Способ прогноза эффективности терапии меланомы



Способ прогноза эффективности терапии меланомы
Способ прогноза эффективности терапии меланомы

Владельцы патента RU 2766739:

Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ онкологии им. Н.Н. Блохина" Минздрава России) (RU)

Изобретение относится к области медицины, в частности к онкологии, и предназначено для прогноза эффективности иммунотерапии меланомы ниволумабом. Производят забор опухолевой ткани пациента методом кор-биопсии. Проводят количественное определение опухоль-инфильтрирующих лимфоцитов (ОИЛ) с субпопуляцией лимфоцитов. Подсчитывают количество лимфоидных клеток в 10 полях зрения. Определяют субполяции ОИЛ CD45+/ CD14-, CD3-CD19+. Исследуют уровень экспрессии внутриклеточного маркера Ki67. При концентрации CD45+/CD14- клеток ≥ 4,3%, CD3-CD19+ клеток ≤ 4% и Κi67+ клеток ≤ 50% прогнозируют эффективность иммунотерапии меланомы ниволумабом. Изобретение обеспечивает предсказание эффективности терапии меланомы ниволумабом за счет определения субпопуляционного портрета и численных характеристик ОИЛ. 2 ил., 1 табл., 1 пр.

 

Изобретение относится к области медицины, в частности онкологии, а именно к определению предиктивных маркеров при меланоме и касается прогнозирования терапевтического эффекта при назначении терапии у конкретного пациента за счет определения субпопуляционного портрета и численных характеристик опухоль-инфильтрирующих лимфоцитов (ОИЛ) и пролиферативного статуса опухолевых клеток.

Важными факторами, определяющими иммунный ответ организма на развивающуюся злокачественную опухоль, являются молекулярный фенотип опухоли и функциональное состояние иммунной системы. Активация лимфоцитов, особенности их инфильтрации опухолевой ткани влияют на тяжесть течения и исход заболевания у пациента и эффективность планируемой терапии, что делает их перспективными предиктивными биомаркерами эффективности терапии у конкретного пациента [The immune contexture in human tumours: impact on clinical outcome. Fridman WH, F, C, Galon J. Nat Rev Cancer. 2012 Mar 15; 12(4):298-306].

Из уровня техники известен метод исследования молекулярного профиля опухолевой ткани «Профилирование опухолевой ткани с помощью метода мониторинга выбранных реакций (мониторинг множественных реакций)» [SRM/MRM assays for profiling tumor tissue, JP2019203878, 08.03.2019]. Суть данного метода сводится к анализу белкового профиля опухолевой ткани (дигестированный фрагмент ткани, полученный из фиксированной формалином ткани) методом тандемной масс-спектрометрии в режиме мониторинга выбранных (множественных) реакций. Одним из главных преимуществ данного метода является получение «молекулярного портрета» опухоли благодаря возможности исследования широкой панели маркеров - маркеров деления клеток, дифференциации, ингибирования роста клеток, клеточного метаболизма, различных сигнальных путей и ответа опухолевой ткани на иммунную терапию. Другим преимуществом является возможность получения собирательного «молекулярного портрета» опухолевой ткани за счет возможности подготовки одного финального образца, направляемого на исследование, из нескольких участков опухолевой ткани.

Тем не менее данный метод обладает рядом существенных недостатков: отсутствие возможности оценить локализацию экспрессии обозначенных маркеров в архитектонике опухолевой ткани и, как следствие, дифференцировать повышение уровня экспрессии обозначенных маркеров в доброкачественных и злокачественных клетках; невозможность оценить наличие и выраженность реакции иммунной системы на развивающуюся опухоль; сложность интерпретации получаемых данных: необходимость программного обеспечения и доступа к различным базам данных для их сборки и последующей идентификации искомых белков, что представляет собой отдельный и значительный этап работы с протеомными методами исследования; наличие оборудования, имеющегося только в исследовательских лабораториях или в специализированных медицинских (например, токсикологических) центрах, что недостаточно для широкого применения в рутинной клинической практике.

