островковой конфигурации трехслойного адгезионного покрытия на поверхности химически инертного слоя золота тыльной металлизации солнечных элементов. Последующий сплошной слой трехслойного адгезионного покрытия - силиконовый компаунд СИЭЛ, в результате термообработки при 150÷180°С образует прочные адгезионные связи с островками эпоксидного клея и тыльной металлизацией. При термообработке осуществляется полимеризация с уплотнением структуры и полная дегазация слоя силиконового компаунда СИЭЛ. Нанесение слоя промоутера адгезии трехслойного адгезионного покрытия необходимо для создания активных химических связей на поверхности отвержденного силиконового компаунда СИЭЛ. Капельный метод распыления обеспечивает равномерное распределение промоутера адгезии на поверхности слоя силиконового компаунда СИЭЛ. В результате, при последующей наклейке защитной подложки (стеклотекстолитовой платы) на силиконовый наполнитель и вакуумной дегазации с нагревом, обеспечивается эластичное клеевое соединение защитной подложки с тыльной металлизацией солнечного элемента.

Достигается это тем, что в предложенном способе изготовления модуля солнечных элементов, включающем нанесение силиконового наполнителя на лицевую и тыльную стороны солнечных элементов, приклеивание на силиконовый наполнитель защитной подложки, выполнение вакуумной дегазации, перед нанесением силиконового наполнителя на тыльной стороне солнечного элемента формируют трехслойное адгезионное покрытие путем последовательного нанесения капельным распылением эпоксидного клея, силиконового компаунда СИЭЛ и промоутера адгезии, причем после нанесения слоя силиконового компаунда СИЭЛ выполняют термообработку при температуре 150÷180°С.

Пример конкретного выполнения предлагаемого способа изготовления модуля солнечных элементов иллюстрирован на фиг. 1÷3.

На фиг. 1 представлен вид тыльной поверхности солнечного элемента после нанесения эпоксидного клея. На фиг. 2а, б представлен вид тыльной стороны солнечного элемента для модуля на струнном каркасе: а) - после нанесения адгезионного покрытия; б) - после наклейки защитной подложки (стеклотекстолитовой платы) и распайки выводных шин. На фиг. 3 представлен вид фрагмента модуля солнечных элементов на струнном каркасе.

Для конкретного примера применения предлагаемого способа изготовления модуля солнечных элементов используют трехкаскадные фотопреобразователи с эпитаксиальной структурой GalnP/GalnAs/Ge, выращенной на германиевой подложке. Тыльный контакт солнечных элементов выполнен из последовательно напыленных слоев металлизации Cr/Au/Ag/Au.

На тыльную сторону солнечных элементов с контактным слоем металлизации Cr/Au/Ag/Au наносят капельным распылением эпоксидный клей ВК-9. При этом формируется первый слой трехслойного адгезионного покрытия, имеющий островковую конфигурацию (см. фиг. 1). Выполняют сушку эпоксидного клея ВК-9. Затем капельным распылением (с последующим равномерным распределением кистью) наносят второй слой трехслойного адгезионного покрытия - сплошной слой силиконового компаунда СИЭЛ (ТУ 2157-170-00209013-2016), разбавленного в растворителе. Для разбавления силиконового компаунда СИЭЛ используют бензин Нефрас в соотношении весовых(г) и объемных(мл) частей соответственно: 1 г СИЭЛ: 10 мл бензина Нефрас. При распылении указанной смеси происходит испарение бензина и формируется слой вязкой консистенции, состоящий преимущественно из силиконового компаунда СИЭЛ. Капельное нанесение силиконового компаунда СИЭЛ наиболее производительно, кроме того, в открытом виде смесь быстро загустевает. Выполняют термообработку при температуре 170°С, в течение 60 мин. При этом формируется прочное соединение между слоями эпоксидного клея и силиконового компаунда СИЭЛ. Одновременно происходят процессы полимеризации с уплотнением структуры и полная дегазация силиконового компаунда СИЭЛ (см. фиг. 2а). Использование температур менее 150°С нецелесообразно в связи со значительным уменьшением силы адгезионной связи силиконового компаунда СИЭЛ, разбавленного в бензине, с тыльной стороной солнечного элемента. Термообработка свыше 180°С нецелесообразна в силу ограниченной термической прочности применяемых материалов. Затем наносят с помощью капельного распыления третий слой трехслойного адгезионного покрытия - слой промоутера адгезии, для формирования активных химических связей на поверхности отвержденного слоя силиконового компаунда СИЭЛ. В качестве промоутера адгезии используют Пента П-14 (ТУ 0258-168-40245042-2006) в смеси с растворителем уайт-спирит в соотношении объемных частей 5÷1 соответственно. Добавление уайт-спирита усиливает проникающую способность Пента П-14 и предотвращает трещинообразование при термообработке. Применение промоутера адгезии способствует более однородному адгезионному сцеплению полимерных слоев по границе раздела. Возможно применение в качестве промоутера адгезии других грунтовочных композиций для полимеров. Выполняют термообработку слоя промоутера адгезии при 170°С, в течение 10 мин.

