Магнитоплазменный электрореактивный двигатель

Изобретение относится к космической технике, точнее к электрореактивным двигателям, и может быть использовано в космических аппаратах. Магнитоплазменный электрореактивный двигатель содержит корпус, хотя бы по одному кольцевому магниту и радиочастотной антенне, подключенной к генератору радиочастотного излучения, рабочее тело в виде проволоки и хотя бы одну катушку для ее хранения, а также направляющие элементы и устройство подачи проволоки. Катушки с намотанной на них проволокой размещены на внешней поверхности корпуса на подшипниках и ось вращения катушек совмещена с осью двигателя, а проволока и катушки выполнены из ферромагнитных материалов, совместно намагничены перед применением в направлении, параллельном оси двигателя, и использованы в качестве постоянных кольцевых магнитов, при этом устройство подачи проволоки выполнено с возможностью совместной подачи проволоки со всех катушек с регулируемой скоростью в зависимости от мощности радиочастотного излучения. При использовании изобретения обеспечивается снижение массы двигателя за счет выполнения рабочим телом также функций магнитной системы. 1 ил.

 

Изобретение относится к космической технике, точнее к электрореактивным двигателям, и может быть использовано в космических аппаратах.

Известные плазменные электрореактивные двигатели, описанные в литературе (например, Двигательные установки космических летательных аппаратов, ч. 2, Электроракетные двигатели и двигательные установки на их основе, под ред. проф. В.В. Синявского, СПб., ВКА им. А.Ф. Можайского, 2015 г., с. 131) включают в себя рабочее тело, ионизатор и ускоритель заряженных частиц, как правило, с магнитной системой. В качестве рабочего тела в основном используются инертные газы - ксенон, криптон, аргон, а также легкоионизируемые щелочные металлы - цезий, литий, натрий.

Возможно также использование в качестве рабочих тел жидкостей или твердых тел, например, металлов, в том числе железа. Известен, например, плазменный двигатель на наночастицах металлов или металлоидов (патент RU 2534762 С1, МПК: F03H 1/00 (2006.01), опубл. 10.12.2014, бюл. №34).

Подача металлического рабочего тела в двигатель может быть организована с помощью разных устройств, в частности так, как в плазмотроне по полезной модели RU 190460 U1, МПК: Н05Н 1/24 (2006.01), опубл. 01.07.2019, бюл. №19. В нем предлагается устройство подачи плавящейся присадочной проволоки с катушки в камеру дугового разряда.

Наиболее близким к предлагаемому двигателю является магнитоплазменный безэлектродный ракетный двигатель VASIMR (US 6334302 Bl, F02K 99/00 (2006.01); F03H 1/00 (2006.01); Н05 В 6/10 (2006.01); опубл. 01.01.2002), принятый за прототип.

Двигатель содержит последовательно расположенные емкость для хранения газообразного или сжиженного рабочего тела - аргона, устройства для подачи рабочего тела, радиочастотный (РЧ) излучатель для ионизации рабочего тела и образования плазмы, второй РЧ излучатель, предназначенный для селективного нагрева ионной составляющей плазмы на частоте ионного циклотронного резонанса. Каждый РЧ излучатель соединен со своим РЧ генератором, который преобразует энергию постоянного тока в энергию РЧ колебаний. Кроме того, в состав двигателя входит магнитная система, состоящая из нескольких соосных кольцевых магнитов, формирующих аксиальное магнитное поле внутри двигателя и расширяющееся магнитное поле («магнитное сопло») на выходе из двигателя. Аксиальное магнитное поле служит для удержания плазмы вблизи оси двигателя и предотвращения ее контакта со стенками двигателя, а «магнитное сопло» служит для формирования осевой составляющей скорости заряженных частиц - ионов и электронов, и, таким образом, для создания тяги двигателя. Описанный магнитоплазменный двигатель часто называется также геликонный двигатель, поскольку ввод энергии в электронную составляющую плазмы и ионизация рабочего тела первым РЧ излучателем производится на одной из резонансных частот собственных колебаний замагниченной плазмы - геликонов.

Имеются и другие конструкции с радиочастотным нагревом и магнитным соплом, например US 6293090 В1, опубл. 25.09.2001; WO 2013098505 А1, опубл. 04.07.2013, RU 2330181 С2, опубл 27.07.2008). В двигателе может использоваться один РЧ излучатель вместо двух для ввода энергии только в электронную составляющую плазмы. В этом случае ускорение ионов производится в образующемся при истечении электронов амбивалентном электрическом поле. Такой двигатель принято называть мини-геликонным.

Недостатком всех этих устройств является использование магнитной системы, масса которой составляет основную часть массы двигателя, и которая при этом не выполняет других функций, кроме создания магнитного поля.