Другим известным подходом к определению «молекулярного портрета» опухолевой ткани и инфильтрирующих его клеток является определение уровней экспрессии определенных мРНК [Compositions for cancer treatment and methods and uses for cancer treatment and prognosis, 7.12.2017, WO2018106972; Biomarkers for diagnosing ovarian cancer associated with immune checkpoints, 2.07.2019, KR1020190082186]. Главным преимуществом данного метода является возможность оценки происходящих в опухолевой ткани и вокруг нее молекулярных изменений, когда морфологические изменения еще не наступили, путем оценки изменения уровней экспрессии определенных мРНК. Другим преимуществом данного метода является возможность определения изменений уровней экспрессии генов (например, ответственных за активацию клеток иммунной системы, хемотаксис лимфоцитов, их адгезивную способность и другие клеточные процессы), которые являются предиктивными маркерами для терапии. Условия пробоподготовки данного метода позволяют оценить одновременно уровень экспрессии мРНК в различных участках опухолевой ткани. Таким образом, гетерогенность опухолевой ткани находит отражение в результатах исследования, что является преимуществом данного метода. Недостатками метода являются отсутствие представлений об исследуемых клеточных популяциях и выбор в качестве исследуемого параметра мРНК. Лабильность к действию различных внешних факторов структуры мРНК делает невозможным фиксирование биологических образцов и их длительное хранение перед исследованием, что ограничивает применение данного метода в рутинной клинической практике.

Другим известным методом исследования опухолевой ткани и, в частности, составляющих ее клеточных популяций, является иммуногистохимическое исследование [Multi-panel immunofluorescence analysis of tumor infiltrating lymphocytes in triple negative breast cancer: Evolution of tumor immune profiles and patient prognosis, 2020, https://doi.org/10.1371/journal.pone.0229955: иммуногистохимические методы подсчета и соответствующие наборы (Immunohistochemistry scoring methods and compositions), 5.10.2017, US20170285029]. Основным преимуществом данного подхода, как и любого морфологического метода, является возможность оценить строение опухолевой ткани и локализацию незлокачественных клеток, в том числе ОИЛ. Также неоспоримым преимуществом является распространенность метода и, соответственно, широкая доступность необходимых инструментов и материалов. Недостатком метода, обусловленным его субъективностью, является формирование заключения на основании анализа лишь небольшой части клеточной популяции, невозможность описания молекулярного фенотипа клеток в связи с ограничением количества применяемых антител при окраске среза, отсутствие представления о гетерогенности опухолевой ткани и субъективность оценки окрашенных срезов. Отдельно стоит сказать о возможности окрашивания среза несколькими антителами: мультиплексная флюоресцентная иммуногистохимия, позволяющая определять множество маркеров и давать подробную молекулярную характеристику клеткам in situ, не является широко распространенным на сегодня методом, требует нестандартного подхода к обработке получаемых данных, особых условий хранения исследуемых препаратов и значительных инвестиций, что делает данный метод нерутинным и затруднительным для широкого применения в клинической практике.

Известен также метод оценки инфильтрации опухолевой ткани лимфоцитами, предложенный в 2018 году Международной Рабочей Группой по Иммуноонкологическим биомаркерам «Оценка опухоль-инфильтрирующих лимфоцитов в солидных опухолях: обзор практических подходов для патологов и предложение стандартизированной методики от Международной Рабочей Группы по Иммуноонкологическим биомаркерам» [Assessing tumor infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immuno-Oncology Biomarkers Working Group, 2018, https://doi.org/10.1097/PAP.0000000000000162]. Метод основан на определенном алгоритме оценки гистологических срезов, окрашенных гематоксилином и эозином, и состоит из последовательного выполнения следующих шагов: 1) определение опухолевой области; 2) определение стромальной и внутриопухолевой областей, в пределах которых необходимо определить «инвазивный край», представляющий собой область в 1 мм, отделяющую массу злокачественных клеток от непораженных клеток; 3) сканирование обозначенных областей при помощи камеры светового микроскопа на малом увеличении; 4) определение типа опухолевого инфильтрата; 5) подсчет процента ОИЛ отдельно для стромальной и внутриопухолевой областей. При необходимости отдельно указывается процент околоопухолевых лимфоцитов (ОИЛ, прилегающих к инвазивному краю). Данный метод может выступать в качестве референтного для других диагностических систем, таких как цифровая численная оценка ОИЛ на иммуногистохимическом срезе или мРНК профилирование. Данный метод имеет ряд недостатков, прежде всего связанных с его субъективностью, в том числе нашедшей отражение в формулировке описания технологии: при предоставлении числовых данных о проценте содержания ОИЛ от общего числа обнаруженных на срезе лейкоцитов «патологоанатомы должны предоставлять свои подсчеты настолько подробно, насколько они посчитают нужным». Помимо субъективной оценки гистологического среза, результаты которой зависят, в том числе от опытности специалиста, другим недостатком метода является необходимость проведения инвазивной процедуры биопсии. Более существенным недостатком данного подхода является невозможность оценки гетерогенности клеточного состава опухоли в целом. Также к недостаткам метода можно отнести невозможность молекулярной оценки определяемых клеточных популяций, т.е. применение данного метода не позволяет определить экспрессию определенных молекул ни на поверхности клетки, ни внутри клетки, что может быть в ряде случаев необходимо для назначения таргетной и иммунной терапии.