Островковая структура эпоксидного слоя при капельном распылении необходима для снижения термических напряжений. Сплошной слой силиконового компаунда СИЭЛ (толщиной 10÷15 мкм) выполняет функцию защиты границы раздела адгезионного покрытия с тыльной металлизацией от паров продуктов полимеризации, возникающих при распайке коммутационных выводных шин. Слой промоутера адгезии обеспечивает адгезионное соединение слоя силиконового компаунда СИЭЛ и силиконового наполнителя. Далее выполняют наклейку на лицевую и тыльную поверхности солнечного элемента соответственно защитной стеклянной пластины и защитной подложки. При этом на центральную часть стеклянной пластины, а затем и тыльной стороны солнечного элемента, наносят определенное количество силиконового наполнителя холодного отверждения марки СКТНФ (ТУ 38.103129-77) на основе низкомолекулярного фенилметилсилоксанового каучука со стандартным катализатором полимеризации № 18 (ТУ6-02-805-78) (раствор оловоорганических соединений в эфирах ортокремниевой кислоты) и прижимают к тыльной стороне солнечных элементов защитную подложку (стеклотекстолитовую плату) из радиационно-стойкого фольгированного материала (МИ 1222.8-1-35-02, ТУ2296-005-00213060-96).

В процессе растекания силиконового наполнителя СКТНФ происходит заполнение внутреннего пространства между стеклянной пластиной, солнечным элементом и защитной подложкой. Существенным преимуществом применения низкомолекулярного каучука СКТНФ в качестве силиконового наполнителя является технологическая легкость последующей очистки поверхности солнечного элемента от излишков отвержденного материала посредством раскрошивания. В отсутствие трехслойного адгезионного покрытия, состоящего из последовательно нанесенных слоев: эпоксидного клея; силиконового компаунда СИЭЛ, отвержденного при термообработке 150÷180°С и промоутера адгезии термостойкое клеевое соединение тыльного контакта солнечного элемента с защитной подложкой не обеспечивается. Затем выполняют вакуумную дегазацию солнечных элементов с постадийным увеличением температуры до ~ 100°С в течение ~ 50 часов для более полного удаления продуктов полимеризации. При необходимости возможно увеличение температуры обработки до 150°С. Далее припаивают выводные шины солнечного элемента к контактным площадкам защитной подложки (см. фиг. 2б). Последовательно соединенные с помощью выводных шин солнечные элементы образуют фотоэлектрический модуль (см. фиг. 3). Адгезионное покрытие, сформированное к тыльной стороне солнечного элемента, согласно предложенному способу, в процессе распайки выводных шин сохраняет целостность и клеевое соединение с защитной подложкой остается неповрежденным. Скрытые полости под площадками пайки отсутствуют, что необходимо для надежной работы, увеличения срока эксплуатации солнечной батареи и сокращения объема ремонтных работ. При выполнении испытаний на отрыв стеклотекстолитовой платы от солнечного элемента разрыв осуществляется по материалу силиконового наполнителя СКТНФ. Трехслойное адгезионное покрытие, состоящее из слоя эпоксидного клея, имеющего островковую конфигурацию; слоя силиконового компаунда СИЭЛ, отвержденного при температуре 150÷180°С, и промоутера адгезии обеспечивает эластичное клеевое соединение силиконового наполнителя СКТНФ с тыльной металлизацией солнечного элемента и защитной подложкой.

