Реактор нетермического крекинга

Изобретение относится к системам для крекинга, в частности, изменения свойств углеводородов жидких, газообразных и прочих жидкостей. Изобретение касается реактора нетермического крекинга, содержащего диэлектрический корпус, внутри залитый диэлектрическим компаундом, источник магнитного поля в виде обращенных одноименными полюсами друг к другу магнитов, содержащего центральную токопроводящую часть проходного конденсатора, причем центральный токопроводящий элемент выполнен в виде трубы переменного сечения, а второй токопроводящий элемент выполнен в виде металлической ленты, которая намотана на центральный токопроводящий элемент через диэлектрик. Вход и выход центрального токопроводящего элемента снабжены диэлектрическими соединительными элементами, которые соединены байпасом, при этом в противоположных концах части центрального токопроводящего элемента большего диаметра установлены магниты, обращенные друг к другу одноименными полюсами, а между магнитами размещен профилированный элемент. В центре магнита со стороны части центрального токопроводящего элемента меньшего диаметра выполнено отверстие для вывода, а внутри части центрального токопроводящего элемента меньшего диаметра размещен спиральный навитый элемент из немагнитного материала, кроме того, корпус, центральный токопроводящий элемент и второй токопроводящий элемент образуют коаксиальную конструкцию, находящуюся внутри продольно ориентированного магнитного поля. Технический результат - формирование центростремительного движения рабочей среды на всем протяжении части центрального токопроводящего элемента большого и малого диаметров. 1 ил.

 

Изобретение относится к системам для крекинга, в частности, изменения свойств углеводородов жидких, газообразных и прочих жидкостей.

Из уровня техники широко известны устройства термического и каталитического крекинга.

Наиболее близким к заявляемому изобретению является реактор, описанный в устройстве для электромагнитной обработки топлива двигателей внутреннего сгорания, содержащем диэлектрический цилиндрический корпус, крышки которого на его концах снабжены диэлектрическими входным и выходным фитингами; источник магнитного поля в виде пары обращенных одноименными полюсами друг к другу магнитов, размещенных в двух цилиндрических фланцах, которые со стороны магнитов связаны друг с другом через диэлектрическую профилированную прокладку с центростремительными вырезами, при этом в центре одного из магнитов выполнено отверстие для вывода топлива, а один из фланцев связан с входным фитингом; топливную магистральную цилиндрическую трубу, установленную внутри корпуса вдоль его оси, которая с одной стороны связана с выходным фитингом, а с другой стороны с фланцем, в котором размещен магнит с отверстием, причем труба содержит оболочку в виде обмотки из двух наложенных друг на друга лент, при этом первая лента выполнена из гибкого изолирующего материала, а вторая из металла; источник электрического поля, который выполнен в виде ассиметричного конденсатора, одним из электродов которого являются топливная магистральная цилиндрическая труба и цилиндрические фланцы, а другим металлическая лента, при этом металлическая лента через генератор импульсов тока связана с электрическим герметичным разъемом для подключения источника электропитания. (Евразийский патент на изобретение №035654, опубл.: 2020.07.22, МПК F02M 27/04)

Недостатком известного решения является то, что предложенная конструкция обладает невысокой эффективностью из-за отсутствия решения, сохраняющего центростремительное вращение на всю длину реактора, а также из-за электрических импульсов только одного параметра.

Задачей, на решение которой направлено заявляемое техническое решение, является создание реактора нетермического крекинга, обеспечивающего нетермический (без нагрева среды) крекинг.

Технический результат заключается в формировании центростремительного движения рабочей среды на всем протяжении части центрального токопроводящего элемента большого и малого диаметров.

Технический результат достигается тем, что реактор нетермического крекинга, содержащий диэлектрический корпус, внутри залитый диэлектрическим компаудом, источник магнитного поля в виде обращенных одноименными полюсами друг к другу магнитов, содержит центральную токопроводящую часть проходнго конденсатора, причем центральный токопроводящий элемент выполнен в виде трубы переменного сечения, а второй токопроводящий элемент выполнен в виде металлической ленты, которая намотана на центральный токопроводящий элемент через диэлектрик, кроме того, вход и выход центрального токопроводящего элемента снабжены диэлектрическими соединительными элементами, которые соединены байпасом, при этом, в противоположных концах части центрального токопроводящего элемента большего диаметра установлены магниты, обращенные друг к другу одноименными полюсами, а между магнитами размещен профилированный элемент, при этом, в центре магнита со стороны части центрального токопроводящего элемента меньшего диаметра выполнено отверстие для вывода, а внутри части центрального токопроводящего элемента меньшего диаметра размещен спиральный навитый элемент из немагнитного материала, кроме того, корпус, центральный токопроводящий элемент и второй токопроводящий элемент образуют коаксиальную конструкцию, находящуюся внутри продольно ориентированного магнитного поля.

Конструкция заявляемого технического решения показана на чертеже, где схематично изображен реактор нетермического крекинга.