Другой известный метод определения популяционного состава клеток опухолевой ткани и, в частности, определения ОИЛ - «Метод определения выживаемости пациентов с злокачественной опухолью методом анализа общей популяции опухоль- инфильтрирующих лимфоцитов» [Method for determining cancer patient survival based on analyzing tumor-infiltrating overall t-lymphocytes, CA2814150, 10.10.2011]. Метод основан на определении ОИЛ путем оценки метилирования CpG островков ДНК гена CD3, выживаемость находится в прямой корреляции с количеством определяемых таким образом ОИЛ, за исключением рака молочной железы, для которого прогноз и выживаемость ухудшаются с увеличением количества определяемых в опухолевой ткани лимфоцитарных клеток. Основным недостатком данного метода является способ идентификации ОИЛ, являющийся узкоспецифическим, мало распространенным в рутинной клинической практике и не позволяющим провести цитологическую верификацию клеток.

Другой известный метод определения популяционного состава опухолевой ткани является - «Метод и системы для определения персонализированной терапии» [Methods and systems for determining personalized therapies, EP3523450, 06.10.2017]. Метод основан на подсчете иммунологического коэффициента и включает следующие этапы: количественное и/или качественное определение ОИЛ в образце; количественное и/или качественное определение Т-клеточного рецептора в образце; количественное и/или качественное определение мутационной нагрузки в образце; генерирование с помощью предиктивного алгоритма иммунологического коэффициента, рассчитанного исходя из значений трех обозначенных параметров. Преимуществом данного метода является формирование интегрального показателя, включающего в себя не только количественное определение популяционного состава клеток, в частности, ОИЛ, но и молекулярная характеристика как ОИЛ за счет определения уровня экспрессии Т-клеточного рецептора, так и злокачественных клеток за счет определения мутационной нагрузки. Недостатками метода является применение для идентификации ОИЛ иммуногистохимического исследования, не позволяющего определить более подробную молекулярную характеристику иммунных клеток. В данном случае определяется только уровень экспрессии Т-клеточного рецептора, одновременно данный подход не позволяет составить объективной картины опухоль-инфильтрирующих популяций иммунных клеток и оценить их количество. Другим существенным недостатком является использование такого параметра, как мутационная нагрузка, требующего задействования методов ПЦР или таргетного секвенирования, что значительно усложняет и удлиняет проведение исследования, значение которого не коррелирует с исходом заболевания / эффективностью терапии.

Известен метод определения популяционного состава опухолевой ткани, в частности, ОИЛ - «Определение и измерение опухоль-инфильтрирующих лимфоцитов» [Detection and measurement of tissue-infiltrating lymphocytes, SG11201403212R, 12.12.2012]. Данный метод основан на определении количества, концентрации и/или соотношения клеток (в частности, лимфоцитов, инфильтрирующих опухолевую или поврежденную аутоиммунным процессом ткань) и методы прогноза терапии, основанные на данных измерениях. Недостатком данного метода является необходимость одновременного забора двух видов биологического материала -периферической венозной крови и биоптата пораженной ткани - и проведение сортировки лимфоцитов на субпопуляции с последующим получением определенного пула клеток и определением клонотипа, что является сложным, длительным, дорогостоящим процессом с точки зрения клинической рутинной практики.