Способ изготовления модуля солнечных элементов, включающий нанесение силиконового наполнителя на лицевую и тыльную стороны солнечных элементов, приклеивание на слой силиконового наполнителя защитной подложки, выполнение вакуумной дегазации, отличающийся тем, что перед нанесением силиконового наполнителя на тыльной стороне солнечного элемента формируют трехслойное адгезионное покрытие путем последовательного нанесения капельным распылением эпоксидного клея, силиконового компаунда СИЭЛ и промоутера адгезии, причем после нанесения слоя силиконового компаунда СИЭЛ выполняют термообработку при температуре 150÷180°С.



 

Похожие патенты:

Изобретение относится к нанесению рисунка электрических проводников на солнечный элемент. Технический результат – предотвращение ограничений на разрешение линий проводников и их точное размещение.
Изобретение относится к солнечной энергетике, в частности, к фотоэлектрическим преобразователям, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Фотоэлектрический преобразователь включает подложку, фоточувствительную А3В5 гетероструктуру с широкозонным окном и контактным слоем GaAs р-типа проводимости, антиотражающее покрытие на поверхности широкозонного окна в местах, свободных от фронтального омического контакта, фронтальный омический контакт на поверхности контактного слоя GaAs, содержащий слои Ag и Au, и тыльный омический контакт.

Многопереходный солнечный элемент, содержащий: подложку для выращивания; первый солнечный подэлемент, сформированный поверх или в подложке для выращивания; изменяющийся промежуточный слой, осажденный на первый солнечный подэлемент; и ряд слоев полупроводникового материала, осажденных поверх изменяющегося промежуточного слоя, содержащего множество солнечных подэлементов, включая второй солнечный подэлемент, расположенный поверх и рассогласованный по параметру решетки по отношению к подложке для выращивания и имеющий ширину запрещенной зоны в диапазоне 0,9-1,8 эВ, и по меньшей мере верхний солнечный подэлемент, расположенный поверх второго подэлемента и имеющий содержание алюминия более 30% мольной доли и ширину запрещенной зоны в диапазоне 2,0-2,20 эВ.

Изобретение относится к полупроводниковой технике, и может быть использовано при изготовлении фотопреобразователей. Cпособ обработки полупроводниковых структур с германиевой подложкой включает фиксацию полупроводниковой структуры лицевой стороной на диске-носителе посредством клеевого соединения, утонение подложки, разделение полупроводниковой структуры на чипы, напыление тыльной металлизации с нагревом подложки, снятие металлизированных чипов с диска-носителя, при этом фиксацию полупроводниковой структуры на диске-носителе выполняют на выступах, имеющих вид полос, закрепленных вертикально на диске-носителе, при этом диск-носитель и выступы изготавливают из материалов с близкими к германиевой подложке коэффициентами термического расширения, а выступы располагают с внутренней стороны контура разделения полупроводниковой структуры, фиксацию которой на выступах выполняют посредством эпоксидно-пластизолевой смеси.

Изобретение относится к технологии функциональных материалов, конкретно к технологии оптически прозрачных оксидных полупроводников, применяемых в оптоэлектронике, фотовольтаике и плазмонике. Согласно изобретению предложен способ получения нанодисперсного оксида кадмия, допированного литием, включающий получение исходной смеси путем растворения карбоната кадмия и карбоната лития, взятых в стехиометрическом соотношении, в 10%-ной муравьиной кислоте, взятой в количестве 5,6 мл раствора кислоты на 1 г суммарного количества карбоната кадмия и карбоната лития, упаривание полученной смеси при температуре 50-60 °С до получения сухого остатка и отжиг при температуре 300-320 °С в течение 0,5 часа на первой стадии и при фиксированном значении температуры, находящейся в интервале 500-900 °С, в течение 1 часа на второй стадии.