Задача изобретения состоит в устранении указанного недостатка.

Техническим результатом изобретения является снижение массы двигателя за счет выполнения рабочим телом также функций магнитной системы.

Технический результат достигается тем, что в магнитоплазменном электрореактивном двигателе, содержащем хотя бы по одному кольцевому магниту и радиочастотной антенне, подключенной к генератору радиочастотного излучения, рабочее тело в виде проволоки и хотя бы одну катушку для ее хранения, а также направляющие элементы и устройство подачи проволоки, катушки с намотанной на них проволокой размещены на внешней поверхности корпуса на подшипниках и ось вращения катушек совмещена с осью двигателя, а проволока и катушки выполнены из ферромагнитных материалов, совместно намагничены перед применением в направлении, параллельном оси двигателя, и использованы в качестве постоянных кольцевых магнитов, при этом устройство подачи проволоки выполнено с возможностью совместной подачи проволоки со всех катушек с регулируемой скоростью в зависимости от мощности радиочастотного излучения.

Сущность изобретения поясняется конструктивной схемой.

Двигатель включает в себя ферромагнитную проволоку 1, направляющие 2, одну или несколько катушек 3, вращающихся с помощью подшипников 4 вокруг корпуса 5, одну или несколько РЧ-антенн 6 и устройство подачи проволоки 7. Все элементы двигателя крепятся на корпусе 5, который может быть выполнен в виде обечайки или стержневой рамы из немагнитного материала. Катушки 3 с проволокой 1 устанавливаются на корпусе 5 с возможностью их замены после израсходования запаса проволоки. РЧ антенны 6 размещены внутри корпуса 5 соосно с ним (на схеме приведен вариант мини-геликонного двигателя с одной РЧ антенной) и соединены каждая со своим генератором РЧ излучения (на схеме не показаны). Направляющие 2 также крепятся на корпусе 5 так, чтобы обеспечить беспрепятственное сматывание проволоки 1 с катушек 3 и подачу ее в двигатель. Устройство подачи проволоки 7 в простейшем случае может представлять собой два ролика с электрическим приводом (на схеме не показан). На роликах выполнены канавки по количеству одновременно подаваемых проволок.

Двигатель работает следующим образом.

Перед запуском космического аппарата или перед новым циклом работы рабочее тело, которое представляет собой проволоку 1 из ферромагнитного материала, плотно наматывается на катушки 3, также выполненные из ферромагнитного материала. Полностью намотанные катушки подвергаются намагничиванию в направлении оси катушек, после чего они становятся постоянными магнитами. Затем катушки устанавливаются на корпус 5 двигателя на подшипниках 4 так, что оси вращения катушек совпадают с осью двигателя. Внешние концы проволок со всех катушек заправляются в двигатель через направляющие 2 и устройство подачи проволоки 7. Катушки 3 создают внутри двигателя продольное магнитное поле, а на концах корпуса 5 - расширяющееся магнитное поле. После включения электропитания устройство подачи проволоки 7 подает с заданной скоростью проволоку одновременно со всех катушек 3 через направляющие 2 внутрь первой (или единственной в ускоряющем тракте) РЧ антенны 6. Катушки 3 при этом вращаются вокруг корпуса 5 двигателя на подшипниках 4. Антенна 6 питается от генератора РЧ излучения (на схеме не показан). Скорость подачи проволок задается системой управления (на схеме не показана) двигателя или космического аппарата в зависимости от мощности РЧ излучения. При работе РЧ-антенны 6 происходит нагрев до температуры порядка (1300-1550)°С и плавление концов проволок 1 и образование на концах капель расплавленного металла, которые удерживаются силой поверхностного натяжения жидкого металла. С поверхности каждой капли происходит испарение материала и ионизация образовавшегося газа электронным ударом. Первая по ходу тракта РЧ-антенна работает на одной из геликонных плазменных частот (порядка 10-15 МГц) и предназначена в основном для ускорения электронной компоненты плазмы. Кроме этого, часть РЧ энергии расходуется на нагрев, плавление и испарение материала проволоки. В варианте мини-геликонного двигателя эта антенна единственная. В полном варианте геликонного двигателя за первой устанавливается вторая РЧ-антенна, работающая на частоте ионного циклотронного резонанса (порядка 5-10 МГц) и предназначенная для ускорения ионной компоненты плазмы. Под действием РЧ излучения заряженные частицы, вращающиеся вокруг силовых линий магнитного поля, увеличивают свою скорость и радиус вращения. Тяга двигателя возникает при прохождении ускоренных заряженных частиц через «магнитное сопло» (на схеме силовые линии не показаны), т.е. через область расходящихся силовых линий магнитного поля. В этой области сила Лоренца, действующая на частицы перпендикулярно силовым линиям, приобретает осевую составляющую, а частицы - осевую составляющую своей скорости.