Прототипом заявляемого метода является «Метод и системы для предсказания ответа на иммунотерапию у пациентов с злокачественными опухолями» [Methods and Systems for Predicting Response to Immunotherapies for Treatment of Cancer, US20190284640, 15.03.2019]. Данный метод основан на последовательном выполнении следующих этапов: определение ОИЛ и отдельно Т-клеток в образце опухолевой ткани (нативной или обработанной формалином); определение экспрессии хемокинов и мутации ТР53 в опухолевой ткани такими методами как: иммуногистохимия, иммунофлюоресценция, проточная цитометрия, масс-спектрометрия, РНК секвенирование, РНК in situ гибридизация, ПЦР, ИФА или их комбинацией. Данный метод позволяет предсказать эффективность иммунотерапии и определить интегральную характеристику клеточных популяций опухолевой ткани за счет определения популяционного состава Т-клеток, оценки экспрессии хемокинов и мутации ТР53. Метод позволяет использовать образцы фиксированной или нативной ткани, не подвергавшейся тому или иному варианту криообработки. Определяемые Т-клетки ограничены популяцией CD4+ и CD8+ клеток. Используемые маркеры - FILA-A, E1LA-В, HLA-C, FILA-DO, HLA-DM, HLA-DR, HLA-DP, HLA-DQ, HLA-DX, CCL5, CXCL9, CXCL10, CXCL11 - не позволяют оценить уровень пролиферативной активности клеток, составляющих опухолевую ткань и микроокружение. Данный подход не подразумевает дублирования перечисленных методов определения ОИЛ методом световой микроскопии, являющимся золотым стандартом при определении морфологии тканей и клеток. Любые два выбранных метода, необходимых для получения всех заявленных характеристик, будут значительно различаться по пробоподготовке, что сказывается на материальных и временных затратах, необходимых для проведения данного исследования. Также стоит отметить, что для определения всех обозначенных параметров и морфологического контроля, который на данный момент является признанным стандартом диагностики онкологических заболеваний, будет необходимо провести три различных метода исследования, отличающихся пробоподготовкой. Данный метод предусматривает возможность прогнозирования эффективности ограниченных вариантов иммунотерапии опухолевого процесса (иммунотерапия следующими агентами: анти-CTLA-4, анти-PD-L1, анти -PD-1, анти -LAGS, анти -TIM3, анти -ОХ40, анти -4-IBB, ингибиторы MEK, антагонисты MDM2, атезолизурнаб, кобиметиниб или идасанутлин).

Задачей заявляемого способа является предсказание эффективности иммунной терапии меланомы на основании информации, полученной в результате составления количественной и морфологической характеристики лейкоцитов, в том числе лимфоцитов, инфильтрирующих опухолевую ткань, а также показателей пролиферативной клеточной активности с использованием методов проточной цитометрии и микроскопии.

Предлагаемый способ предусматривает выполнение следующих стадий: гомогенизация образца ткани опухоли; окрашивание части полученного образца антителами к мембран-ассоциированным кластерам дифференцировки клеток (CD3; CD45; CD19; Ki67); подготовка оставшейся части образца для проведения исследования методом световой микроскопии; интерпретация результатов.

Сходство прототипа с заявляемым методом заключается в количественном определении ОИЛ, прогнозировании эффективности терапии, использовании нефиксированной ткани в качестве биологического материала и в применении метода проточной цитометрии. Отличиями заявляемого метода являются определение концентрации CD19 позитивных клеток, оценка пролиферативной активности с использованием маркера Ki67, дополнение метода проточной цитометрии световой микроскопией, возможность получить, помимо предположений об эффективности ряда вариантов иммунотерапии, прогноз об эффективности применения любой иммунотерапии. Другим существенным достоинством способа является его доступность и относительная простота с методологической точки зрения: для проведения проточной цитометрии и исследования методом световой микроскопии используется один и тот же нефиксированный биологический материал в виде кор-биопсии, позволяющий составить представление о гетерогенности клеточных популяций опухолевой ткани, в том числе инфильтрирующих ее опухолевых клетках. Биоптат подвергается одинаковой процедуре пробоподготовки до завершения этапа гомогенизации ткани, что значительно облегчает исследование и сокращает время на его проведение. Достоинством предлагаемого подхода является применение методов, имеющих высокий потенциал экономической доступности, обеспечивающих возможность широкого внедрения и применения данного метода в клинической рутинной практике. Другим отличием предлагаемого подхода является отсутствие необходимости использования следующих сложных, дорогостоящих и узкоспециализированных методов: иммуногистохимия, иммунофлюоресценция, масс-спектрометрия, РНК секвенирование, РНК in situ гибридизация, ПЦР, ИФА. Также отличием предлагаемого подхода является прогнозирование эффективности терапии не по анализу экспрессии МНС молекул, как в прототипе, а по уровню экспрессии следующих поверхностных и внутриклеточных рецепторов: CD3; CD45; CD19; Ki67. Другим существенным отличием предлагаемого подхода является возможность его применения для различных вариантов иммунотерапии, тогда как применение прототипа ограничено следующим рядом терапевтических агентов: анти-CTLA-4, анти-PD-L1, анти -PD-1, анти -LAGS, анти -TIM3, анти -ОХ40, анти -4-IBB, ингибиторы MEK, антагонисты MDM2, атезолизурнаб, кобиметиниб или идасанутлин.