Изобретение относится к массивам концентраторов солнечной энергии и, в частности, к системам и способам терморегулирования массивов концентраторов солнечной энергии. Раскрыта система терморегулирования для управления температурой селективно отражающей панели.

Изобретение относится к области полупроводниковой микроэлектроники, а именно к технологии изготовления жестких зондовых головок, предназначенных для осуществления электрической связи контактных площадок кристаллов БИС с внешними схемами контроля и измерения параметров БИС. Задачей изобретения является разработка способа сборки ЖЗГ, предназначенных для контроля кристаллов с любым расположением контактных площадок, в том числе по всей поверхности кристалла, при сохранении одинаковых длин вылета зондов по всей ЖЗГ.

Изобретение относится к многопереходному солнечному элементу. Сущность: многопереходный солнечный элемент (MJ) в форме стопки, который включает стопку (ST), состоящую из самого нижнего субэлемента (С1), по меньшей мере одного среднего субэлемента (С2) и самого верхнего субэлемента (С3), причем каждый из субэлементов (C1, С2, С3) имеет эмиттер (E1, Е2, Е3) и базу (B1, В2, В3), по меньшей мере самый верхний субэлемент (С3) состоит из III-V-полупроводникового материала или включает III-V-полупроводниковый материал и эмиттер (Е3) самого верхнего субэлемента (С3) включает сверхрешетку (SL).

В конкретных вариантах осуществления изобретения частицы (100) печатают с образованием участков на подложке (300). Каждая область поверхности подложки имеет участок с частицами (102), подвергнутыми восстановительной обработке, и участок с частицами (103), подвергнутыми окислительной обработке, при этом эти участки имеют фотогальваническую активность противоположной полярности.

Изобретение относится к области микроэлектроники и может быть использовано в изготовлении матричных фоточувствительных элементов (МФЧЭ) на квантовых ямах (QWIP). Способ формирования меза-элементов матричных фоточувствительных элементов на квантовых ямах включает ионное травление аргоном, при этом осуществляют ионное травление аргоном структур из чередующихся слоев AlxGa1-xAs при x=0,27 и слоев квантовых ям из GaAs:Si до нижнего контактного слоя GaAs n+, при этом время, необходимое для ионного травления указанных структур с известными значениями толщин слоев на требуемую глубину, определяют как сумму времени ионного травления слоев квантовых ям GaAs:Si и слоев AlxGa1-xAs при x=0,27, определяемых по известным значениям скорости травления этих слоев.

Предложена фотовольтаическая панель (1), содержащая последовательно расположенные первый электропроводящий слой (10), фотовольтаический слой (20) перовскитного фотовольтаического материала, второй электропроводящий слой (30) и защитное покрытие (40), которое по меньшей мере образует барьер против влаги. Первый электропроводящий слой (10) разделен вдоль первых разделительных линий (L11, L12), проходящих в первом направлении (D1). Второй электропроводящий слой (30) и фотовольтаический слой (20) разделены вдоль вторых разделительных линий (L21, L22), проходящих в первом направлении (D1) и вдоль третьих разделительных линий (L31, L32), проходящих во втором направлении (D2), отличном от первого направления (D1). Первые и вторые разделительные линии чередуются друг с другом, а первые и третьи разделительные линии задают область (50), которая заполнена защитным наполняющим материалом, образующим барьер против влаги, задавая тем самым фотовольтаические ячейки, герметизированные защитным материалом покрытия и защитным наполняющим материалом. Изобретение обеспечивает формирование фотовольтаической панели, имеющей конструкцию, которая уменьшает риск попадания свинца или олова, присутствующего в фотовольтаическом слое, в окружающую среду. 2 н. и 13 з.п. ф-лы, 7 ил.
Наверх