Генетическая конструкция на основе системы редактирования генома crispr/cas9, кодирующая нуклеазу cas9, для геномного редактирования однодольных зерновых культур на основе двойного отбора растений



Генетическая конструкция на основе системы редактирования генома crispr/cas9, кодирующая нуклеазу cas9, для геномного редактирования однодольных зерновых культур на основе двойного отбора растений
Генетическая конструкция на основе системы редактирования генома crispr/cas9, кодирующая нуклеазу cas9, для геномного редактирования однодольных зерновых культур на основе двойного отбора растений
Генетическая конструкция на основе системы редактирования генома crispr/cas9, кодирующая нуклеазу cas9, для геномного редактирования однодольных зерновых культур на основе двойного отбора растений
Генетическая конструкция на основе системы редактирования генома crispr/cas9, кодирующая нуклеазу cas9, для геномного редактирования однодольных зерновых культур на основе двойного отбора растений
C12N15/111 - Получение мутаций или генная инженерия; ДНК или РНК, связанные с генной инженерией, векторы, например плазмиды или их выделение, получение или очистка; использование их хозяев (мутанты или микроорганизмы, полученные генной инженерией C12N 1/00,C12N 5/00,C12N 7/00; новые виды растений A01H; разведение растений из тканевых культур A01H 4/00; новые виды животных A01K 67/00; использование лекарственных препаратов, содержащих генетический материал, который включен в клетки живого организма, для лечения генетических заболеваний, для генной терапии A61K 48/00 пептиды вообще C07K)

Владельцы патента RU 2762830:

Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии" (ФГБНУ ВНИИСБ) (RU)

Изобретение относится к области биотехнологии, в частности к генетической конструкции на основе системы редактирования генома CRISPR/Cas9, кодирующей нуклеазу Cas9, содержащей ген-селективный маркер bar и репортерный ген gfp. Изобретение обеспечивает эффективный отбор модифицированных растений без дополнительных молекулярно-биологических тестов. 6 ил., 2 пр.

 

Область техники, к которой относится изобретение

Изобретение относится к области биотехнологии и генной инженерии растений, а именно к технологии редактирования генома растений CRISPR/Cas9, в частности редактирования генома зерновых культур.

Предшествующий уровень техники

Несмотря на большой потенциал систем геномного редактирования ДНК, таких как CRISPR/CAS9, для получения новых высокопродуктивных сельскохозяйственных культур, их внедрение в широкую селекционную практику имеет ряд ограничений. Как правило, геномное редактирование достигается с помощью стандартных методов трансгеноза, а именно путем переноса в регенерирующие клетки растений последовательностей «инструментов редактирования». В случае систем CRISPR/CAS9 - это генетические последовательности, обеспечивающие экспрессию нуклеазного агента, который состоит из белка Cas9 и направляющей РНК, называемой РНК-проводником (sgRNA), образующих комплекс Cas9-sgRNA для таргетной модификации определенной нуклеотидной последовательности. При этом последовательности, кодирующие Cas9 и sgRNA, могут находиться как на одном, так и на разных генетических векторах. Доставка последовательностей инструментов геномного редактирования в клетки зерновых культур чаще всего осуществляется методом биобаллистики, позволяющим переносить несколько векторов одновременно. Для облегчения работ по геномному редактированию, один из векторов может быть универсальным (не изменяемым), тогда как второй создаваться для модификации конкретного участка генома.

Задачей изобретения является разработка универсального вектора, который может быть использован в системах CRISPR-Cas9 для редактирования генетических последовательностей зерновых культур, а именно ДНК-конструкции, кодирующей последовательность белка Cas9 и содержащей последовательности, обеспечивающие эффективный отбор модифицированных растений.

Проблема эффективной регенерации in vitro и отбора трансгенных растений после переноса гетерологичных последовательностей в клетки зерновых культур давно известна. При использовании технологии геномного редактирования CRJSPR/Cas9 проблема еще больше осложняется тем, что необходимо отобрать растения, в которых благодаря успешному переносу последовательностей компонентов системы CRISPR/Cas9 и их экспрессии произойдет редактирование гена-мишени. В настоящий момент нет универсальных и эффективных способов отбора трансгенных/геномно-редактированных растений зерновых культур среди растений-регенерантов, образующихся из клеток, подвергнутых бомбардировке. Это связано с тем, что при трансгенозе зерновых не существует селективных генов-маркеров, которые могут обеспечить 100% отбор. Чаще всего для однодольных злаковых культур используют генетические конструкции, содержащие селективный ген bar (bialaphos resistance) или его аналог - ген pat (phosphinothricin acetyl transferase), клонированные из геномов различных видов Streptomicis. Этот ген кодирует фермент фосфинотрицин-ацетилтрансферазу, который ацетилирует три аминогруппы L-фосфинотрицина. L-фосфинотрицин является компонентом гербицидов "Basta", "Liberty", "Harvest", "Herbiace", "Bialaphos" и "Ignite", которые способны блокировать метаболический путь с участием фермента глютамин-синтазы, нарушая процессы ассимиляции аммиака в клетках, что вызывает гибель растений из-за его накопления (Wilmink и Dons, 1993). Поскольку продукт гена bar ацетилирует фосфинотрицин, последний теряет сродство с глютаминсинтазой, и растения приобретают устойчивость. Для геномного редактирования зерновых культур, также чаще всего используют вектора, содержащие ген bar для отбора растений. При биолистическим переносе его чаще используют на отдельной плазмиде, не содержащей последовательностей инструментов геномного редактирования. Тогда как при агробактриальном переносе bar ген размещают на одном векторе с последователостями нуклеазы Cas9. Например, в работе Zhang et al. (2018; Doi: 10.1186/s 12870-018-1496-х) для мутагенеза пшеницы применяли вектор, который одновременно содержал последовательности Cas9 и гена bar. Аналогичную стратегию использовали Lee et al. (2019; Doi: 10.1111/pbi.12982) для геномного редактирования кукурузы, сочетая в Т-ДНК бинарного вектора различные варианты последовательностей нуклеазы Cas9 с последовательностью гена bar. В указанных работах для экспрессии bar гена использовали 35S промотер вируса мозаики цветной капусты (CaMV 35S). Несмотря на то, что ген bar значительно более эффективен, чем другие селективные гены для однодольных культур, при его использовании приходится выявлять трансгенные растения среди огромного числа нетрансгенных проростков. Вследствие природной устойчивости к L-фосфинотрицину доля таких побегов-регенерантов у отдельных сортов зерновых, например пшеницы, может достигать 95%. Распространенная в настоящий момент система отбора трансформантов по устойчивости к гербициду приводит к тому, что скрининг первичных образцов становится затратным и трудоемким, поскольку для поиска и отбора приходится активно использовать молекулярно-биологические методы.