Техническим результатом изобретения является возможность определения прогноза эффективности предполагаемого к назначению у конкретного пациента варианта иммунотерапии на основании качественных и количественных характеристик ОИЛ и их субпопуляции, полученных при исследовании нефиксированного образца опухолевой ткани, полученного методом кор-биопсии.

Технический результат достигается благодаря последовательному выполнению следующих стадий: 1) количественное определение ОИЛ с субпопуляцией лимфоцитов методом проточной цитометрии с их верификацией методом световой микроскопии за счет исследования экспрессии следующих поверхностных маркеров: CD14; CD45; 2) определение субпопуляции ОИЛ (В-клеток) за счет исследования экспрессии следующих поверхностных маркеров: CD3; CD19; 3) определение пролиферативной активности клеток за счет исследования уровня экспрессии внутриклеточного маркера Ki67 методом проточной цитометрии; 4) анализ полученных результатов: при концентрации CD45 позитивных клеток ≥ 4,3%, CD3 негативных CD19 позитивных клеток ≤ 4% и Ki67 позитивных клеток ≤ 50%, что соответствует ≥ 50% вероятности развития патоморфоза IV степени, предполагают назначение иммунотерапии данному пациенту.

Способ осуществляется следующим образом: производят забор опухолевой ткани пациента методом кор-биопсии, после чего часть полученного образца (около 50%) окрашивают с помощью меченных флюорохромом антител к CD14, CD45, CD3, CD19, Ki67 и исследуют методом проточной цитометрии. Оставшаяся часть образца исследуется методом световой микроскопии, предварительно подвергаясь окрашиванию гематоксилин эозином, с подсчетом количества лимфоидных клеток в 10 полях зрения. Далее при соответствии полученных значений исследованных параметров следующим цифрам: концентрация CD45 позитивных клеток ≥ 4,3%, CD3 негативных CD19 позитивных клеток ≤ 4%, Ki67 позитивных клеток ≤ 50%, - производят назначение неоадъювантной химиотерапии. При несоответствии полученных значений исследованных параметров следующим показателям: концентрация CD45 позитивных клеток ≥ 4,3%, CD3 негативных CD19 позитивных клеток ≤ 4%, KI67 позитивных клеток ≤ 50%, - не производят назначение неоадъювантной химиотерапии.

Заявляемый способ иллюстрируется таблицей и фигурами 1 и 2.

В таблице представлены значения, подтверждающие эффективности предикции иммунной терапии (развитие патомофроза IV степени на фоне терапии) при меланоме на основании предлагаемого способа.

На фиг.1 отображена популяция внутриопухолевых CD45+-лимфоцитов, полученных методом проточной цитометрии

На фиг.2 отображены опухоль инфильтрирующие CD45+-лимфоциты в ткани меланомы, полученные при иммуногистохимическом исследовании (стрелкой отмечены опухоль-инфильтрирующие лимфоциты).

Заявляемый способ иллюстрируется следующим примером.

Пример 1. Определение и характеристика опухоль инфильтрирующих лимфоцитов, пролиферативной активности опухолевой ткани как фактора прогноза эффективности иммунной терапии при меланоме кожи.

Ретроспективные случаи - пациент М. и пациентка Л. с диагнозом метастатической меланомы

Пациент М., 21 год, меланома кожи теменной области справа pTxN0M0, состояние после хирургического лечения (2013 г.). Прогрессирование: метастазирование в лимфоузлы средней 1/3 шеи справа.