Заявляемое техническое решение может быть реализовано в конструкции реактора нетермического крекинга, включающего корпус 1, крышки 2, соединительные элементы 3, магниты 4, центральный токопроводящий элемент 5, второй токопроводящий элемент 6, диэлектрик 7, байпас 8 (показан схематично), часть центрального токопроводящего элемента большего диаметра 9, профилированный элемент 10 (показан схематично без отверстий), отверстие для вывода 11, спиральный навитый элемент 12, часть центрального токопроводящего элемента меньшего диаметра 13,компаунд диэлектрический 14, внутренний блок питания 15, электрический разъем 16.

Реактор нетермического крекинга устроен и функционирует следующим образом.

Проходной конденсатор содержит центральный токопроводящий элемент 5, который выполнен в виде трубы переменного сечения. При этом труба переменного сечения может быть выполнена из нескольких элементов, которые соединены между собой при помощи резьбового соединения или сваркой или иным другим способом, известным из уровня техники. Второй токопроводящий элемент 6 выполнен в виде металлической ленты, которая намотана на центральный токопроводящий элемент 5 через диэлектрик 7. Вход и выход центрального токопроводящего элемента 5 снабжены диэлектрическими соединительными элементами 3 (например, выполненным в виде фитингов). Соединительные элементы 3 соединены байпасом 8, например, с трехходовыми кранами. На противоположных концах части центрального токопроводящего элемента большего диаметра 9 установлены магниты 4, обращенные друг к другу одноименными полюсами. Между магнитами 4 размещен профилированный элемент 10. Профилированный элемент 10 имеет профиль, образованный вырезами, задающими центростремительное ускоренное движение среды от края к центру магнитов 4. В центре магнита 4 со стороны части центрального токопроводящего элемента меньшего диаметра 13 выполнено отверстие для вывода 11. Внутри части центрального токопроводящего элемента меньшего диаметра 13 размещен спиральный навитый элемент 12 из немагнитного материала (например, из металлической немагнитной проволоки). Корпус 1 выполнен из диэлектрического материала, при этом, корпус 1 имеет смысл выполнять из ударопрочного материала. Корпус 1, внутри залитый диэлектрическим компаудом 14, центральный токопроводящий элемент 5 и второй токопроводящий элемент 6 образуют коаксиальную конструкцию.

Центральный токопроводящий элемент 5 и второй токопроводящий элемент 6 заключены в диэлектрический корпус 1, который может иметь крышки 2. Жидкость или газ подаются в центральный токопроводящий элемент 5. Посредством профилированного элемента 10 жидкость или газ получают центростремительное ускоренное движение от края к центру магнитов 4 и через отверстие для вывода 11 поступают в часть центрального токопроводящего элемента меньшего диаметра 13. При помощи спирального навитого элемента 12 сохраняется спиральное центростремительное движение вплоть до выхода из центрального токопроводящего элемента 5. При этом в рабочей среде формируется зона повышенного давления и зона разряжения в центральной части центрального токопроводящего элемента 5, что является ключевым фактором, оказывающим каталитическое воздействие на среду на границе зон разного давления действие для обеспечения высоких показателей работы предлагаемого технического решения.

На реактор подается электропитание двумя блоками, один из которых задает частоту и скважность электрических импульсов, а другой осуществляет усиление и формирование формы импульса для питания проходного конденсатора.

В качестве источника магнитного поля могут применены редкоземельные магниты либо электромагниты. Для контроля работы устройства на внешней стороне корпуса 1 может устанавливаться светоцветовая индикация.

Таким образом, в предлагаемом устройстве, например, углеводородное топливо подвергается обработке под влиянием избыточного давления по краю центростремительной зоны и зоны разряжения (низкого давления)в центре, находясь при этом зоне действия магнитного и модулированного электрического полей дающих необходимую энергию для процесса, что приводит к радикально-цепному механизму с разрывом связей С-С в молекулах парафиновых, нафтеновых, алкилароматических и высококипящих непредельных углеводородов нефтяного сырья и связи С-Н в низкомолекулярных парафиновых и других углеводородах, что приводит к достижению заявляемого технического результата.

Реактор нетермического крекинга, содержащий диэлектрический корпус, внутри залитый диэлектрическим компаундом, источник магнитного поля в виде обращенных одноименными полюсами друг к другу магнитов, отличающийся тем, что содержит проходной конденсатор, причем центральный токопроводящий элемент выполнен в виде трубы переменного сечения, а второй токопроводящий элемент выполнен в виде металлической ленты, которая намотана на центральный токопроводящий элемент через диэлектрик, кроме того, вход и выход центрального токопроводящего элемента снабжены диэлектрическими соединительными элементами, которые соединены байпасом, при этом в противоположных концах части центрального токопроводящего элемента большего диаметра установлены магниты, обращенные друг к другу одноименными полюсами, а между магнитами размещен профилированный элемент, при этом в центре магнита со стороны части центрального токопроводящего элемента меньшего диаметра выполнено отверстие для вывода, а внутри части центрального токопроводящего элемента меньшего диаметра размещен спиральный навитый элемент из немагнитного материала, кроме того, корпус, центральный токопроводящий элемент и второй токопроводящий элемент образуют коаксиальную конструкцию, находящуюся внутри продольно ориентированного магнитного поля.