Решением этой технической проблемы может быть добавление в векторную конструкцию, содержащую компоненты редактирования генома, не только селективного гена bar, но и дополнительного репортерного гена, который позволит вести прижизненную детекцию клеток и тканей. В качестве таких генов могут выступать гены, кодирующие флуоресцентные белки, например GFP или RFP. Экспрессия gfp (rfp) обеспечивает специфическую флуоресценцию клеток при помещении их в УФ свет определенного спектра, и таким образом является «визуальным» маркером трансгенной ткани, позволяя отбраковывать нетрансгенные растения на всех этапах.

Раскрытие сущности изобретения

Задачей настоящего изобретения является создание генно-инженерной конструкции, которая позволяет получить растения злаковых культур, содержащие компоненты геномного редактирования CRISPR/Cas9, благодаря эффективному «двойному» отбору по селективному гену bar и репортерному гену gfp. Он основывается на одновременном отборе ткани по устойчивости клеток к веществу (гербициду), находящемуся в культуральной среде (экспрессия гена bar), и по флуоресценции трансгенной ткани (экспрессия гена gfp). Сочетание в векторе генов gfp и bar позволяет выявлять трансгенные растения без дополнительных молекулярно-биологических тестов, что сокращает время и ресурсы.

Для создания векторной конструкции использовали маркерные гены, слитые с промотором/интроном генов актина Act1 или убиквитина Ubi1 риса и кукурузы. Применение этих регуляторных элементов обеспечивает высокую экспрессию в тканях пшеницы, начиная от первичной клетки и заканчивая полноценными растениями и семенами, что повышает возможность целевого редактирования.

Созданный вектор можно применять для получения «базовых» растений, экспрессирующих Cas9, которые в дальнейшем можно будет использовать для редактирования целевых генов-мишеней с помощью ген-специфичных РНК-проводников. Разработанная конструкция также пригодна для совместного переноса с векторами, несущими последовательности РНК-проводников, специфичных для различных генов-мишеней в исследованиях по получению отредактированных растений зерновых злаковых культур, включая пшеницу, рис, кукурузу, тритикале и ячмень.

Краткое описание чертежей

На Фигуре 1 приведена электрофореграмма продуктов рестрикции ДНК pTaCas9.6 и psGFP-BAR, а также выделенных для клонирования фрагментов.

На Фигуре 2 приведена рестрикционная карта рекомбинантных ДНК - возможных продуктов лигирования, образующихся при конструировании вектора для геномного редактирования зерновых культур.

На Фигуре 3 приведен пример электрофореграммы продуктов рестрикции ДНК клонов при создании вектора для геномного редактирования.

На Фигуре 4 приведена электрофореграмма продуктов рестрикции ДНК создаваемого плазмидного вектора для геномного редактирования, на которой указан размер характерных фрагментов (п.н.).

На Фигуре 5 представлена схема генетической конструкции для геномного редактирования однодольных зерновых культур с применением системы CRJSPR/Cas9 на основе двойного отбора растений.

На Фигуре 6 представлен ПЦР анализ геномной ДНК независимых растений пшеницы, полученных в результате биобаллистического переноса разработанной конструкции в смеси с вектором, несущим последовательность направляющей РНК для внесения мутаций в промоторную область гена пшеницы VRN-1A. Наличие искомых фрагментов размером 220 п. н. для гена Cas9 и 606 п. н. для репортерного гена gfp во всех анализируемых образцах подтверждает 100% эффективность отбора первичных образцов (трансгенных растений) вследствие двойного отбора, основанного на культивировании тканей на селективных средах при одновременной прижизненной детекции трансгенных клеток по их флуоресценции благодаря использованию разработанной конструкции.

Далее описание настоящего изобретения будет продолжено путем приведения конкретных примеров его осуществления.

Примеры

Пример 1

С целью повышения эффективности отбора клеток, содержащих компоненты редактирования генома, создали вектор pGCB, несущий одновременно кассеты экспрессии гена нуклеазы Cas9 (компонент геномного редактирования), гена GFP (позволяет вести визуальный обор трансформированных клеток) и гена bar (обеспечивает устойчивость трансформированных клеток к фосфинотрицину). Кассету экспрессии гена нуклеазы Cas9 под контролем убиквитинового промотора (ubi1) кукурузы и терминатора гена теплового шока выделяли из плазмиды pTaCas9.6, предоставленной др. Д. Войтас (Daniel Voytas, Addgene plasmid # 91169; http://n2t.net/addgene:91169; RRID:Addgene_91169). С этой целью плазмидную ДНК вектора pTaCas9.6 обрабатывали эндонуклеазами рестрикции ЕсоRI и MssI с последующей «достройкой» ДНК-концов с помощью набора для быстрого восстановления концов ДНК. Полученный в результате фрагмент размером 6684 п. н. очищали и выделяли из 1%-го агарозного геля (Фиг. 1А). В качестве донора маркерных последовательностей использовали вектор psGFP-BAR (Richards et al. 2001), хорошо зарекомендовавший себя в исследованиях по биобаллистической трансформации пшеницы. Плазмидную ДНК вектора psGFP-BAR обрабатывали эндонуклеазой рестрикции SmaI и щелочной фосфотазой FastAP™ (Thermo Fisher Scientific Inc.), а затем очищали и выделяли из 1%-го агарозного геля (Фиг. 1 В).