В процессе работы двигателя происходит расход проволоки и индукция магнитного поля снижается, однако в составе двигательной установки могут быть и другие, немагнитные катушки с проволокой. В этом случае целесообразно сначала расходовать проволоку с немагнитных катушек, а затем с магнитных, при этом индукция будет достаточной почти до полного израсходования рабочего тела. Кроме того, корпуса катушек 3 также являются постоянными магнитами, и они не расходуются при работе. После полного израсходования проволоки катушки заменяются на новые. Для плотной намотки на катушку проволока может иметь квадратное сечение. Длина и диаметр катушек выбираются из условия обеспечения потребной конфигурации магнитного поля, однако желательно, чтобы длина проволоки на всех катушках была одинакова.

В качестве ферромагнитного материала проволоки и катушки могут использоваться, например, магнитотвердая сталь (ГОСТ 24897-81), т.е. сплав железа и (1,2-1,5)% углерода, или сплав неодим-железо-бор Nd2Fe14B (ГОСТ Р 52956-2008). В последнем случае индукция магнитного поля на оси двигателя может достигать 0,5 Тл. Температуры плавления всех этих сплавов лежат в диапазоне (1300-1550)°С. Корпус двигателя, направляющие и устройство подачи проволоки могут быть изготовлены из немагнитной стали, например, 12Х18Н10Т (ГОСТ 5632-72), РЧ антенна - из серебра (ГОСТ 6836-2002) или меди (ГОСТ 434-78). В качестве радиочастотной антенны используют полувитковый излучатель, а в качестве генератора радиочастотного излучения - магнетрон.

Оценки показывают, что при электрической полезной мощности двигателя 200 кВт в геликонном варианте (как в прототипе) скорость истечения плазмы составляет 35 км/с, тяга 7 Н, скорость подачи стальной проволоки сечением 1,5×1,5 мм составляет 11 мм/с, расход стали составляет 0,2 г/с, расход мощности на нагрев проволоки составляет 0,1%, на плавление 0,7%, на испарение 1%, на ионизацию 2% и на ускорение ионов 96% от полезной затраченной мощности. Для обеспечения потребной скорости испарения металла с поверхности расплавленных капель суммарная площадь поверхности капель металла на концах проволок должна быть равна 700 мм2. Если таких капель две, радиус каждой должен составлять 5,3 мм.

Применение сплавов железа в качестве рабочего тела электрореактивных двигателей имеет два преимущества перед аргоном, применяемом в прототипе. Атомная масса железа (56 а.е.м) больше, чем у аргона (40 а.е.м.), а значит, тяга двигателя при работе на железе на 18% выше, чем при работе на аргоне при той же электрической мощности двигателя. Кроме того, железо является распространенным элементом в космосе, в том числе на Луне, и это позволяет рассматривать Луну в качестве сырьевой и промышленной базы космонавтики.

Магнитоплазменный электрореактивный двигатель, содержащий корпус, хотя бы по одному кольцевому магниту и радиочастотной антенне, подключенной к генератору радиочастотного излучения, рабочее тело в виде проволоки и хотя бы одну катушку для ее хранения, а также направляющие элементы и устройство подачи проволоки, отличающийся тем, что катушки с намотанной на них проволокой размещены на внешней поверхности корпуса на подшипниках и ось вращения катушек совмещена с осью двигателя, а проволока и катушки выполнены из ферромагнитных материалов, совместно намагничены перед применением в направлении, параллельном оси двигателя, и использованы в качестве постоянных кольцевых магнитов, при этом устройство подачи проволоки выполнено с возможностью совместной подачи проволоки со всех катушек с регулируемой скоростью в зависимости от мощности радиочастотного излучения.



 

Похожие патенты:

Изобретение относится к космической технике, в частности к электроракетным двигательным установкам с электрическим ракетным двигателем (ЭРД). Гибридный волновой плазменный двигатель для низкоорбитального космического аппарата содержит газоразрядную камеру, выполненную открытой во внешнюю атмосферу с двух противоположных торцов с возможностью формирования двух векторов тяги, противоположных друг другу по направлению, антенну, модуль ВЧ-генератора, имеющий электрическую связь с антенной, магнитные системы, расположенные по одной на каждом из противоположных концов газоразрядной камеры, имеющие линии электрической связи с источниками питания магнитных систем, систему хранения и подачи рабочего тела, соединенную с газоразрядной камерой при помощи двух радиальных газовводов, герметично соединенных с газоразрядной камерой в двух местах, расположенных до мест расположения магнитных систем.