 

Похожие патенты:

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Предложено устройство для снижения расхода топлива в ДВС автомобиля, которое содержит индукционный элемент (1) преимущественно трубчатой формы, предназначенный для монтажа вокруг трубопровода (5), по которому циркулирует топливо, для создания в нем электромагнитного поля из переменного тока, получаемого от источника электрического тока.

Изобретение относится к устройству для уменьшения выбросов загрязняющих газов посредством каталитического управления в процессе сгорания. Устройство содержит полый цилиндрический корпус (101) с основанием с отверстием (104) впуска топлива на одной стороне цилиндрического корпуса (101) и с другим основанием с отверстием (102) выпуска топлива на другой стороне цилиндрического корпуса (101), перфорированный цилиндрический сепаратор (110) внутри корпуса, и активирующий лист (120), образованный по меньшей мере одним магнитным элементом, который расположен между перфорированным сепаратором (110) и внутренней стенкой полого цилиндрического корпуса (101.

Изобретение относится к устройству для уменьшения выбросов загрязняющих газов посредством каталитического управления в процессе сгорания. Устройство содержит полый цилиндрический корпус (101) с основанием с отверстием (104) впуска топлива на одной стороне цилиндрического корпуса (101) и с другим основанием с отверстием (102) выпуска топлива на другой стороне цилиндрического корпуса (101), перфорированный цилиндрический сепаратор (110) внутри корпуса, и активирующий лист (120), образованный по меньшей мере одним магнитным элементом, который расположен между перфорированным сепаратором (110) и внутренней стенкой полого цилиндрического корпуса (101.

Изобретение относится к двигателестроению. Устройство активатора воздуха для двигателей внутреннего сгорания размещается в воздушном тракте после воздушного фильтра.

Изобретение относится к области машиностроения, в частности к устройствам для обработки топлива электрическими полями перед подачей его на сжигание. Предложен электроимпульсный ионизатор топлива, содержащий полый диэлектрический корпус 2 в виде осесимметричного цилиндра с входным 7 и выходным 1 штуцерами, образующий ионизационную камеру 9, в которой размещены электроды 4, 8, подключенные к источнику высокого напряжения.

Изобретение относится к смесительным устройствам, содержащим несколько последовательно расположенных смесителей различного способа действия, и относится к области смешения жидкофазных систем, в том числе являющихся дисперсионной средой и дисперсной фазой, а также к области активации свойств и рекомбинации указанных систем.

Изобретение относится к транспортным средствам. Транспортное средство содержит двигатель, устройство каталитического нейтрализатора с электрическим подогревом и блок управления электропитанием материала основы, которое подается на материал проводящей основы.

Предложенный в изобретении способ относится к подготовке жидкого углеводородного топлива электрическими средствами перед подачей его на сжигание, путем обработки в устройстве воздействием неоднородным электрическим полем высокой напряженности. Обработку топлива осуществляют в устройстве, выполненном с камерой 3, которая образована корпусом 1 из электропроводного материала и электродом 2, расположенным во внутренней полости корпуса 1, коаксиально ему.

Изобретение относится к устройствам очистки нефтепродуктов и может быть использовано в топливных системах дизельных двигателей, работающих на тяжелых сортах жидкого топлива. Фильтр-диспергатор нефтепродуктов содержит корпус 1, а также установленный внутри корпуса 1 и подключенный к приводу механических колебаний 7 посредством штока 6 фильтродиспергирующий элемент 4 с центральным каналом 14.

Настоящее изобретение относится к системе, способу и устройству (1) для оптимизации эффективности сгорания газов для производства чистой энергии, содержащим магнитный сердечник (30) и впускные и выпускные каналы (41a, 42a), причем впускные и выпускные каналы (41a, 42a) выполнены с возможностью приема газов (201), газы (201) попеременно устанавливают потоки между впускными каналами (41a) и выпускными каналами (42a), и наоборот, магнитный сердечник (30) выполнен с возможностью генерирования и воздействия магнитных полей (35) на газы (201) внутри впускных и выпускных каналов (41a, 42a), чередование потоков между впускными и выпускными каналами (41a, 42a) и воздействие магнитных полей (35) способствует ускорению атомов водорода и ионов кислорода и аргона, способствует уменьшению радиусов орбит электронов атомов водорода вокруг их ядер, и вызывает высвобождение потенциальной энергии электронов и соответствующее увеличение кинетической энергии ядер молекул газов (201), тем самым, оптимизируя (повышая энергию) газов (201, 202).

Изобретение относится к области подготовки и первичной переработки жидкого углеводородного парафинистого сырья. Изобретение касается способа обработки жидкого углеводородного парафинистого сырья, включающего нагрев сырья методом смешивания с теплоносителем или передачи тепла через разделяющую перегородку, гидродинамическое пульсационное воздействие, включающее кавитационное воздействие, введение химических реагентов, активирующих процесс деструкции межмолекулярных и внутримолекулярных связей, разделение сырья на легкую низкокипящую парогазовую фракцию и тяжелую жидкую высококипящую фракцию, их направление на дальнейшую переработку по отдельности или в смеси.
Наверх