Фрагменты плазмид соединяли с помощью ДНК-лигазы, и затем полученный вектор трансформировали в клетки E.coli JM109. В результате клонирования по тупым концам ожидали образования двух вариантов: все три кассеты экспрессии могут быть расположены «голова-к-хвосту» (Фиг. 2А) или кассета экспрессии гена Cas9 может находиться в обратной ориентации относительно кассет экспрессии генов GFP и bar (Фиг. 2В). Наличие вставки и ее ориентацию определяли с помощью обработки эндонуклеазами рестрикции ЕсоRI, HindIII и SalI (Фиг. 3). Согласно рестрикционной карте (Фиг. 4), наличие вставки можно подтвердить с помощью ЕсоRI рестрикции, при этом должен появляться дополнительный к исходным продуктам (3194 п. н., 1979 п. н., 1481 п. н. и 1429 п. н.) фрагмент длиной 8124 п. н.

Длины возможных фрагментов ДНК после обработки эндонуклеазой рестрикции HindIII:

- в случае продукта (А) - 8650 п. н., 5667 п. н. и 461 п. н.;

- в случае продукта (В) - 6274 п. н., 5667 п. н. и 2837 п. н.;

- для исходного вектора - 5693 п. н. и 2402 п. н.

Длины возможных фрагментов ДНК после обработки эндонуклеазой рестрикции SalI:

- в случае продукта (А) - 6109 п. н., 6063 п. н., 1399 п. н., 621 п. н. и 589 п. н.;

- в случае продукта (В) - 11529 п. н., 1399 п. н., 644 п. н., 621 п. н. и 589 п. н.;

- для исходного вектора - 5489 п. н., 1399 п. н., 621 п. н. и 589 п. н.

На основании проведенного рестрикционного анализа выбрали клоны №3 и №5, в которых все три кассеты экспрессии расположены «голова-к-хвосту» (Фиг. 1А) и направление транскрипции всех генов совпадает. Структуру плазмидного вектора подтвердили рестрикционным анализом (Фиг. 2).

Созданный вектор pGCB (Рис. 5), содержащий последовательности Cas9/GFP/bar может быть использован для получения «базовых» растений с конститутивной экспрессией компонента Cas9, которые в дальнейшем можно использовать для редактирования целевых генов-мишеней с помощью ген-специфичных РНК-проводников (sgRNA). Вектор также можно использовать для совместного переноса с векторами, несущими последовательности sgRNA, в исследованиях по редактированию геномов растений пшеницы и тритикале.

Пример 2

Для получения растений с отредактированным геномом требуется взаимодействие комплексов Саз9-РНК-проводник с геномной ДНК. Полученную по примеру 1 конструкцию, смешивали с вектором несущим последовательность гРНК для внесения мутаций в промоторную область гена пшеницы VRN-1A и переносили в клетки пшеницы с помощью генной пушки. В качестве эксплантов использовали эмбриогенные каллусы, инициированные из тканей незрелых зиготических зародышей пшеницы 'Chinese Spring' (Triticum aestivum L.). В результате визуального скринига трансгенной ткани по ее флуоресценции и по устойчивости к L-фосфинотрицину, присутствующему в среде для регенерации, отобрали 10 побегов-регенерантов. Благодаря методике двойного отбора все полученные в результате трансформации линии пшеницы оказались трансгенными и содержали вставку Cas9. Наличие вставки Cas9 подтверждали ПЦР анализом тотальной ДНК, выделенной из растений-регенерантов. На Фиг. 6 представлен образец агарозных гелей после проведения ПЦР анализа. Подтвердили, что геном всех первичных предполагаемых трансформантов содержит переносимые последовательности, т.к наблюдали амплификацию искомых фрагментов размером 220 п. н. для гена Cas9 и 606 п.н. для репортерного гена gfp. Благодаря использованию вектора, обеспечивающего двойной отбор, основанный на культивировании тканей на селективных средах при одновременной прижизненной детекции трансгенных клеток по их флуоресценции, эффективность отбора первичных образцов (трансгенных растений) превысила аналогичные зарубежные аналоги и достигла 100%.