Состояние после хирургического лечения (28.07.2017 г.). Пациент в сентябре 2017 отметил появление узла на шее справа, (эквивалент IIIC/D стадии). Выполнена кор-биопсия новообразования на шее справа и иммунное профилирование опухоли. У пациента М. методом проточной цитометрии установлено, что содержание ОИЛ в опухоли (CD45+/CD14-) составляет 0,3% (контроль методом световой микроскопии подтвердил уровень лимфоцитарной инфильтрации клеток менее одного процента от общего числа клеток лейкоцитарного ряда) при этом уровень CD3-CD19+ составил 1,8%, часть Ki67 позитивных опухолевых клеток составила 58%, что является предиктивными признаками неэффективности проведения иммунотерапии и отсутствия патоморфоза опухоли или наблюдение патоморфоза I-II степени по завершении терапии.

Критерии ≥ 50% вероятности достижения эффективности иммунотерапии (III-IV степени патоморфоза опухоли) меланомы:

• концентрации Κi67+ клеток 50% и ниже;

• концентрация CD45+ клеток 4,3% и выше;

• концентрация CD3-CD19+ клеток 4% и ниже [М.В. Киселевский и др. «Инфильтрирующие опухоль лимфоциты. Факторы прогноза течения заболевания и эффективности лекарственной терапии онкологических больных». Методические рекомендации под редакцией академика РАН И.С. Стилиди. Москва, Издательский дом «АБВ-пресс», 2020, 104 с.].

Далее пациент (с 24.11.2017 по 22.01.2018) в ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России получил 6 внутри-опухолевых введений aPD1 ниволумаб 20 мг. Перенес удовлетворительно. По данным обследования (ПЭТ-КТ от 14.02.2018) - стабилизация с отрицательной динамикой. 01.03.2018 г. выполнена операция Крайла справа. С 26.03.2018 адъювантная иммунотерапия реафероном. С 25.04.2018 по 19.06.2018 получил курс дистанционной лучевой терапии на правую околоушную и заушную область, шейно-надключичную область справа, ежедневно, 5 раз в неделю, энергия фотонов 6 МэВ, Род 2 Гр, СОД 60 Гр. В процессе лучевой терапии на дозе 12 Гр возник местный рецидив в околоушной области, который был иссечен, курс ДЛТ продолжен, интерферон отменен. Далее получал ниволумаб в/в капельно. По данным ПЭТ-КТ от 09.08.2018 получены данные о наличии активной опухолевой ткани множественные мягкотканые метастазы в области п/о рубца, костях, в большом сальнике, паховых л/у слева. Пациент переведен на комбинированную иммунотерапию, однако пользы от нее не получил и в скорости скончался от прогрессирования основного заболевания. Период наблюдения составил 14 мес.

Пациентка Л., 62 года, меланома кожи спины TxNxM0. Состояние после хирургического лечения в 2014 г. Прогрессирование - метастазы в мягких тканях: спины, правом и левом плечах, передней грудной стенки, левого бедра, в л/у левой паховой области. По данным ПЭТ-КТ от 27.11.18 г. определяются очаги в мягкотканных узлах ПЖК: спины справа на уровне лопатки до 3,2×1,5 см с макс SUV 5,98 (наиболее крупный) и слева на уровне 10 ребра, плеч с обеих сторон, передней грудной стенки, левой подмышечной области, ягодичных областях, левого бедра; в паховом л/у слева с макс SUV 5,55 до 0,9 см. Другие пахово-бедренные лимфоузлы без особенностей (эквивалент IV М1а(0) стадии). Выполнена кор-биопсия новообразования в мягких тканях спины и иммунное профилирование опухоли. У пациентки Л. методом проточной цитометрии установлено, что содержание ОИЛ в опухоли (CD45+/CD14-) составляет 14,1%. Контроль методом световой микроскопии подтвердил уровень лимфоцитарной инфильтрации клеток на уровне 15%) от общего числа клеток лейкоцитарного ряда. При этом уровень CD3-CD19+ составил 7,2%, часть Ki67 позитивных опухолевых клеток составила 32%, что является предиктивными признаками эффективности проведения иммунотерапии и достижения патоморфоза опухоли III-IV степени по завершении терапии. Далее в ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России получила 6 внутри-опухолевых введений aPD1 ниволумаб 20 мг (С 30.11.2018 по 07.02.2019 г). Перенесла удовлетворительно. На фоне лечения резорбция некоторых очагов (в том числе тех, которые не подвергались терапии). По данным ПЭТ от 21.02.2019 по сравнению с ПЭТ от 27.11.2018 определяется выраженная положительная динамика в виде резорбции активной специфической ткани в мягких тканях плеча с обеих сторон, передней грудной стенки, спины слева на уровне 10 ребра, левой подмышечной области, ягодичных областей, левого бедра, в левом паховом л/у, а также в мягких тканях правой окололопаточной области. 04.03.2019 г. выполнено иссечение мягкотканных метастазов. ГИ No 8758/2019 от 14.03.2019, где визуализируется выраженный патоморфоз опухолевой ткани.