Изобретение относится к области ракетно-космической техники и может быть использовано в космосе для межорбитальных буксиров и длительных космических межпланетных перелетов. Двигатель содержит корпус, расположенную в корпусе камеру испарения с рабочим веществом, высокотемпературный источник для разложения рабочего вещества до атомарного уровня и формирования твердых нано- и микрочастиц, зарядную камеру и примыкающему к нему с торца разгонное устройство, где размещена система электродов, в котором первый электрод имеет отрицательный электрический потенциал и размещен на входе разгонного устройства, а второй электрод, имеющий положительный потенциал, размещен на его выходе, при этом электроды размещены друг от друга на расстоянии, исключающем электрический пробой между ними.

Изобретение относится к ракетной технике. Ионный ракетный двигатель содержит соединенные между собой и расположенные соосно камеру, содержащую головку и цилиндрическую часть, к которой присоединен магнитный ускоритель плазмы и далее - сверхзвуковое газодинамическое сопло с сужающейся и расширяющейся частями, средство создания коронирующего разряда.

Изобретение относится к плазменным ракетным двигателям с жидким рабочим телом. Двигатель состоит из коаксиальной разрядной камеры с внешним цилиндрическим анодом, головки с центральным катодом, подключенных к источнику импульсного напряжения, системы хранения и подачи жидкого рабочего тела с клапаном и фитилем.

Изобретение относится к космической технике, в частности к катодам-компенсаторам электрических ракетных двигателей (ЭРД) электростатического типа ускорения (Холловского и ионного типа), в частности к безэлектродным плазменным источникам электронов с волновым источником плазмы. Технический результат - обеспечение возможности использования широкого круга рабочих тел, обеспечение возможности мгновенного выхода на номинальный режим работы источника электронов; обеспечение стабильного режима работы при низких мощностях; увеличение извлекаемого электронного тока за счет улучшения механизма поглощения мощности высокочастотного электромагнитного поля плазмой; увеличение ресурса работы.

Изобретение относится к системам газоснабжения газоразрядных узлов ионных источников и может быть использовано для газоразрядных источников ионов, применяемых в электроракетных ионных двигателях, технологических изделиях, обрабатывающих материалы в вакууме, и космических ионных источниках, взаимодействующих с объектами космического мусора.

Изобретение относится к ионным ракетным двигателям. Предложеный двигатель содержит соединенные между собой и расположенные соосно камеру, содержащую головку и цилиндрическую часть, к которой присоединен магнитный ускоритель плазмы и далее - сверхзвуковое газодинамическое сопло с сужающейся и расширяющейся частями, средство создания коронирующего разряда.

Ионный ракетный двигатель содержит соединенные между собой и расположенные соосно камеру сгорания, к которой присоединен магнитный ускоритель плазмы и далее - сверхзвуковое газодинамическое сопло с сужающейся и расширяющейся частями, по меньшей мере, один запальник, и средство создания коронирующего разряда.

Использование: в космической технике при наземной отработке новых моделей двигателей с замкнутым дрейфом электронов (ДЗДЭ) и при переводе их на альтернативные рабочие вещества. Способ ускоренного определения ресурса элементов ДЗДЭ, заключающийся в последовательном выполнении циклов работы двигателя, включающих нанесение на поверхность исследуемого элемента многослойного покрытия, состоящего из чередующихся пар оптически контрастных слоев, кратковременные испытание двигателя до полного распыления нанесенного покрытия, определение профиля эрозии многослойного покрытия по картине распыления, расчетное прогнозирование профиля эрозии за заданное время, механическая обработка исследуемого элемента с целью придания ему рассчитанной формы.

Изобретение относится к электроракетным двигательным установкам для использования на малых космических аппаратах (МКА) для их довыведения с опорной на целевую орбиту, коррекции и поддержания орбиты, ориентации, разгрузки систем ориентации, маневра между орбитами, увода МКА с целевой орбиты в конце его срока активного существования.

Настоящее изобретение относится к ионному двигателю (1) для приведения в движение космических летательных аппаратов, содержащему резервуар (2) для рабочего тела (3), эмиттер (4) для испускания ионов (3+) рабочего тела (3), причем эмиттер (4) имеет один или более выступов (11) из пористого материала и основание (12) с первой стороной (121), поддерживающей указанные выступы (11), и второй стороной (122), соединенной с резервуаром (2), и экстрактор (5), обращенный к эмиттеру (4), для извлечения ионов (3+) из эмиттера (4) и их разгона, причем основание (12) является непроницаемым для рабочего тела (3), по меньшей мере на указанной первой стороне (121), и имеет поры (13) или каналы (14) для обеспечения течения рабочего тела (3) из резервуара (2) к указанным выступам (11). 11 з.п. ф-лы, 9 ил.
Наверх