--->

Перечень последовательностей

<110> ФГБНУ ВНИИСБ

<120> ГЕНЕТИЧЕСКАЯ КОНСТРУКЦИЯ НА ОСНОВЕ СИСТЕМЫ

РЕДАКТИРОВАНИЯ ГЕНОМА CRISPR/CAS9, КОДИРУЮЩАЯ НУКЛЕАЗУ

CAS9, ДЛЯ ГЕНОМНОГО РЕДАКТИРОВАНИЯ ОДНОДОЛЬНЫХ ЗЕРНОВЫХ

КУЛЬТУР НА ОСНОВЕ ДВОЙНОГО ОТБОРА РАСТЕНИЙ

<130> GCB

<160> 1

<170> PatentIn version 3.5

<210> 1

<211> 11989

<212> ДНК

<213> Искусственная последовательность

<220>

<223> Фрагмент ДНК, содержащий кассеты экспрессии генов GFP, Cas9 и BAR

<400> 1

CTCGAGGTCATTCATATGCTTGAGAAGAGAGTCGGGATAGTCCAAAATAAAACAAAGGTAAGATTACCTGGTCAAAAGTGAAAACATCAGTTAAAAGGTGGTATAAAGTAAAATATCGGTAATAAAAGGTGGCCCAAAGTGAAATTTACTCTTTTCTACTATTATAAAAATTGAGGATGTTTTTGTCGGTACTTTGATACGTCATTTTTGTATGAATTGGTTTTTAAGTTTATTCGCTTTTGGAAATGCATATCTGTATTTGAGTCGGGTTTTAAGTTCGTTTGCTTTTGTAAATACAGAGGGATTTGTATAAGAAATATCTTTAAAAAAACCCATATGCTAATTTGACATAATTTTTGAGAAAAATATATATTCAGGCGAATTCTCACAATGAACAATAATAAGATTAAAATAGCTTTCCCCCGTTGCAGCGCATGGGTATTTTTTCTAGTAAAAATAAAAGATAAACTTAGACTCAAAACATTTACAAAAACAACCCCTAAAGTTCCTAAAGCCCAAAGTGCTATCCACGATCCATAGCAAGCCCAGCCCAACCCAACCCAACCCAACCCACCCCAGTCCAGCCAACTGGACAATAGTCTCCACACCCCCCCACTATCACCGTGAGTTGTCCGCACGCACCGCACGTCTCGCAGCCAAAAAAAAAAAAAGAAAGAAAAAAAAGAAAAAGAAAAAACAGCAGGTGGGTCCGGGTCGTGGGGGCCGGAAACGCGAGGAGGATCGCGAGCCAGCGACGAGGCCGGCCCTCCCTCCGCTTCCAAAGAAACGCCCCCCATCGCCACTATATACATACCCCCCCCTCTCCTCCCATCCCCCCAACCCTACCACCACCACCACCACCACCTCCACCTCCTCCCCCCTCGCTGCCGGACGACGAGCTCCTCCCCCCTCCCCCTCCGCCGCCGCCGCGCCGGTAACCACCCCGCCCCTCTCCTCTTTCTTTCTCCGTTTTTTTTTCCGTCTCGGTCTCGATCTTTGGCCTTGGTAGTTTGGGTGGGCGAGAGGCGGCTTCGTGCGCGCCCAGATCGGTGCGCGGGAGGGGCGGGATCTCGCGGCTGGGGCTCTCGCCGGCGTGGATCCGGCCCGGATCTCGCGGGGAATGGGGCTCTCGGATGTAGATCTGCGATCCGCCGTTGTTGGGGGAGATGATGGGGGGTTTAAAATTTCCGCCATGCTAAACAAGATCAGGAAGAGGGGAAAAGGGCACTATGGTTTATATTTTTATATATTTCTGCTGCTTCGTCAGGCTTAGATGTGCTAGATCTTTCTTTCTTCTTTTTGTGGGTAGAATTTGAATCCCTCAGCATTGTTCATCGGTAGTTTTTCTTTTCATGATTTGTGACAAATGCAGCCTCGTGCGGAGCTTTTTTGTAGGTAGACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCTTCACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCACGGCATGGACGAGCTGTACAAGTAAAGCGGCCGCCCCCTGCAGCCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATCGGGAATTCCTGCAGCCCAATTCGAGCTCGGTACCCGGGGATCTGCAGGCGCGCCTGCAGTGCAGCGTGACCCGGTCGTGCCCCTCTCTAGAGATAATGAGCATTGCATGTCTAAGTTATAAAAAATTACCACATATTTTTTTTGTCACACTTGTTTGAAGTGCAGTTTATCTATCTTTATACATATATTTAAACTTTACTCTACGAATAATATAATCTATAGTACTACAATAATATCAGTGTTTTAGAGAATCATATAAATGAACAGTTAGACATGGTCTAAAGGACAATTGAGTATTTTGACAACAGGACTCTACAGTTTTATCTTTTTAGTGTGCATGTGTTCTCCTTTTTTTTTGCAAATAGCTTCACCTATATAATACTTCATCCATTTTATTAGTACATCCATTTAGGGTTTAGGGTTAATGGTTTTTATAGACTAATTTTTTTAGTACATCTATTTTATTCTATTTTAGCCTCTAAATTAAGAAAACTAAAACTCTATTTTAGTTTTTTTATTTAATAATTTAGATATAAAATAGAATAAAATAAAGTGACTAAAAATTAAACAAATACCCTTTAAGAAATTAAAAAAACTAAGGAAACATTTTTCTTGTTTCGAGTAGATAATGCCAGCCTGTTAAACGCCGTCGACGAGTCTAACGGACACCAACCAGCGAACCAGCAGCGTCGCGTCGGGCCAAGCGAAGCAGACGGCACGGCATCTCTGTCGCTGCCTCTGGACCCCTCTCGAGAGTTCCGCTCCACCGTTGGACTTGCTCCGCTGTCGGCATCCAGAAATTGCGTGGCGGAGCGGCAGACGTGAGCCGGCACGGCAGGCGGCCTCCTCCTCCTCTCACGGCACCGGCAGCTACGGGGGATTCCTTTCCCACCGCTCCTTCGCTTTCCCTTCCTCGCCCGCCGTAATAAATAGACACCCCCTCCACACCCTCTTTCCCCAACCTCGTGTTGTTCGGAGCGCACACACACACAACCAGATCTCCCCCAAATCCACCCGTCGGCACCTCCGCTTCAAGGTACGCCGCTCGTCCTCCCCCCCCCCCTCTCTACCTTCTCTAGATCGGCGTTCCGGTCCATGGTTAGGGCCCGGTAGTTCTACTTCTGTTCATGTTTGTGTTAGATCCGTGTTTGTGTTAGATCCGTGCTGCTAGCGTTCGTACACGGATGCGACCTGTACGTCAGACACGTTCTGATTGCTAACTTGCCAGTGTTTCTCTTTGGGGAATCCTGGGATGGCTCTAGCCGTTCCGCAGACGGGATCGATTTCATGATTTTTTTTGTTTCGTTGCATAGGGTTTGGTTTGCCCTTTTCCTTTATTTCAATATATGCCGTGCACTTGTTTGTCGGGTCATCTTTTCATGCTTTTTTTTGTCTTGGTTGTGATGATGTGGTCTGGTTGGGCGGTCGTTCTAGATCGGAGTAGAATTAATTCTGTTTCAAACTACCTGGTGGATTTATTAATTTTGGATCTGTATGTGTGTGCCATACATATTCATAGTTACGAATTGAAGATGATGGATGGAAATATCGATCTAGGATAGGTATACATGTTGATGCGGGTTTTACTGATGCATATACAGAGATGCTTTTTGTTCGCTTGGTTGTGATGATGTGGTGTGGTTGGGCGGTCGTTCATTCGTTCTAGATCGGAGTAGAATACTGTTTCAAACTACCTGGTGTATTTATTAATTTTGGAACTGTATGTGTGTGTCATACATCTTCATAGTTACGAGTTTAAGATGGATGGAAATATCGATCTAGGATAGGTATACATGTTGATGTGGGTTTTACTGATGCATATACATGATGGCATATGCAGCATCTATTCATATGCTCTAACCTTGAGTACCTATCTATTATAATAAACAAGTATGTTTTATAATTATTTTGATCTTGATATACTTGGATGATGGCATATGCAGCAGCTATATGTGGATTTTTTTAGCCCTGCCTTCATACGCTATTTATTTGCTTGGTACTGTTTCTTTTGTCGATGCTCACCCTGTTGTTTGGTGTTACTTCCTGCAGGGCGATCTATTCGAATGGACAAGAAGTACTCGATCGGCCTCGACATCGGGACGAACTCAGTTGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCTCTAAGAAGTTCAAGGTCCTGGGGAACACCGACCGCCATTCCATCAAGAAGAACCTCATCGGCGCTCTCCTGTTCGACAGCGGGGAGACCGCTGAGGCTACGAGGCTCAAGAGAACCGCTAGGCGCCGGTACACGAGAAGGAAGAACAGGATCTGCTACCTCCAAGAGATTTTCTCCAACGAGATGGCCAAGGTTGACGATTCATTCTTCCACCGCCTGGAGGAGTCTTTCCTCGTGGAGGAGGATAAGAAGCACGAGCGGCATCCCATCTTCGGCAACATCGTGGACGAGGTTGCCTACCACGAGAAGTACCCTACGATCTACCATCTGCGGAAGAAGCTCGTGGACTCCACCGATAAGGCGGACCTCAGACTGATCTACCTCGCTCTGGCCCACATGATCAAGTTCCGCGGCCATTTCCTGATCGAGGGGGATCTCAACCCAGACAACAGCGATGTTGACAAGCTGTTCATCCAACTCGTGCAGACCTACAACCAACTCTTCGAGGAGAACCCGATCAACGCCTCTGGCGTGGACGCGAAGGCTATCCTGTCCGCGAGGCTCTCGAAGTCCAGGAGGCTGGAGAACCTGATCGCTCAGCTCCCAGGCGAGAAGAAGAACGGCCTGTTCGGGAACCTCATCGCTCTCAGCCTGGGGCTCACCCCGAACTTCAAGTCGAACTTCGATCTCGCTGAGGACGCCAAGCTGCAACTCTCCAAGGACACCTACGACGATGACCTCGATAACCTCCTGGCCCAGATCGGCGATCAATACGCGGACCTGTTCCTCGCTGCCAAGAACCTGTCGGACGCCATCCTCCTGTCAGATATCCTCCGCGTGAACACCGAGATCACGAAGGCTCCACTCTCTGCCTCCATGATCAAGCGCTACGACGAGCACCATCAGGATCTGACCCTCCTGAAGGCGCTGGTCCGCCAACAGCTCCCGGAGAAGTACAAGGAGATTTTCTTCGATCAGTCGAAGAACGGCTACGCTGGGTACATCGACGGCGGGGCCTCACAAGAGGAGTTCTACAAGTTCATCAAGCCAATCCTGGAGAAGATGGACGGCACGGAGGAGCTCCTGGTGAAGCTCAACAGGGAGGACCTCCTGCGGAAGCAGAGAACCTTCGATAACGGCAGCATCCCCCACCAAATCCATCTCGGGGAGCTGCACGCCATCCTGAGAAGGCAAGAGGACTTCTACCCTTTCCTCAAGGATAACCGGGAGAAGATCGAGAAGATCCTGACCTTCAGAATCCCATACTACGTCGGCCCTCTCGCGCGGGGGAACTCAAGATTCGCTTGGATGACCCGCAAGTCTGAGGAGACCATCACGCCGTGGAACTTCGAGGAGGTGGTGGACAAGGGCGCTAGCGCTCAGTCGTTCATCGAGAGGATGACCAACTTCGACAAGAACCTGCCCAACGAGAAGGTGCTCCCTAAGCACTCGCTCCTGTACGAGTACTTCACCGTCTACAACGAGCTCACGAAGGTGAAGTACGTCACCGAGGGCATGCGCAAGCCAGCGTTCCTGTCCGGGGAGCAGAAGAAGGCTATCGTGGACCTCCTGTTCAAGACCAACCGGAAGGTCACGGTTAAGCAACTCAAGGAGGACTACTTCAAGAAGATCGAGTGCTTCGATTCGGTCGAGATCAGCGGCGTTGAGGACCGCTTCAACGCCAGCCTCGGGACCTACCACGATCTCCTGAAGATCATCAAGGATAAGGACTTCCTGGACAACGAGGAGAACGAGGATATCCTGGAGGACATCGTGCTGACCCTCACGCTGTTCGAGGACAGGGAGATGATCGAGGAGCGCCTGAAGACGTACGCCCATCTCTTCGATGACAAGGTCATGAAGCAACTCAAGCGCCGGAGATACACCGGCTGGGGGAGGCTGTCCCGCAAGCTCATCAACGGCATCCGGGACAAGCAGTCCGGGAAGACCATCCTCGACTTCCTGAAGAGCGATGGCTTCGCCAACAGGAACTTCATGCAACTGATCCACGATGACAGCCTCACCTTCAAGGAGGATATCCAAAAGGCTCAAGTGAGCGGCCAGGGGGACTCGCTGCACGAGCATATCGCGAACCTCGCTGGCTCCCCCGCGATCAAGAAGGGCATCCTCCAGACCGTGAAGGTTGTGGACGAGCTCGTGAAGGTCATGGGCCGGCACAAGCCTGAGAACATCGTCATCGAGATGGCCAGAGAGAACCAAACCACGCAGAAGGGGCAAAAGAACTCTAGGGAGCGCATGAAGCGCATCGAGGAGGGCATCAAGGAGCTGGGGTCCCAAATCCTCAAGGAGCACCCAGTGGAGAACACCCAACTGCAGAACGAGAAGCTCTACCTGTACTACCTCCAGAACGGCAGGGATATGTACGTGGACCAAGAGCTGGATATCAACCGCCTCAGCGATTACGACGTCGATCATATCGTTCCCCAGTCTTTCCTGAAGGATGACTCCATCGACAACAAGGTCCTCACCAGGTCGGACAAGAACCGCGGCAAGTCAGATAACGTTCCATCTGAGGAGGTCGTTAAGAAGATGAAGAACTACTGGAGGCAGCTCCTGAACGCCAAGCTGATCACGCAAAGGAAGTTCGACAACCTCACCAAGGCTGAGAGAGGCGGGCTCTCAGAGCTGGACAAGGCCGGCTTCATCAAGCGGCAGCTGGTCGAGACCAGACAAATCACGAAGCACGTTGCGCAAATCCTCGACTCTCGGATGAACACGAAGTACGATGAGAACGACAAGCTGATCAGGGAGGTTAAGGTGATCACCCTGAAGTCTAAGCTCGTCTCCGACTTCAGGAAGGATTTCCAGTTCTACAAGGTTCGCGAGATCAACAACTACCACCATGCCCATGACGCTTACCTCAACGCTGTGGTCGGCACCGCTCTGATCAAGAAGTACCCAAAGCTGGAGTCCGAGTTCGTGTACGGGGACTACAAGGTTTACGATGTGCGCAAGATGATCGCCAAGTCGGAGCAAGAGATCGGCAAGGCTACCGCCAAGTACTTCTTCTACTCAAACATCATGAACTTCTTCAAGACCGAGATCACGCTGGCCAACGGCGAGATCCGGAAGAGACCGCTCATCGAGACCAACGGCGAGACGGGGGAGATCGTGTGGGACAAGGGCAGGGATTTCGCGACCGTCCGCAAGGTTCTCTCCATGCCCCAGGTGAACATCGTCAAGAAGACCGAGGTCCAAACGGGCGGGTTCTCAAAGGAGTCTATCCTGCCTAAGCGGAACAGCGACAAGCTCATCGCCAGAAAGAAGGACTGGGACCCAAAGAAGTACGGCGGGTTCGACAGCCCTACCGTGGCCTACTCGGTCCTGGTTGTGGCGAAGGTTGAGAAGGGCAAGTCCAAGAAGCTCAAGAGCGTGAAGGAGCTCCTGGGGATCACCATCATGGAGAGGTCCAGCTTCGAGAAGAACCCAATCGACTTCCTGGAGGCCAAGGGCTACAAGGAGGTGAAGAAGGACCTGATCATCAAGCTCCCGAAGTACTCTCTCTTCGAGCTGGAGAACGGCAGGAAGAGAATGCTGGCTTCCGCTGGCGAGCTCCAGAAGGGGAACGAGCTCGCGCTGCCAAGCAAGTACGTGAACTTCCTCTACCTGGCTTCCCACTACGAGAAGCTCAAGGGCAGCCCGGAGGACAACGAGCAAAAGCAGCTGTTCGTCGAGCAGCACAAGCATTACCTCGACGAGATCATCGAGCAAATCTCCGAGTTCAGCAAGCGCGTGATCCTCGCCGACGCGAACCTGGATAAGGTCCTCTCCGCCTACAACAAGCACCGGGACAAGCCCATCAGAGAGCAAGCGGAGAACATCATCCATCTCTTCACCCTGACGAACCTCGGCGCTCCTGCTGCTTTCAAGTACTTCGACACCACGATCGATCGGAAGAGATACACCTCCACGAAGGAGGTCCTGGACGCGACCCTCATCCACCAGTCGATCACCGGCCTGTACGAGACGAGGATCGACCTCTCACAACTCGGCGGGGATAAGAGACCCGCAGCAACCAAGAAGGCAGGGCAAGCAAAGAAGAAGAAGTGACTCGAGATATGAAGATGAAGATGAAATATTTGGTGTGTCAAATAAAAAGCTTGTGTGCTTAAGTTTGTGTTTTTTTCTTGGCTTGTTGTGTTATGAATTTGTGGCTTTTTCTAATATTAAATGAATGTAAGATCACATTATAATGAATAAACAAATGTTTCTATAATCCATTGTGAATGTTTTGTTGGATCTCTTCTGCAGCATATAACTACTGTATGTGCTATGGTATGGACTATGGAATATGATTAAAGATAAGGAGCTCCGGTGACGGACTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGCTAGAGCAGCTTGAGCTTGGATCAGATTGTCGTTTCCCGCCTTCAGTTTGGGGATCCGTCGACCTGCAGGCATGCAAGCTTGCATGCCTGCAGTGCAGCGTGACCCGGTCGTGCCCCTCTCTAGAGATAATGAGCATTGCATGTCTAAGTTATAAAAAATTACCACATATTTTTTTTGTCACACTTGTTTGAAGTGCAGTTTATCTATCTTTATACATATATTTAAACTTTACTCTACGAATAATATAATCTATAGTACTACAATAATATCAGTGTTTTAGAGAATCATATAAATGAACAGTTAGACATGGTCTAAAGGACAATTGAGTATTTTGACAACAGGACTCTACAGTTTTATCTTTTTAGTGTGCATGTGTTCTCCTTTTTTTTTGCAAATAGCTTCACCTATATAATACTTCATCCATTTTATTAGTACATCCATTTAGGGTTTAGGGTTAATGGTTTTTATAGACTAATTTTTTTAGTACATCTATTTTATTCTATTTTAGCCTCTAAATTAAGAAAACTAAAACTCTATTTTAGTTTTTTTATTTAATAATTTAGATATAAAATAGAATAAAATAAAGTGACTAAAAATTAAACAAATACCCTTTAAGAAATTAAAAAAACTAAGGAAACATTTTTCTTGTTTCGAGTAGATAATGCCAGCCTGTTAAACGCCGTCGACGAGTCTAACGGACACCAACCAGCGAACCAGCAGCGTCGCGTCGGGCCAAGCGAAGCAGACGGCACGGCATCTCTGTCGCTGCCTCTGGACCCCTCTCGAGAGTTCCGCTCCACCGTTGGACTTGCTCCGCTGTCGGCATCCAGAAATTGCGTGGCGGAGCGGCAGACGTGAGCCGGCACGGCAGGCGGCCTCCTCCTCCTCTCACGGCACGGCAGCTACGGGGGATTCCTTTCCCACCGCTCCTTCGCTTTCCCTTCCTCGCCCGCCGTAATAAATAGACACCCCCTCCACACCCTCTTTCCCCAACCTCGTGTTGTTCGGAGCGCACACACACACAACCAGATCTCCCCCAAATCCACCCGTCGGCACCTCCGCTTCAAGGTACGCCGCTCGTCCTCCCCCCCCCCCCCTCTCTACCTTCTCTAGATCGGCGTTCCGGTCCATGGTTAGGGCCCGGTAGTTCTACTTCTGTTCATGTTTGTGTTAGATCCGTGTTTGTGTTAGATCCGTGCTGCTAGCGTTCGTACACGGATGCGACCTGTACGTCAGACACGTTCTGATTGCTAACTTGCCAGTGTTTCTCTTTGGGGAATCCTGGGATGGCTCTAGCCGTTCCGCAGACGGGATCGATTTCATGATTTTTTTTGTTTCGTTGCATAGGGTTTGGTTTGCCCTTTTCCTTTATTTCAATATATGCCGTGCACTTGTTTGTCGGGTCATCTTTTCATGCTTTTTTTTGTCTTGGTTGTGATGATGTGGTCTGGTTGGGCGGTCGTTCTAGATCGGAGTAGAATTCTGTTTCAAACTACCTGGTGGATTTATTAATTTTGGATCTGTATGTGTGTGCCATACATATTCATAGTTACGAATTGAAGATGATGGATGGAAATATCGATCTAGGATAGGTATACATGTTGATGCGGGTTTTACTGATGCATATACAGAGATGCTTTTTGTTCGCTTGGTTGTGATGATGTGGTGTGGTTGGGCGGTCGTTCATTCGTTCTAGATCGGAGTAGAATACTGTTTCAAACTACCTGGTGTATTTATTAATTTTGGAACTGTATGTGTGTGTCATACATCTTCATAGTTACGAGTTTAAGATGGATGGAAATATCGATCTAGGATAGGTATACATGTTGATGTGGGTTTTACTGATGCATATACATGATGGCATATGCAGCATCTATTCATATGCTCTAACCTTGAGTACCTATCTATTATAATAAACAAGTATGTTTTATAATTATTTTGATCTTGATATACTTGGATGATGGCATATGCAGCAGCTATATGTGGATTTTTTTAGCCCTGCCTTCATACGCTATTTATTTGCTTGGTACTGTTTCTTTTGTCGATGCTCACCCTGTTGTTTGGTGTTACTTCTGCAGGTCGACTCTAGAGGATCCATCGATTAGGAAGTAACCATGAGCCCAGAACGACGCCCGGCCGACATCCGCCGTGCCACCGAGGCGGACATGCCGGCGGTCTGCACCATCGTCAACCACTACATCGAGACAAGCACGGTCAACTTCCGTACCGAGCCGCAGGAACCGCAGGAGTGGACGGACGACCTCGTCCGTCTGCGGGAGCGCTATCCCTGGCTCGTCGCCGAGGTGGACGGCGAGGTCGCCGGCATCGCCTACGCGGGCCCCTGGAAGGCACGCAACGCCTACGACTGGACGGCCGAGTCGACCGTGTACGTCTCCCCCCGCCACCAGCGGACGGGACTGGGCTCCACGCTCTACACCCACCTGCTGAAGTCCCTGGAGGCACAGGGCTTCAAGAGCGTGGTCGCTGTCATCGGGCTGCCCAACGACCCGAGCGTGCGCATGCACGAGGCGCTCGGATATGCCCCCCGCGGCATGCTGCGGGCGGCCGGCTTCAAGCACGGGAACTGGCATGACGTGGGTTTCTGGCAGCTGGACTTCAGCCTGCCGGTGCCGCCCCGTCCGGTCCTGCCCGTCACCGAGATCTAGTCCGTCGACCTGCAGCCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATC

<---

Генетическая конструкция на основе системы редактирования генома CRISPR/Cas9, кодирующая нуклеазу Cas9, содержащая ген-селективный маркер bar, отличающаяся тем, что она дополнительно содержит репортерный ген gfp и имеет нуклеотидную последовательность SEQ ID NO: 1.



 

Похожие патенты:

Изобретение относится к области биотехнологии. Описана группа изобретений, включающая средство на основе двухнитевой РНК (dsRNA), которое ингибирует экспрессию гена Serpina1 (варианты), фармацевтическую композицию (варианты), выделенную человеческую клетку, способ ингибирования экспрессии Serpina1 в клетке in vitro, применение средства на основе dsRNA или фармацевтической композиции в производстве лекарственного средства для лечения субъекта, применение средства на основе dsRNA или фармацевтической композиции в производстве лекарственного средства для ингибирования развития гепатоцеллюлярной карциномы у субъекта с дефектным вариантом Serpina1, применение средства на основе dsRNA или фармацевтической композиции в производстве лекарственного средства для снижения накопления неправильно свернутого Serpina1 в печени субъекта с дефектным вариантом Serpina1, применение фармацевтической композиции, содержащей средство на основе dsRNA, которое ингибирует экспрессию гена Serpina1, в производстве лекарственного средства для лечения субъекта.

Группа изобретений относится к биотехнологии. Описаны антитело против лиганда программируемой смерти (PD-L1) и его применение для производства лекарственного средства для лечения неопластического заболевания, выделенная молекула нуклеиновой кислоты, фармацевтическая композиция, вектор экспрессии, клетка-хозяин для экспрессии антитела или его антигенсвязывающего фрагмента и способ получения антитела.

Изобретение относится к области биотехнологии, в частности к способу модификации гена HSD17B13 в клетке, предусматривающему введение в клетку белка Cas9 или нуклеиновой кислоты, кодирующей белок Cas9, и первой гидовой РНК или ДНК, кодирующей первую гидовую РНК, которая образует комплекс с белком Cas9 и нацелена на первую целевую для гидовой РНК последовательность в гене HSD17B13.

Изобретение относится к области биохимии, в частности к молекуле ДНК. Также раскрыты вектор экспрессии, содержащий указанную ДНК, клетка-хозяин, содержащая указанный вектор, композиция и набор, содержащие указанную молекулу ДНК.

Изобретение относится к биотехнологии. Описан модулирующий полинуклеотид для снижения или ингибирования экспрессии гена в клетке, где указанный модулирующий полинуклеотид содержит: (a) стебель и петлю, которые образуют структуру «стебель-петля», (b) первую фланкирующую область, расположенную в направлении 5' от указанной сопровождающей цепи, где указанная первая фланкирующая область содержит 5'-концевую фланкирующую последовательность и 5'-концевую спейсерную последовательность, где первая фланкирующая область содержит нуклеотидную последовательность, которая по меньшей мере на 90% идентична SEQ ID NO:5, и (c) вторую фланкирующую область, расположенную в направлении 3' от указанной направляющей цепи, где указанная вторая фланкирующая область содержит 3'-концевую спейсерную последовательность и 3'-концевую фланкирующую область, где указанная вторая фланкирующая область содержит нуклеотидную последовательность, которая по меньшей мере на 90% идентична SEQ ID NO:21.

Изобретение относится к области биотехнологии, а именно к получению цитокапсул и цитокапсулярных трубок in vitro и композиции для исследования миграции клеток. Способ включает имплантацию суспензии отдельных клеток на поверхности 3D матрикса и инкубирование клеток суспензии отдельных клеток, имплантированных на поверхности 3D матрикса, при 37°С.

Изобретение относится к молекуле искусственной нуклеиновой кислоты, для экспрессии белка или пептида in vitro, включающей по меньшей мере одну открытую рамку считывания и по меньшей мере один элемент 3'-нетранслируемой области, причем по меньшей мере один элемент 3'-UTR продлевает и/или увеличивает выработку белка указанной молекулы искусственной нуклеиновой кислоты и происходит от стабильной мРНК, в которой по меньшей мере один элемент 3'-UTR содержит или состоит из последовательности нуклеиновой кислоты, которая происходит от 3'-UTR транскрипта – GNAS.

Изобретение относится к области биотехнологии, в частности к гуманизированной иммунодефицитной без ожирения с диабетом (NOD) мыши в качестве модели, а также к способу ее создания. Также раскрыто применение вышеуказанной мыши в способе прогнозирования ранжирования эффективности множества противоопухолевых средств для лечения опухоли, способе тестирования комбинированной терапии для лечения опухоли с применением двух или более кандидатных средств, способе определения эффективности режима дозирования для лечения опухоли с использованием средства, а также в способе определения безопасности режима дозирования для лечения опухоли с использованием средства.

Изобретение относится к области биотехнологии, в частности к гуманизированной иммунодефицитной без ожирения с диабетом (NOD) мыши в качестве модели, а также к способу ее создания. Также раскрыто применение вышеуказанной мыши в способе прогнозирования ранжирования эффективности множества противоопухолевых средств для лечения опухоли, способе тестирования комбинированной терапии для лечения опухоли с применением двух или более кандидатных средств, способе определения эффективности режима дозирования для лечения опухоли с использованием средства, а также в способе определения безопасности режима дозирования для лечения опухоли с использованием средства.

Изобретение относится к области биотехнологии, в частности к комплексу редактирования генома яйцеклетки мыши на основе CRISPR/Cas9, состоящему из мРНК белка Cas9 S.Pyogenes, РНК-гида и короткой одноцепочечной ДНК (ssODN), а также к способу редактирования генома яйцеклетки мыши с его использованием. Также раскрыта линия мышей c гуманизированной нуклеотидной последовательностью экзона 6 гена Gnao1.

Настоящее изобретение относится к области иммунологии. Предложены химерные антигенные рецепторы (CAR) против представителя D группы 5 семейства С рецепторов, связанных с G-белками (GPRC5D), иммунореактивная клетка, Т-клетка, молекула нуклеиновой кислоты, клетка-хозяин.
Наверх