В настоящее время пациентка получила курс адъювантной терапии, продолжает наблюдаться без признаков заболевания. Период наблюдения составил более 2-х лет.

Способ прогноза эффективности иммунотерапии меланомы ниволумабом, характеризующийся тем, что производят забор опухолевой ткани пациента методом кор-биопсии, проводят количественное определение опухоль-инфильтрирующих лимфоцитов (ОИЛ) с субпопуляцией лимфоцитов методом проточной цитометрии с их верификацией методом световой микроскопии с подсчетом количества лимфоидных клеток в 10 полях зрения и исследования экспрессии следующих поверхностных маркеров: определение субполяции ОИЛ CD45+/ CD14-, исследование экспрессии поверхностных маркеров CD3-CD19+; определение пролиферативной активности опухолевой ткани за счет исследования уровня экспрессии внутриклеточного маркера Ki67 методом проточной цитометрии; анализ полученных результатов: при концентрации CD45+/CD14- клеток ≥ 4,3%, CD3-CD19+ клеток ≤ 4% и Κi67+ клеток ≤ 50%, что соответствует ≥ 50% вероятности развития патоморфоза IV степени, прогнозируют эффективность иммунотерапии меланомы ниволумабом.



 

Похожие патенты:

Изобретение относится к медицине, а именно к онкологии и клинической биохимии, и может быть использовано для уточняющей лабораторной диагностики почечно-клеточного рака (ПКР) для случаев наличия дополнительной ткани в почке по результатам лучевых методов диагностики. Осуществляют определение KIM-1 следующим образом: в средней порции утренней мочи обследуемых определяют соотношение KIM-1 и креатинина.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для прогнозирования статуса рецептора эпидермального фактора роста Her2/neu в первичной опухоли у больных раком молочной железы. На этапе диагностики после забора биопсийного материала проводят морфологическое и иммуногистохимическое исследование с определением гистологического типа рака молочной железы и его молекулярных характеристик.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для прогнозирования статуса рецептора эпидермального фактора роста Her2/neu в первичной опухоли у больных раком молочной железы. На этапе диагностики после забора биопсийного материала проводят морфологическое и иммуногистохимическое исследование с определением гистологического типа рака молочной железы и его молекулярных характеристик.

Изобретение относится к области биохимии, в частности к антителу, которое специфически связывается с белком FZD10. Также раскрыты полинуклеотид, кодирующий указанное антитело.

Изобретение относится к области биотехнологии. Описана группа изобретений, включающая антитело против B7-H3 или его антигенсвязывающий фрагмент, фармацевтическую композицию для лечения заболеваний, ассоциированных с B7-H3 позитивными клетками, молекулу нуклеиновой кислоты, кодирующую вышеуказанное антитело или его антигенсвязывающий фрагмент, рекомбинантный вектор для экспрессии антитела или его антигенсвязывающего фрагмента, клетку-хозяин, трансформированную рекомбинантным вектором, для экспрессии антитела или его антигенсвязывающего фрагмента, способ получения антитела или его антигенсвязывающего фрагмента и способ лечения заболеваний, связанных с B7-H3 позитивными клетками.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для оценки экспрессии рецептора фолиевой кислоты альфа (FRα) злокачественной опухолью, представляющей собой рак яичника или рак легкого. Способ включает определение уровня рецептора фолиевой кислоты альфа (FRα), который не связан с клеткой, в образце сыворотки или плазмы, полученном от указанного индивидуума, и сравнение уровня рецептора фолиевой кислоты альфа (FRα), который не связан с клеткой, с уровнем FRα в контрольном образце, где повышение уровня FRα в образце, полученном от указанного индивидуума, относительно уровня FRα в контрольном образце указывает на то, что индивидуум страдает раком яичника или легкого, экспрессирующим FRα.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для прогнозирования онкологической эффективности циторедуктивных операций у больных IV стадией рака толстой кишки с нерезектабельными метастазами в печени. Проводят иммуногистохимическую оценку пролиферативной активности стволовых раковых клеток и уровня экспрессии рецептора к хемокинам CXCR4.

Изобретение относится к медицине и касается способа многофакторного прогноза рака молочной железы, в ходе которого в образцах опухоли, отобранных у пациентов с диагнозом рак молочной железы, определяют комплекс прогностических факторов, включающий уровень экспрессии белков СК14, E-cadherin, р53, EGFR, осуществляют оценку каждого из прогностических факторов и используют полученные данные для формирования прогноза рака молочной железы, при этом у пациента дополнительно определяют стадию заболевания, степень дифференцировки опухоли, уровень экспрессии белка FOXP3, уровень экспрессии рецепторов HER-2, количество Т-лимфоцитов CD8+, количество Т-лимфоцитов CD4+, каждому фактору присваивают количество баллов в соответствии с предварительно полученной 100-бальной прогностической шкалой, суммируют полученные баллы и используют суммарное значение баллов в качестве прогностического параметра, при сумме баллов менее 40 прогноз расценивают как благоприятный, причем благоприятным считают прогноз со сроком выживаемости пациентов не менее 10 лет.

Изобретение относится к медицине и касается способа многофакторного прогноза рака молочной железы, в ходе которого в образцах опухоли, отобранных у пациентов с диагнозом рак молочной железы, определяют комплекс прогностических факторов, включающий уровень экспрессии белков СК14, E-cadherin, р53, EGFR, осуществляют оценку каждого из прогностических факторов и используют полученные данные для формирования прогноза рака молочной железы, при этом у пациента дополнительно определяют стадию заболевания, степень дифференцировки опухоли, уровень экспрессии белка FOXP3, уровень экспрессии рецепторов HER-2, количество Т-лимфоцитов CD8+, количество Т-лимфоцитов CD4+, каждому фактору присваивают количество баллов в соответствии с предварительно полученной 100-бальной прогностической шкалой, суммируют полученные баллы и используют суммарное значение баллов в качестве прогностического параметра, при сумме баллов менее 40 прогноз расценивают как благоприятный, причем благоприятным считают прогноз со сроком выживаемости пациентов не менее 10 лет.

Изобретение относится к биотехнологии. Описаны гуманизированное моноклональное антитело, селективно связывающееся с опухолевым антигеном PRAME человека, а также фрагменты ДНК, кодирующие участки легкой и тяжелой цепей указанного антитела и антиген-связывающий фрагмент указанного гуманизированного моноклонального антитела.

Группа изобретений относится к диагностике иммунитета против COVID-19. Раскрыт способ проведения иммуноферментного анализа для выявления антител в биологическом образце, специфичных к коронавирусу человека SARS-COV2, с применением тест-системы, предусматривающий проведение реакции на антитела IgM и IgG отдельно в разных лунках в присутствии рекомбинантного антигена, содержащего рецептор-связывающий домен Spike белка коронавируса человека SARS-COV2 (S-RBD), связанный с природным аминоконцевым сигнальным пептидом и с С-концевой гексагистидиновой меткой Spike белка, при этом в каждую лунку 96-луночной планшеты добавляют препарат антигена, инкубируют, удаляют с плашки раствор с антигеном, промывают ячейки ФСБ-T, добавляют в ячейки ФСБ-T с 4% БСА и инкубируют 90 минут, промывают ФСБ-Т, наносят в каждую лунку планшета раствора антигена с ФСБ-Т с 1% БСА, далее наносят по 8 мкл сыворотки крови тестируемого пациента, разведенной в ФСБ-Т с 1% БСА, инкубируют 1 час, промывают ячейки 4 раза ФСБ-Т, добавляют конъюгат антител и фермента, инкубируют 40 минут, промывают ФСБ-Т 6 раз, окрашивают с помощью ТМБ, разведенного в ДМСО, натрий-цитратном буфере с добавлением 30% перекиси водорода, останавливают реакцию окраски добавлением 0,25 М серной кислоты и измеряют оптическую плотность при длине волны 450-620 нм.
Наверх